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Structure and bonding of small semiconductor clusters
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We calculate the geometrical and electronic structure of small Si„,Si„+,and Si„clusters up to
sites n =14 within a combined tight-binding —density-functional-theory scheme. Especially stable
structures for n =6 and 10 coincide with observed abundancies in the experimental mass spectra.
All equilibrium structures are found to be close packed, with a different bonding than found in the
bulk fragments. A transition to bulklike open structures is estimated to occur at cluster sizes
/1 =10 —10 .

I. INTRODUCTION

The properties of small atomic clusters have received
much attention over the past decade. ' These finite sys-
tems represent a new type of materials which show finger-
prints of properties observed in atomic or molecular phys-
ics on one hand and condensed matter physics on the oth-
er hand. Also, the large portion of surface atoms makes
small clusters interesting for applications in catalysis.
The low coordination of surface atoms causes bond con-
tractions, which have also been observed at extended sur-
faces of many systems. These bond contractions, which
are large on the average and "tunable" through the clus-
ter size, make small clusters behave as matter under high
pressure and can lead to new structures. Finally, the pro-
nounced size dependence of the electronic structure of
small clusters is expected to lead to materials with mass-
tailored optical and electrical properties.

So far, the largest portion of experimental effort has
been devoted to cluster production. Clusters are pro-
duced in pulsed ultrasonic beams following a vapor con-
densation or laser vaporization and their size is usually
determined in a mass analyzer after a charging and ac-
celeration process. In contrast to this class of clusters
produced in vacuum or in low-pressure carrier gas, clus-
ters of quite well-defined sizes can also be grown in solu-
tion.

In general, observed mass spectra do depend on
cluster-preparation conditions, such as their charge state,
temperature and cooling rate, and type and pressure of
the carrier gas. Of special importance for the theoretical
interpretation of the structure and bonding in small clus-
ters are pronounced features such as abundant cluster
sizes ("magic numbers") which do not depend on the
preparation technique. At present, such mass spectra are
available for rare gases, alkali metals, transition metals,
semiconductors, and insulators. '

For elements whose cohesion is mainly due to non-
directional van der Waals interactions, such as rare-gas
clusters, we expect the equilibrium structure to be close

packed and stability maxima to occur at sizes correspond-
ing to specially compact icosahedron arrangements at
n =13, 55, 147, 309, etc. For simple metals, which have
been successfully described by the jellium approximation,
the stability has been found to be mainly determined by
the kinetic energy of electrons in a jellium droplet rather
than the atomic postions. Materials with covalent bond-
ing, such as semiconductors, present a hybrid situation
between these two cases. There, the strength of the direc-
tional covalent bonds depends on the atomic positions.
While a strong surface tension due to many dangling
bonds is expected to favor compact metallike structures at
small cluster sizes, the increasing portion of bulklike
atoms in larger clusters will finally induce a transition to
more open crystal structures with reconstructed surfaces.
The main objective of this investigation is to study the
equilibrium structures and bonding in this class of materi-
als, in our case represented by silicon. While the struc-
ture of bulk silicon has been thoroughly studied both ex-
perimentally and theoretically, our study has been en-
couraged by recent photofragmentation experiments of
small silicon clusters. Our main results for the Si, clus-
ters have been published in a brief version elsewhere. '

Some of our conclusions could also be compared to other
calculations, which were performed by using different
quantum-chemical methods. ' " After our calculation
was completed, we became aware of a cluster calculation,
which applies a formalism similar to the tight-binding part
of our calculation to a limited number of Si clusters and
arrives at similar conclusions. "

Our paper is structured as follows: In Sec. II we out-
line the theoretical approach we use to describe small
semiconductor clusters. In Sec. III we apply this formal-
ism to Si clusters and present resu1ts. The general con-
clusion and possible extensions of our study are summa-
rized in Sec. IV.

II. THEORETICAL TOOLS

The study of small clusters imposes an additional prob-
lem to that encountered when investigating solid-state sys-
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tems with many electrons. Successful approaches such as
the local density approximation (LDA) have been
developed, ' but the calculation eft'ort required limits their
application to a small number of structures. While this is
not a serious problem in solid-state systems, where the
geometric structure is known in many cases, in small clus-
ters the large number of configurational degrees of free-
dom for the ionic positions makes a true geometry optimi-
zation within the LDA virtually impossible.

