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Bent-band theory of conductivity in heavily doped semiconductors at low temperatures
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A theory is presented of the conductivity in heavily doped semiconductors at low temperatures on
the basis of the bent-band model. With the use of the Green's-function formalism, the vertex part as
well as the the free part of the two-particle Green's function is calculated, taking into account all the
diagrams representing the electron-impurity interaction. An analytical expression convoluting the
free part and the vertex part is obtained in a compact form represented by multiple integrations. The
computation of the conductivity is carried out on n- and p-type Si and Ge and n-type GaAs at 0 K.
Agreement between the theory and experiments is very good for Ge:As but is worse for Ge:Sb,
Ge:Ga, Si:P, and Si:As. The cause of the good agreement for Ge:As is ascribed to the suitability of
the impurity potential assumed for the calculation. However, the considerable agreement, which is
found also for the other materials at doping levels down to that for the metal-insulator transition,
suggests that the present theory may be more useful under another suitable choice of the impurity po-
tential. The role of the vertex part is shown to be important especially at doping levels around that
of the metal-insulator transition.

I. INTRODUCTION

The low-field conductivity in heavily doped semicon-
ductors, especially that at low temperatures, is of academ-
ic interest because electrons interact strongly with many
impurities simultaneously, as in the localization and delo-
calization problem. Various theories' have been
developed so far in order to understand conduction in the
presence of ionized impurities and to offer convenient
methods of calculation. Although those theories have
turned out to be useful ' at high temperatures and/or low
doping levels, they cannot explain' the conduction at
high doping levels, especially at low temperatures, for the
following reason. The above theories are exclusively
based on a model in which electrons are scattered off the
isolated impurities independently of all other earlier
scatterings; the subsequent scatterings are also unaffected.
Further, the electron-impurity scatterings are so strong
that the second-order Born scattering considered in some
of the above theories may be inadequate; higher-order
scatterings may also have to be considered. Especially
with regard to conduction around the metal-insulator
transition, there seems to be no quantitatively satisfactory
explanation based on numerical calculation.

This paper describes an attempt to obtain a quantitative
understanding of the conduction at high doping levels and
low temperatures, although the theory is useful also for
high-temperature cases. Special interest is in the doping
range around the metal-insulator transition. One ap-
proach to this problem is the use of the tight-binding ap-
proximation starting from a localized donor orbital. "
This approach may be useful at low doping levels where
the electronic states are not much extended, i.e., below the
critical doping level of the metal-insulator transition. In
contrast to the use of the tight-binding approximation, we
adopt in this paper the bent-band model which has been

used by Bonch-Bruevich' for analyzing the electronic
states in heavily doped semiconductors. In this model,
the spatial variation of the impurity potential is assumed
to be gradual enough that the fluctuation in the energy of
the states mirrors closely that in the potential energy. Us-
ing the bent-band model, the present author has discussed
the electronic states in heavily doped semiconductors in
the usual three-dimensional structures, ' in quasi-two-
dimensional structures, ' ' and in quasi-one-dimensional
structures. ' ' In these analyses the diagram method of
the Green's-function formalism has been used differently
from Bonch-B rue vich's approach for the three-
dimensional structures. We adopt that method also in
this paper. Thus the present work is an extension of the
previously developed method to the analysis of conduc-
tion in three-dimensional structures, and is a first step to
further extension to lower-dimension cases.

In the discussion we will deal with the vertex part as
well as the free part of the two-particle Green's function
giving the conductivity. The two-particle Green s func-
tion is calculated by taking an ensemble average of the
function over the impurity sites. It is shown that all the
diagrams of the electron-impurity interaction appearing in
the vertex part as well as in the free part can be summed;
thus an analytical expression for the conductivity, convo-
luting the free part and the vertex part in one form, is ob-
tained.