We therefore choose a dual-track approach. We first
use an empirical tight-binding (TB) method to presearch
the 3n —6 six-dimensional configuration space for possi-
ble equilibrium structures of an n atomic cluster. A limit-
ed number of geometries is then investigated more closely
within the LDA.

The tight-binding method we use here is an extension
of a Hamiltonian, which has been previously successfully
applied to the reconstruction of semiconductor surfaces. '

The cohesive energy of the cluster E,,h can be written as a
sum of a band-structure energy EBs and a repulsive ener-

gy E~ as

energy and a band-structure energy given by Eq. (2.2), as

E„(d)=E,„'„",,„h(d)—EBs(d) . (2.6)

( ——,'V'+ V,„„+VH+Vxc)g =e q (2.7a)

To a good approximation, E„'„",„hcan be obtained from
ab initio calculations. For charged clusters, we only con-
sider obvious changes in the band-structure term Eqs and
keep Eg the same as for neutrals. In summary, the above
described parametrization of our tight-binding energy for-
mula is expected to produce a reasonable interpolation be-
tween dimers and selected bulk structures, which are
reproduced exactly. Uncertainties remain as to the
definition of a bond. Ideally, EBs+E~ should be in-
dependent of this definition; however, the corrective term
in (2.4) and the nearest-neighbor tight-binding Hamiltoni-
an are too simple to achieve this. We choose to call
d & d, a bond, which introduces discontinuities at the sad-
dle points of configurational energy surfaces.

In the density functional part of our calculation, we
solve self-consistently the set of Kohn-Sham equations'

Ecoh —Eps +Eg

The band-structure energy is given by

(2.1) and

OCC

p(r)= g ~
g (r)~ ' (2.7b)

Ess=gn s —n gnps~+U g (q; —q;)
CX P i =1

(2.2)

where the first two terms denote the one-electron energy
of the cluster and n isolated atoms, respectively, and the
third is an intra-atomic Coulomb interaction. In our no-
tation, a and P correspond to electronic levels of the clus-
ter and isolated atoms, respectively, and Roman indices
denote sites. The electronic levels c of the cluster are ob-
tained from a tight-binding Harniltonian of the form

for a given cluster. V;,„

is the external pseudopotential
due to the ions. The Hartree potential VH and the
exchange-correlation potential VXC, which is used within
the LDA form are both functionals of the charge density
p(r) For . a self-consistent charge density corresponding
to the electronic ground state, the total energy of the clus-
ter can be obtained from

E„,= g e ——,
' f VH[p]p(r)d r

H ra g + E pQ pQ p+ g g r p J13 (a;paJ +C. C. )
0

i P ij PP'
(2.3) + f p(r)(exc[p] —Vxc[p])d r +E;, « (2.8)

Ep = g E„(d)) —n [$&(nb ln )'+)~,(n&/n)+f3] . (2.3)

The constants g~, fq, and g3 are used to exactly reproduce
cohesive energies of dimers and bulk structures with
difterent coordination numbers, such as the diamond and
bcc structures of silicon. For dimers, these coefficients are
selected in such a way that

Eg' '"=E,(d). ) (2.&)

and E„(d)is dined as the difference of "exact" cohesive

where c;P are the atomic levels and t;P JP are parametrized
nearest-neighbor hopping integrals. Net charge transfers
b,q; = (q; —q; ) at the atomic sites are obtained from a
Mulliken population analysis. Structures with large Aq;
are eftectively suppressed by the intra-atomic Coulomb in-
teractions.

The repulsive energy E~ consists of pairwise inter-
atomic interactions E„(d;jj and a term which only de-
pends on the total number of bonds nb and the number of
atoms n in the cluster,

where exc[p] is the exchange-correlation energy density
and E;,„;„

is the electrostatic interaction energy among
the bare pseudoions. The cohesive (or atomization) ener-

gy of an n atomic cluster is finally given by

E„h=E«, (cluster) —nE„,(isolated atom) . (2.9)

In the following section we use the combined TB-LDA
formalism to obtain the equilibrium geometries, energies,
and electronic structure of small Si clusters.

III. CALCULATIONS AND RESULTS
FOR SMALL Si CLUSTERS

In the tight-binding calculation of Si, we use a four-
state (s,p,p~,p, ) Hamiltonian. ' The diagonal elements
are s- and p-level energies' E, = —5.25 eV and Ep = 1.20
eV, respectively. We use Slater-Koster parametrized'
hopping integrals which show a 1/r distance depen-
dence. Their values for r =2.35 A, which is the
bulk equilibrium nearest-neighbor distance, are' V„
= —1.938 eV, V,p: 1 745 eV Vpp ——3.050 eV, and

Vpp
———1.075 eV. The corresponding band structure of

Si in the diamond structure is shown in Fig. 1. We use



M A. SCHLUTE&D. TOMANFK AN 361210

0— "zs'

—10

A

of bulk Si obtained fromf bu i
'

m the tight-
h d i f io 1

FIG
binding Hamiltonian as e
Hamiltonian (so

'
lid lines).

or
' - mic Coulomb interactio .'

n. The
d.fi-db, Eq

fi

f h oh of S%'e used an analy f etic fit for e
18given by

/ a —d/d*)] ],d/d" Y —(d/d")~]exp[@/ a—E„i,(d) = A [(d/d

(3.1)

= —3 ~ 3721 781 Ahere 3 —8 7
07 and &=0

TB ca cu a
len th do=

lation gives a ve &

2 27 A (expt va "emer proper
E e

ties: the bond g
3 O7 V (expt. valueof 2.2

n fre uency ~o
24 A) bincling-energY '"

~ 519 cmV) and vibration q; hbor Ham-
of —3 ' —i) 1n our nearest-neig(expt. value o;

nd j being neighbo
of 511 cm -

ors was that
of

the criterion for i a J '
s the average otheir distance d,i & .

'
hbor distance in busecond-nearest-

'b tion function.near the minimum
ces some arbitrarinesAs mentioned '.

d'ff nt nearest neige TB picture, s
r the same geomet y,

ince i ere
tr

into t e
ent energies or t e

o-
can lead to differe

the minimization pr-
maps can

difficulties in t e m
ke tor this reason, wedure For t is

etr optimization.
de enerate leve s a1 h b

t}1 11eometnes wmetric way. G " are unsta-h "Fe velsatt ed degenerate level
lier distortions. Ter

'
The

in the bond-num er-
= —1.03

= —464 V di th

of543A) d h b lk0

25 A( 1. 1 of'll S (b ) =3.the high-pressure p ase
3.12 A).

h for equilibrium geometriesA useful he p1 in the scarc
n-Feynman forces, g'iven bywas the ca cu a i1 lation of Hellman- eyn10—

ER

Sip ~EtotF;=—
Br;

where

(3.2a)

'aa„«.i~i~-&=X - &-,
„

=gn
ri

CP p

Ec
0

0e
e

0

4

-' Ess

~ ~
y ~

g ~
~ ~

~ ~
~ ~

~ ~

O

r(4)

o
'

r E„],of Si~ intoof the cohesive energy. 2. Decomposition o
Eg~ and the repu siveb d- tructure energy' gn) ban -sru

lotted against internucenergy E~, p o e

(3.2b)

a minimum energy werep ' g
minimizatio p o

h 1

b 1

eometries
al zed

1

hit -Ch tseudopotentials o
functional we use e

p
or the exc an

A 0 b
Fo

h b
Alder.

pls, and or i
s er orbita.ded in a Gaussiaian basis wi

ed plane-wave c 1-calcula-
c . ' Spin-h dbulk Si properties wi

in our calculation.s have been neglected o
ted to change t e coThey are expecte

the equilibriumnature of the bonding,
h ohand the trends in t e co e



36 STRUCTURE AND BONDING OF SMALL SEMICONDUCTOR CLUSTERS 1211

~ LDA

x TB
Q10

3~
tD

C'
0

LLJ TB Sln

~ ADAMANTA NE
CAGE

Pi 1 l l l l l l l l

1 2 3 4 5 6 7 8 9 10 11
( )

4)

C:

Q 2-
UJ

xr
X

«x x —x

X~
/

/
/

x S
~ +

/ 'n/

BULK

l l l l l

7 8 9 10 11
0 l l l l l l

(C) 1 2 3 4 6
4 x--x/

x—-x--x- -x
x~

x

/
X

/ S'nI
/

X

Q 2—
4J

Q i l l l l l l l l l l l

1 2 3 4 5 6 7 8 9 1011

FIG. 3. Cohesive energy per atom of small Si„,Si+, and Si„
clusters. Tight-binding results are connected by a dashed line;
local-density functional results are connected by a solid line.