Actually there are some works' which have dis-
cussed the conductivity in three- and/or two-dimensional
structures considering the vertex part. However, those
works have been simplified by, for example, using a point-
like impurity potential, the Born approximation, or a con-
stant relaxation time. Although those calculations have
turned out to be useful, especially for discussing weak lo-
calization, the models used are not appropriate for a
quantitative understanding of the conduction in heavily
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doped semiconductors at low temperatures. In particular,
the importance of multisite scatterings has been pointed
out ' before. Use of an impurity potential with a reason-
able model of the screening is crucial, together with an ac-
count of the multisite multiple Born scattering and of the
wave-vector-dependent relaxation time, as is done in the
present paper.

II. ANALYTICAL MODEL
AND ONE-PARTICLE GREEN'S FUNCTION

H =H, +H, ;+H, , (2.1)

In this section we present a model for the analysis of
the impurity-scattering problem and give a brief descrip-
tion of the derivation of the one-particle Green's function
because this function will be of special importance in the
discussion of the conductivity. The derivation has been
given by the present author on the basis of the diagram
method and is given here in such a way as to facilitate the
extension of the method to the calculation of the two-
particle Green s function in the next section. First, we
define our model by writing down the Hamiltonian

N;

I 0(r) = g U;o(r —R„)
n =1

1= —g I o(q)exp( jq r),
V

(2.5)

1= —g Uo(q)exp[jq. (ri —r2)],
V

(2.6)

where e is the electronic charge. Hereafter we consider
ionized impurities of a single species. Then we have
U;p( r ) =Z Uo ( r ), where Z is the negative of the valency of
each impurity with respect to the host lattice. Defining
U;0(q) as the Fourier transform of U;0(r) similarly as in
Eq. (2.5), we obtain

where U;0(r —R„)is the unscreened potential due to the
impurity at r=R„.X; is the total number of the impuri-
ties and V the crystal volume. Uo(q) is the Fourier trans-
form of the interaction Uo(ri —rq) between the electrons
at ri and r2, i.e.,

2

Uo(r t
—r2) =

ri —r2

Here H„H,;, and H, , are the Hamiltonians for the
band electrons, the electron-impurity interaction, and the
electron-electron interaction, respectively. We assume H,
and H, ;+H, , to be the unperturbed Hamiltonian and
the perturbation, respectively. The explicit forms of the
Hamiltonians are

I'0(q) = U;0(q)h (q),

h (q) = g exp( —jq R„),
n =1

(2.7)

(2.8)

H, = g EI(k)ai, g, ~ai, g, ~,
l, k, cr

(2.2)
4~e Z2

U;0(q) =ZUO(q) = (2.9)

H, l ——— g I 0(q)ai Q+q ai k o
1', l, k, q, o.

(2.3)

1
He-e = g Uo(q)all k+q ual2 k' q cr'

1) 712) 13/ 14
k', k, q, o, o'

+al, k', 'al, k, (2.4)

Here aik, aik, and Ei(k) are the creation operator, the
annihilation operator, and the unperturbed subband ener-

gy, respectively, for the electron in subband I with wave
vector k and spin o.. I o(q) is the Fourier transform of
the unscreened potential I 0(r) due to all the impurities:

For generality we consider the case of arbitrary temper-
ature including zero. Considering that we need the re-
tarded Green's function finally, we must start with the
temperature Green's function when the electron-electron
interaction is considered; from that function the retarded
Green's function can be found. For the problem of the
electron-impurity interaction, on the other hand, we can
directly start with the retarded Green's function. In the
analysis that follows, we neglect the effect of the intersub-
band scattering for the electron-impurity and the
electron-electron interactions.