In Fig. 3 we present results for the cohesion of Si„,Si+,
and Si„clusters in their equilibrium structure. Numeri-
cal data for the cohesion as well as the band structure and
repulsive part of F.„hare summarized in Table I. The
charged clusters should correspond to experimental condi-
tions. We first note that the TB and LDA results follow
the same trend for the cohesive energy of neutral clusters.
Quantitative diff'erences exist, both in relative stabilities as
well as in equilibrium geometries which we will discuss
below. Due to the similarity of the cohesion curves for
neutral and charged Si„clusters, we restrict most of our
studies to neutral clusters.

The equilibrium structures of Si„clusters up to a size
n =10 are shown in Fig. 4. Si2 is reproduced exactly in
the TB model, by construction of the Hamiltonian. How-
ever, it is underbound in the LDA calculation. Si~ has
an opening angle of =80', due to a Jahn-Teller distor-
tion, and agrees with the singlet state found in indepen-
dent calculations. ' Si4 is a Bat rhombus with a side
length of 2.3 A and a diagonal of 2.4 A. (The equilibrium
TB values are -0.1 A longer. ) A relaxed tetrahedron is
less favorable in energy by —0, 5 eV/atom. The most
stable structure for Siq is a "squashed" trigonal bippram-
id. The basis triangle has a side length of 3.1 A; the
bonds between its corners and the caps are 2.4 A long.
We also find a metastable "pointed" geometry with a base
length of 2.3 A and the cap-to-base bond length of 2.3 A.
The equilibrium structure of Si6 is a distorted octahedron.
The side length of the square base is 2.6 A (2.8 A in TB)
and the cap bond length is 2.3 A (2.5 A in TB). This
geometry is more stable by 0.6 eV/atom (0.7 eV/atom in
TB) than the relaxed sixfold ring, a bulk fragment, also
shown in Fig. 4. The specially stable octahedron struc-
ture serves as a building block for Si„clusters up to
n =14. These are obtained by decorating the sides with
tetrahedron caps in such a way that the mutual adatom
distances are maximum. On the basis of our total-energy
calculations, di6'erent atomic arrangements led to higher
energies. These were, e.g. , two twisted squares for Si8 and
the same structure decorated by a cap for Si9, which in

TABLE I. LDA and TB results for the cohesive energy per atom E„&/n of Si„clusters. For TB the
band-structure part EBs/n and the repulsive part Eq /n of the cohesion are also given, as well as the
average number nq/n of nearest-neighbor bonds.

Cluster
size n

2
3
4
5

6
7
8
9

10
11

LDA
E„h/n

(eV)

—0.6
—2. 1

—2.8
—3.3
—3.5
—3.4
—3.3
—3.5
—4.0
—3.8
—5.1

TB
E.0h /n

(eV)

—1.5
—2.3
—3.1

—3.0
—3.4
—3.5
—3.5
—3.5
—3.6
—3.9
—4.6

TB
Egs/n

(eV)

—4.9
—6.9
—8.4
—8.7
—9.4
—9.7
—9.7
—9.5
—9.8

—10.3
—12.6

TB
Eg /n
(eV)

3.4
4.6
5.3
5.7
6.0
6.2
6.2
6.0
6.2
6.4
8.0

TB
nb /n

0.50
1.00
1.25
1.80
2.00
2.14
2.25
2.22
2.40
2.45
2.00



1212 D. TOMANEK AND M. A. SCHLUTER 36

Sip Sip

0
0.1 —0.2 A. This effect is more pronounced in larger clus-
ters. For highly coordinated sites, the pairwise repulsion
E„(d), obtained from Si2, shows too strong a distance
dependence beyond the equilibrium distance. Equilibrium
geometries can be strongly improved within the TB for-
malism, if E„(d)in Eq. (2.6) is reduced for large d, as can,
e.g. , be done by multiplying it by a smooth function:

E„(d)=E„(d)(exp[(r—rF )/aF]+ 1) (3.3)

Si 6 R-Sip (UNSTABLE RING)

Si7 Sle Sig

0 —Si~p A —Si ~p ( UNSTABLE
ADAMANTANE )

FIG. 4. Ball and stick models for calculated equilibrium
structures of small Si„clusters. The connections correspond to
nearest-neighbor bonds. Also shown are the (metastable) crystal-
line fragments for n =6 and 10.

TB turned out to be unstable by 0.18 eV and 0.04 eV, re-
spectively, with respect to the octahedron-based struc-
tures. The equilibrium Si~o cluster (0-Siio) of four-capped
octahedron with a side length of 2.5 A (3.1 A in TB) and
a cap bond length of 2.3 A (2.4 A in TB). This structure
is more stable by =0.9 eV/atom (0.8 eV/atom in TB)
than the adamantane cage (A-Siio), a building block of
the silicon crystal in the diamond structure. These struc-
tures, both shown in Fig. 4, are topologically connected,
as will be discussed later on. Surfaces of constant charge
density, presented in Fig. 5, show the differences in the
bonding type between the more stable octahedron and the
adamantane structure of Si~o. A structure consisting of
two twisted squares on top of each other, each decorated
by a cap, is found slightly unstable within LDA, while
within TB it is favored by 0.3 eV/atom with respect to the
"best" octahedron-based structure. Beyond n =10, addi-
tional adatoms unfavorably overcoordinate the basic oc-
tahedron and do not further increase the binding energy
per atom. These results for the Si„clusters agree well
with recent quantum-chemical calculations where avail-
able. "

Comparing equilibrium TB and LDA structures, we
find that TB tends to exaggerate bond lengths by typically

where rp and aF are adjustable constants. Choosing rz
larger than the equilibrium bond length d, q guarantees
very little change in the energies for nearest-neighbor dis-
tances d Sd,q, smaller E„(d)for d &d,q, and the correct
asymptotic behavior. ap and I"~ were obtained by repro-
ducing LDA results for both metastable states of Si5 and
Si ~o. The best fit yielded a~ ——4 A and rz ——7A. To repro-
duce the Siq and bulk Si data, the constants in the bond-
number-dependent term had also to be modified to
/~=0. 350 eV, its=0. 407 eV, and g3= —1. 186 eV. Our
experience with the TB Hamiltonian shows that the calcu-
lated types of equilibrium geometries are independent of
the exact P~ values and of small modifications of the
repulsive terms. In order to keep the TB model as trans-
parent as possible, we have not used the form (3.3) for the
repulsion in the results presented in this paper.

As mentioned before, the adamantane structure of Si~o
is topologically connected to the octahedron structure and
can be obtained by moving the octahedron atoms at
(+ro,0,0), (0,+ro,0), and (0,0,+ra) outwards by =0.9 A
and the tetrahedron atoms at (r„+r,, +r, ) and
( —r„+r,, +r, ) inwards by about the same distance. Re-
sults of total-energy calculations for this transition are
shown in Fig. 6. In Fig. 6(a) the TB total energy is given
as a function of ro and r, for a nearest-neighbor bond map
corresponding to an adamantane structure; in Fig. 6(b)
the TB total-energy surface is given for an octahedron
nearest-neighbor bond map. It is interesting to note that
despite the different connectivities of these structures, the
3-nn map shows an energy minimum near an 0 structure
and vice versa. As can be seen in Fig. 6(c), which sum-
marizes LDA and TB results for the 3 ~0 transforma-
tion along the minimum-energy path, the activation bar-
rier of =0. 1 eV/atom is quite small when compared with
the energy difference DE=0.9 eV between these struc-
tures. The TB results, given by a dashed line, are in good
qualitative agreement with the LDA results.