In the presence of the impurities, the one-particle re-
tarded Green's function is expressed in terms of two wave
vectors k and k', one energy parameter cu, and the posi-
tion vectors of the randomly distributed impurities
Ri, R2, . . . , R~. as G (lk, lk';co;Ri, Rq, . . . , R~. ), whose

dependence on the impurity sites comes from h (q) of Eq.
(2.7). For this Green's function we take an ensemble aver-
age' ' over the impurity sites, which is defined as

(G (lk, lk';co)) = jdR|dR2 . . dR~. G (lk, lk';co;Ri, Rp, . . . , R~. )
l
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Here A(q) is defined as A(q) =1 if q=O and A(q)=0 oth-
erwise. The last step of Eq. (2.10) comes from the fact
that the space uniformity, which is lost under random dis-
tribution of the impurities giving k&k, is restored under
the average distribution giving momentum conservation
k=k'. G (lk, pi) is the retarded Green's function in the
average impurity distribution, for which the rule of the di-
agram method is known. Into G (lk, p~) the eff'ect of
the electron-electron Green's function can be incorporated
by the standard diagram method. The discussion just
above applies also to the temperature Green's function in
the same way. Using the temperature Green's function
obtained in this way, the dielectric screening of a bare po-
tential can be obtained in terms of the polarization dia-
gram. Based on this screening, we replace the unscreened
potentials I p(q), U, p(q), and Up(q) with the screened ones
I (q), U;(q), and U(q), respectively, in the following dis-
cussions.

Now we discuss the one-particle retarded Green's func-

tion G (lk, lk';co) (the position vectors of the impurities
are omitted) considering only the electron-impurity in-
teraction for which the screened potential is used. It can
be shown' that we have

(lk, lk', pi) = —f dr exp[j(k —k'). r]
V

X
1

pi+j 0+ Ei(—k+j V„)—1 (r)

(2. 1 1)

where V„=8/Br; I (r) is obtained from Eq. (2.5) by re-
placing the unscreened potentials 1 p(r) and I p(q) with
the screened ones I (r) and I (q), respectively. Let us use
the bent-band model where the spatial variation of the im-
purity potential is gradual enough. Thus we neglect the
spatial derivatives of all orders of I (r) in Eq. (2.11).
Then we obtain

G~(lk, lk';co) = —f dr exp[j(k —k') r]
V pi+j 0+ —EI(k) —I (r)

=Gp (lk, pi) g —f dr[Gp (lk, pi)I (r)] exp[ —j(k —k') r]
=o V

oc m

=Gp (lk, pi) g g b(q +iqp+ ' ' ' +q —ki+k2) Q [Gp (lk, co)I (q )]
m =Oq, , q, , . . . , q a=1

(2.12)

where Gp (Ik, co) is the free-particle Green's function H =—f dr[U;(r)]
1

(2.17)

6 p ( 1k, pi ) =
co+jO+ —EI (k)

(2.13) giving finally

Now the ensemble average of G (lk, lk';p~) over all the
impurity sites is taken. From the last step of Eq. (2.12)
and the relation I (q)= U(q)h (q) corresponding to Eq.
(2.7), we obtain a diagram of the self-energy for
G "(lk,cp) as shown in Fig. 1 for the case of n =4. Such a
diagram gives the self-energy

n n

S(M„)= f g)r„&(u„}
Gp (lk, M)

(2.18)

Here we define f 2)r„=f dri f dr2 f dr„,
u„=Gp (lk, co) U;(r„), and the impurity concentration

where we define

, m„=M„and
M„=(mi,m2, . . . , m„)

n

S(M„)=N;"[G (lk, )] " Q H
p, =1

(2.14)

by

Gp (2k, ~}
I

~ U((q. a} & = 1,2, ",my

H
m

&(qi+q~+ . +q ) Q
a=1

U(q )

V

(2.15)

m in Eq. (2.14) represents the number of interaction
lines connected with the o:th site. With the use of