In order to find general rules for the stability and equi-
librium structures of small Si„clusters, we investigated
the nature of the highest occupied (HOMO) and lowest
unoccupied (LUMO) molecular orbitals as well as the gap
which separates them. The results are given in Table I.
Within our TB model, an orbital has been called bonding
(B) if it increased in energy upon cluster expansion, anti-
bonding (A) if it decreased in energy, and nonbonding (N)
if its energy level did not change substantially. For the
ease of comparison, LDA and TB gap energies have also
been plotted as a function of cluster size in Fig. 7. We
note that especially stable structures for n =6 and 10 in
LDA show large semiconducting gaps and have a bonding
HOMO and a non- or antibonding LUMO.
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FIG. 5. A "view" of constant valence charge density surfaces for the metastable adamantane (bottom) and stable octahedron (top)
structures of Si~o.
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In order to compare our result to experimentally ob-
served fragmentation spectra, in Fig. 8(a) we show the
fragmentation energy AE, , which here is defined by

AE„=E„h(Si„)) —E„h(Si„) (3.4)

and (up to a constant) corresponds to the energy involved

3—

G. 2—
C9

r
LaJ

XI(

Qo
X
ly

I
I

/ x~
I ~~ TB

LPA ~

FIG. 6. Contour plots of tight-binding total-energy surfaces
for Si~o as a function of atomic coordinates ro and r, as defined
in the text. The plots correspond to the nearest-neighbor maps
of (a) adarnantane (A)-Si~o and (b) octahedron (0)-Silo. The
equidistant contours are separated by 0.2 eV. Results of the
LDA calculation for the 3-Silo —+0-Si~o transition along the
minimum-energy path are given in (c) (solid line) and are com-
pared to the tight-binding results (dashed lines).

FIG. 8. (a) Fragmentation energy AE„:—E,„h(Si„ l )

—E„h(Si„)as a function of cluster size n. The LDA results are
given by the solid line, the TB results by the dashed line. (b)
Typical Si+ fragmentation mass spectrum as given in Ref. 5.

AE(n)=E„h(open Si„)—E«h(compact Si„).
and using

(3.5)

in removing one Si atom from a Si„cluster. The pro-
nounced maxima of AE„ for n =6 and 10 correspond to
the observed abundant cluster sizes shown in Fig. 8(b).

Since the structures of Si6 and Si&0 are quite different
from the crystal fragments of corresponding size, it is an
important question, at which critical size n'"" a crossover
occurs between compact and open crystallike structures.
It seems plausible to assume that surface atoms tend to
reduce their number of dangling bonds by assuming
close-packed structures, while for the fully coordinated
bulk atoms a transition to more compact structures is en-
ergetically unfavorable. We can roughly estimate n'"' by
comparing energies of Si„clusters in an open (diamond)
and in a compact (bcc) structure,

pi i ! i

0 1 2 3 4 5 6 7 8 9 10 1f AE(n '"')=0 (3.6)
CLUSTER SIZE

FIG. 7. Energy gap between the highest occupied and the
lowest unoccupied cluster orbitals as a function of Si„cluster
size. Local-density functional results (solid line) and tight-
binding results (dashed line) are shown. AE(n)=n, AE, +(n —n, )AEb, (3.7)

as the transition criterion. Distinguishing n, surface
atoms from (n —n, ) bulk atoms in a Si„cluster, we ob-
tain
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where

b.E, =E„h,(open Si)—E„h,(compact Si)

and
bEq =E„hq( open Si) —E„hq(compact Si)

(3.8a)

(3.8b)

are assumed essentially independent of the cluster struc-
ture. Here, E„h,and E„hb are binding energies of sur-
face and bulk atoms, respectively. Equations (3.6) and
(3.7) finally give as condition for the structural transition

cIlt gE
n cat AEb —AE,

(3.9)

Since in small clusters, such as Sii0, virtually all atoms are
suface atoms, we can estimate AE, from

bE, =
—,', E„h(A-Si]p)——,', E„h(O-Si)p) . (3.10)

The result of our calculation yields AE, = —0.9 eV. Pre-
vious calculations for bulk diamond and bcc Si give
bEq =+0.4 eV. Inserting these values into Eq. (3.10) we
get n,'"'/n'"'=0. 3. The number of surface atoms n, in
clusters of n atoms can be estimated from geometrical
considerations. Let us consider spherical clusters of ra-
dius R, consisting of "cubic" atoms with a cube length r

and R /r =m, the number of shells. Then,

and

n, 3 3 1+
m m m

(3.1 la)

n =4~m' . (3.11b)

For large clusters, R/r &~1 and the terms of the order
1/m and 1/m can be neglected. Then, we obtain

36~
(n, ln )

(3.12)

Using n, /n =0.3 we obtain for the critical cluster site
n'"'=4200 atoms, which is of course, a very rough esti-
mate. It is interesting to note that a very similar argu-
ment, applied to clusters of transition metals with a bulk
bcc structure, leads to similar critical cluster sizes for the
fcc~bcc transition. Small deviations in n,'"'/n'"' and
additional correction terms will probably reduce n'"' and
lead to critical cluster sites of 10 —10 atoms for the tran-
sition form compact to open crystal structures in silicon
clusters.

IV. DISCUSSION

The use of a parametrized TB Hamiltonian for deter-
mining equilibrium structures seems reasonable in view of
the large dimensionality of the configurational space and
the small amount of computer time involved in those cal-
culations. The energy evaluation in TB, including forces,
was —500 times faster than within LDA. Also, the re-
sults of the TB calculations gave more reliable structures
than a comparable scheme using an optimized form of
two- and three-body potentials. The determination of
the parameters, used in the TB Hamiltonian, is, however,
not unique. As can be seen in Fig. 1, the TB single-site
energies and hopping integrals give a relatively good fit of
the valence (but not the conduction) band in Si. To im-

prove results for other materials such as carbon, we select
optimized electronic parameters from fits of all bands of
different prototype structures.

It has been shown in the last section that both structur-
al and electronic properties of small Si clusters are strong-
ly different from bulk crystal fragments. A Mulliken pop-
ulation analysis yielded an electronic configuration very
close to s p for all clusters studied here, in contrast to
the sp configuration in the crystal. A slightly decreasing
population of s states from 1.95 electrons in Si2 to 1.7—1.9
electrons in Si~a shows the correct trend towards bulk
configuration, but the absolute change is very small and
supports our finding of very large cluster sizes necessary
for a transition to bulk behavior. In large enough clusters
with a considerable portion of fully coordinated atoms,
these bulklike atoms with a sp configuration, which
prefer open crystal structures, will reverse the close-
packing tendency imposed on the cluster by the surface
atoms with a s p configuration.

The results of our study indicate a strong interplay of
the electronic and geometric structure in small Si (or more
generally semiconductor) clusters. This behavior is quite
different from both simple-metal clusters, where the elec-
tronic structure does not strongly depend on atomic posi-
tions, and from rare-gas clusters, where the equilibrium
structure is rather independent from electronic states.
Charging a Si„cluster can both induce or suppress a
Jahn-Teller distortion. The same effect can occur due to
level crossing upon bond-length changes.

The latter effect has been studied for the transition from
the metastable "pointed" (P) to the "squashed" (S)
geometry of Siq. During this transition, a bonding orbital,
which is a hybrid of p, states on the base and p, and s
states on the caps and which is occupied in P-Si5, crosses
the HOMO of P-Siq near the saddle point of the total en-
ergy. For P-Siq, the HOMO is doubly degenerate and oc-
cupied by only two electrons, which gives rise to a Jahn-
Teller instability. Near the S-Siq side of the transition
path, the crossing orbital transfers both its electrons to the
Si5 HOMO thus removing the Jahn-Teller instability for
S-Siq. From the Mulliken population analysis, the net
charges on the cap decrease considerably from q, = —0.20
in P-Siq to q, = —0. 11 in the more symmetric S-Si5.

A similar TB analysis has been performed for the
adamantane (A) to the decorated octahedron (0) transi-
tion of Si~a shown in Fig. 6. However, the limitations of
the TB Hamiltonian, which depends on the nearest-
neighbors bond map, manifest themselves in this case,
since the connectivities of 3-Si~0 and 0-Siia are different.
Nevertheless, it is interesting to find in Figs. 6(a) and 6(b)
local-energy minima corresponding to 3 and 0 structures
for both nearest-neighbor maps. Both maps also give a
consistent picture of the orbital behavior during this tran-
sition, which is similar to that observed in Siq. In 3-Si~a
the three-fold-degenerate HOMO, which is a hybrid orbit-
al involving s and p states on all atoms, is occupied by
only two electrons, which leads to a Jahn-Teller distor-
tion. Near the energy barrier for the transition to O-Si&0,
shown in Fig. 6(c), a previously occupied doubly degen-
erate orbital crosses the HOMO of A-Si~a, becoming the
LUMO of 0-Sicko and stabilizing this structure against
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Jahn-Teller distortions. This orbital involves p states on
the cap atoms, which hybridize with s and p orbitals (only
those pointing out of the cubic cell) on the octahedron
atoms. During this transition, the net charge on the
threefold coordinated atoms qT ———0.24 in the 3 struc-
ture strongly decreases in magnitude and changes sign to
qT ——+0.06 for the cap atoms in the more stable 0 struc-
ture. In the course of this transition, the semiconducting
gap of 0.7 eV for 3-Siip first closes near the barrier and
then opens to its large 0-Si~o value of 2.9 eV (TB value).