2
X X

l~y f~ /ply& /j~~l

// y / $
~I lsd' /Ij«ajj j 1

y
1/ j t yj

4 )(
/ I i I \/i / /a/i

U;(r) =—g U;(q)exp(jq. r)1

V

we obtain

(2. 16) FIG. 1. Diagram representing the multisite multiple impurity
scattering, which is obtained by taking an ensemble average over
the impurity sites, for the case of n =4.
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n; =N;/V.
Now we calculate the self-energy g; (lk, cu) for the

electron-impurity interaction alone, which is a sum of all
the irreducible diagrams, as shown by examples in Fig. 2.
For this purpose it is convenient to consider a sum of all
the irreducible and reducible diagrams P which is ex-
pressed as

X XI X

I
I
I

X X

I y
'1

11

I
I ly
I i c i

X X

ll I y
IXL I 'i

II i

(2.19)P= g g g'P(M„;M„)S(M„),
n=1 M =nMn n

where gM means a restricted summation over M„
=(mi, mq, . . . , m„) excluding m„=0 (@=1,2, . . . , n),
and we define

P(Mk, M„)= M„!
m, im2! . mk i

(2.20)

under g",m =M„with k (n Sin.ce P is related to
X; (lk, co) by

FIG. 2. Irreducible diagrams giving the self-energy for the
impurity scattering.

The sum QM„ in Eq. (2.24) is taken over
Mk =(m i, mq, . . . , m„),where m can be zero as well as
a positive integer under the condition that at least one of
m 's should not be zero so as to satisfy
mi+mq+ +mk=M„(&0). As is shown in Appen-
dix A, Q(k;M„)is related to R (k;M„)by the formula

P=X; (Ik, co)+X; (tk, co)Go (lk, co)P,

we obtain

(2.21)
k —1

Q(k;M„)= g ( —1) R(k —a;M„). (2.25)

X,"(Ik,cu) =
1+PGo (lk, co)

(2.22)
Equation (2.24) can be given in a simple form:

Now let us calculate P, starting with the definition of
k

Q(k;M„)=g'P(M ,kM) f 2)r„g(u ) (2.23)
R (k;M„)=V" "fNrl, (ui+u2+ +uk) " . (2.26)

k

R (k;M. )= g P(M1„'M.) f Nr. Q (u ) (2.24)
Noting the relation S(M„)= [n;"/Go (Ik, co)]Q (n;M„)
and using Eqs. (2.24), (2.25), and (2.26), Eq. (2.19) is
rewritten as

1 n —1

p= g ' g g ( —1) V f 2)r„(ui+u2+ +u„)
Go(ik ~) .=i "' M„=l =o

(2.27)

It should be noted that the minimum value of M„has
been changed from n in Eq. (2.19) to 1 in Eq. (2.27) on
account of Eq. (2.25) giving Q(n;M„)=0 under
1(M„(n.With the use of the relation

where

H (s) = —f dr [exp[ —jsU;(r)] —1]
1

V
(2.30)

1

1 —gu
1 ~ . 1

ds exp J
jGo (Ik, co) Go (lk, co)

—QU(r ) s
a

(2.28)

Let us consider now the electron-electron interaction.
This can be done simply by replacing Go (Ik, co) in all the
diagrams considered above with Gi (lk, co), which is the
retarded Green's function obtained by taking into account
the electron-electron interaction alone. The function
Gi (Ik, co) is given in the form

Eq. (2.27) is rewritten, after performing all summations in
Eq. (2.27), as G f (lk, co) =

co —Ei(k) —X, (Ik, co)
(2.31)

1 00 jsds exp
jGo (lk, co) Go (Ik, cg)

X [exp[n, Vh (s)]—1I, (2.29)

where X, (Ik, co) is the self-energy for the electron-electron
interaction. As a result, the complete Careen's function is
obtained as:



1190 MASUMI TAKESHIMA 36

6"(lk,co)=
[6) (lk, co)] ' —X; (lk, co)

f "
ds exp [js [co—E~ ( k ) —X, ( 1k, co ) ]

J 0

On the other hand, the electron concentration
t
Z

t
n; is

given by

I
Z In = f dcop(co)e(co) (2.36)

As a result we obtain

+n; Vh (s)] (2.32) X, (lk, co)=
~

Z
~

n; U(0) . (2.37)

This is a general expression for the complete Green's
function representing the effect of the electron-impurity
and the electron-electron interactions.

Although we can take into account all the diagrams for
X, (lk, co), we consider here only the lowest-order diagram
as shown in Fig. 3. We neglect also the exchange term,
whose effect on the conductivity may be small, and take
only the Coulomb term. For the diagram in Fig. 3, we
use the complete Green's function G (lk, co) including the
effect of both the electron-impurity and the electron-
electron interactions. Starting with the temperature
Green's function, we obtain

X, (lk, co)= — g f dco ImG (lk, co)e(co), (2.33)
~V

III. CONDUCTIVITY AND TWO-PARTICLE
GREEN'S FUNCTION

Again we start with the Green's function with two
wave vectors of which the ensemble average over the im-
purity sites is not taken yet. In terms of the function, an
expression for the dc conductivity tensor o.„has been
given by Bonch-Bruevich. We put this into a more
tractable form in Appendix B. For cubic symmetry we
have cr&„b,(p —v) o——and we obtain

2

equi

d
o = — g f dco e(co)

37TV (m *)
~ g g dco

X ImG (lk), 1k', co)

where e(co) is the Fermi-Dirac distribution function for
energy measured from the Fermi level, i.e.,

X ImG (lk2, lk), co), (3.I)

e(~)=
CO

exp —+ 1
T

(2.34)
where m* is the effective mass. In practice we calculate
o. by taking an ensemble average of the above product of
the two-particle Green's function, i.e.,

T is the thermal energy. The density of states p(co) is

give by

( ImG (1k~,1k', co)ImG (lk2, 1k~, co) )

= —
—,'Re[(G (Ik~, lk2,'co)G (lk2, 1k~, co) )

p(co)= — g ImG (lk, co) . (2.35) —( 6 (lk), 1k','co)6 "(1k',lk(, co))],

where G "(lk2, 1k~, co) is the advanced Green's function.
Then the problem is reduced to the calculation of the
averaged two-particle Green's function

K (1k', 1k', co) = (G (1k', lk2, co)G (lk2, 1k', co) ),

U(O)

FIG. 3. Diagram representing the Coulomb term of the
electron-electron interaction.

(3.3)

where the affix R, A means selective choice of R or A ac-
cording to the use of the retarded or advanced Green's
function, respectively. The rule of the diagram sum for
E (lk~, lk2, co) is found by using Eq. (2.12) and is nearly
the same as in the case of the one-particle Green's func-
tion. The method in the preceding section is of extended
use here.

Figure 4 shows a diagram for K '"(lk~, 1k', co)

representing the electron-impurity interaction. Let us call
as the A group the group of the sites through which the
upper line (G ) and the lower line (G '

) interact with
each other through interaction lines. The groups of the
sites giving interactions only in the upper line and only in
the lower line are called the B group and the C group, re-
spectively, as shown in the figure. Let the numbers of the
sites for the A, B, and C group be a, b, and c; a, b, and c
can be zero. As shown in Fig. 5, the two-particle Green's
function K ' is given as a sum of the free part and the
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k,

k2

I
I

I
V
XP,

I I i
l

I & t i i I
I gil il/y I

41 i li i I

X C

I I i
I II I

Xz A

Il
I l
I
I

FIG. 4. Diagram representing the two-particle Green's func-
tion K (lk&, Ik2, co) for the electron-impurity interaction.

vertex part, which are represented by the case of a =0 and
a) 1, respectively. The sum of q's for the interaction
lines connected with a given site should be zero in all the
groups. The sums of q's for all the interaction lines con-
nected with the upper line and the lower line should be
kt —k2 and —(ki —k2), respectively. Correspondingly, in
place of Eq. (2.15), there appears

(p„)=
q] qz . qm

&(q&+qz+ +q +p„)

U(q )

a= 1

(3.4)

for those interaction lines of a given group which are con-
nected with the pth site and with the upper or lower line.
We have pz ——0 for both the B and C group and pz&0 for
the 2 group. A sum g„p„for the upper line and the
lower line should be equal to k& —k2 and —(ki —k2), re-
spectively.