In order to understand the structure in the stability
curves of Si„Si,, and Si„clusters given in Fig. 3, we in-

vestigated the size dependence of the different energy
terms constituting the TB cohesive energy. The average
number of bonds per atom as well as the repulsive energy
per atom turned out to be rather structureless. On the
other hand, we found that the structure of the cohesive
energy curve coincided quite well with that of the band-
structure energy. This feature is well known and is used
to further analyze our results.

To understand the trends in E„h(Si„),in Fig. 7 and
Table II we show LDA and TB results for the semicon-
ducting gap between the HOMO and LUMO. While
LDA tends to underestimate gap energies, we still expect
to obtain correct trends, which is confirmed also by com-
paring the LDA and TB curves. We find that structures
with large gaps for n =4, 6, and 10 correspond to espe-
cially stable cluster sizes.

We further expect a large stability for structures with a
bonding HOMO and an antibonding LUMO. In Table II
we also tabulate the characters of these orbitals and, based
on the above argument, indeed find Si6 and Slip stable
when compared to clusters of neighboring sizes.

It is interesting to draw general conclusions about the
Si cluster growth and the stable geometries on the basis of
our results. We speculate that geometries involving bond
angles larger than 90, such as in Si4 and Si6, should favor
the sp hybridization and open the semiconducting gap,
hence stabilizing the structures. On the other hand, the

TABLE II. LDA and TB results for the gap energy Eg, p be-
tween the highest occupied (HOMO) and lowest unoccupied
(LUMO) molecular orbitals, as well as their bonding behavior.
B denotes bonding-, A denotes antibonding-, and N
nonbonding-type orbital.

octahedron structure of Si6 also corresponds to the most
close-packed arrangement possible. The close-packing ar-
gument leads to octahedron-based structures with essen-
tially unchanged bond lengths, whose sides are decorated
by caps. The cap bond lengths are smaller due to the low
coordination of the cap atoms, so that the cap atoms
significantly stabilize the basic octahedron. For n & 10,
however, the overcoordination of the octahedron atoms
turns out to be energetically unfavorable, which leaves
0-Si&p as an especially stable structure. A-Si~p, on the
other hand, turns out to be very unstable, mainly due to
the low coordination of all of its atoms.

In Fig. 8(a) we investigated the stability of Si„clusters
with respect to evaporation of isolated Si atoms. This
fragmentation process is least energy intensive and should
occur most frequently, the exception being emission of
very stable fragments such as Si6 or Sijp for larger clus-
ters. We find an agreement between cluster sizes which
are stable towards fragmentation and experimentally ob-
served fragmentation mass spectra of Si+ reproduced in
Fig. 8(b). This close agreement is nontrivial in view of the
fact that the experimental conditions need not be close to
equilibrium and also since we did not investigate charged
clusters with the same precision as the neutral ones.

In clusters of germanium, which shows a similar type
of bonding as silicon, we expect very similar results for
the equilibrium structures and magic numbers. This is
supported by recent calculations of Ge2 —Ge6 and by
observed abundancies in Ge+ mass spectra. ' On the oth-
er hand, very different equilibrium structures and magic
numbers are expected in carbon due to the significance of
~ bonding in this system.

In conclusion, we studied the structural stability and
electronic properties of Si, , Si+, and Si~, clusters up to
n =14. A tight-binding formalism has been used to find
stable structures, which were further investigated in the
density functional formalism. No open structures or frag-
ments were found for these cluster sizes. A transition to
open structures in expected to occur at cluster sizes
n = 10 —10 . The most stable structures for n =4, 6, and
10 show a large semiconducting gap between highest oc-
cupied and lowest unoccupied states. These sizes coincide
with observed abundancies in the mass spectra of Si„clus-
ters.
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