Equation (3.4) is rewritten as

H (pz)= — dr[U;(r)] exp(jpz r)
1

m p (3.5)

as a more general form of Eq. (2.17). Corresponding to
the relation between the one-particle Green's function and
Eq. (2.14), the two-particle Green's function is related to
S (M, N), given by

S(M, N)=N + +'[Go (lk, , )] '[G '"(lk, )]
Pl PP - Pa

6(pl+pi+ +p, +k& —k2)

a+b a+c
X g[H (p)H„(—p)] g H (0) g H (0),

@=a+1 v=a +1

(3.6)

where we define M=(mi, m2, . . . , m, , m, +i, . . . , m, +q) and N=(ni, n2, . . . , n, +|, . . . , n, +, ) under g'+& m„=M
and g'+f n =N. Here m„and n are the numbers of the interaction lines connected with the upper line and the lower
line, respectively; m„and n for 1 (p (a belong to the 2 group, m

„

for a + 1 (p (a +6 to the B group, and n, for
a +1 &v&a +c to the C group. Defining also u„=GO (lkl, ~)U;(r„) for 1 &@&a +b, u =Go (lk2, cu)U;(r'„) for
1 & v&a, and u =Go (1k', co) U (r,, ) for a +1 & v&a +c, and using the relation

b, (k)= f drexp(jk r),1

V
(3.7)

we obtain

a+b+c
lS(M, N) =

Go (lk], ct) )G (l0kp, cu ) V

a+b a+cf,Br, f 2)r,' f 2)rb f 2)r, Q (u„)" Q (u, )

Pl, P2, ~ Pa v=1

1
Q

drexp j k r —r +r +j k1 —kq r
o. = 1

(3.8)

where f Xlr,' = f drI f dr2 . f dr,' and f 2)r, , f Xlrq, and f Sr, are defined in a similar way. With the use of
S(M, N) above, the two-particle Green's function is obtained as

a+b+c
K ' (lkl, lk2, ai) = Go (lki, co)Go (lk2, cu) g g'P (M;M) g' P (N;N)S (M, N)

M

(3.9)

Here P(M;M) is defined as Eq. (2.20) noting the relations for M, N, M, and N given just below Eq. (3.6); gM means the
restricted summation over m„)1 (1 & p & a +b), and the summation over a, b, and c is over a )0, b )0, and c )0. It is
easily seen that we have

a+b Mt a+b
g P(M;M) Q ( „)"= g, ', g'P(M, ,M, ) g'P(M„;M„)Q ( „)
M p. =1 a+ b M a ~ b Ma Mb p=1

(3.10)
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where M, =(m~, mz, . . . , m, ) and Mb=(m, +~,
m, +z, . . . , m, +q ) under g„' I m„=M, and

gz+, + t mz M——b. A similar relation is obtained for
P(N;N) and v„'s.

As extensions of Eqs. (2.23) and (2.24), we define

k

Q (u 1 uz ~ ~ ~ ug, M„)= g'P (M&,'M& ) g (u )

Mk a=1

(3.1 1)

k

R(u), uz, . . . , ug,'M„)=g P(NIg, Mg) Q (u )

Mk a=1

(3.12)

under k &n. Equations (2.23) and (2.24) are related to
the above equations as Q(k;M„)=I Xr„Q(u|uz, . . . ,

ui„M„)and R (k;M„)= IX)r„R(u~, uz, . . . , ul, ', M„).
Note the relation R(u~, uz, . . . , ul, ,M„)=(u~+uz

+ +up) " corresponding to Eq. (2.26). As shown in

Appendix C, we find the relation

Q(u~, uz, . . . , uq, M„)
k —1

g ( —1) g R (u„,, u„,, . . . , u„, ;M„),
o. =0 (n)

(3.13)

corresponding to the relation (2.25). In the equation ul,

(p = 1,2, . . . , k —a) agrees with some one of
» uz, , ur, and g, „~ means a sum for all possible
combinations of (uh, , uh, , . . . , u~„)under the restric-
tion that u~ with smaller p should take up with smaller

P. It should be noted that Q(u~, uz, . . . , u„;M„)given
by Eq. (3.13) is zero, especially under 1 &M„&n W.ith
the use of Eqs. (2.28) and (3.10)—(3.13), we can rewrite
Eq. (3.9) as

K '"(Ik|,lkz, co)

n a +b +c
= + g '

V +'[h z~ —( —1) ][h 3
—( —1)'] f ds exp f "ds'exp

g!b!g! 0 Go (Iki, co) o Go (lkz, co)

1
a —1 a —1

x — dr exp j k1 —k2 .r —1 —1 ~
V a=O /3=0

(g), (h)

a —a

f r, exp —j g U;(r~ )s
a —P

f 2)r,' exp +j g U;(rl, )s' —1

v=1

)& + 5(r„—r„'+r),
@=1

(3.14)

where hz=h (s) and h3=h (+s ) under the definition (2.30). In these expressions the upper and lower signs of + or +
are chosen according to selective choice of R and A, respectively, of the affix R, A. Equation (3.14) can be rewritten in

the form

(n y)a+b+c
K ' "(lkl, lkzico) = + g [h z

—( —I )"][h3
—( —1)']a!b!c!

+ ' I

ds exp ds exp
Go (lki, co) Go (tkz, co)

f drexp[j(k~ —kz) r][I(r)+ (1 —hz)'+(1 —h3)' —1],
V

(3.15)

where

a=O

a —1

y ( —1)~J(a —a, a —p;r) = g ( —1)' g ( —1)' ~(~,P'r) . (3.16)

Here we define

A'

J(a,I3;r)= g f 2)r, exp —j g U;(rs )s+j g U;(ri, +r)s'
(g), (h) p=1 v=1

Defining

(3.17)

h] ——— dr' exp —jU; r' s+ jU; r'+r s' —1
V

(3.18)
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we obtain

min(a, P) a!J(a,13;y)=
p, !(a—!u)!(P—!u)!(a—a —I3—p, )!

where min(a, P) is equal to the smaller of a and P. From Eqs. (3.16) and (3.19) we obtain

I (r) + (1—h3 )'+ (1 —h3 )' —1

a a min(aP) a! (h!+ 1) ( —h3 —1) "(—h3 —1)
!u!(a—p, )!(P—p)!(a —a P+—p)!

a a a

X X X (h! +1) '( —h2 —1) '( —h3 —1)
m!!m2!m 3!(a —m! —m 2 m 3 )l

m&
——0 m& ——0 m3 —0

(3.19)

X g(a —m! —m 2 )g(a —m! —m 3 ) (3.20)

where g(p) = 1 for p )0 and g(p) =0 for p & 0. Defining an operator

~( )= '. f"
2m' —~ x —gO+

we have

g(p) =2(x)exp[j (p +0+ )x] .

Using this relation, the term in the last step of Eq. (3.20) is rewritten as

(3.21)

(3.22)

a a a a!
(h! +1) '( —h3 —1) '( —h3 —1)

0 m!!m3!m3!(a —m! —m2 —m3).
m&

—— m& —— m3

X Ãx! )Ãx2)exp[j(a —m! —m2+0+)x! +j(a —m! —m3+0 )x2]

= J(x!)Ãx2)exp[j(a +0+)x!+j(a +0+)x2][h!exp( jx!—jx2—) —h2exp( —jx!) —h3exp( —jxz)+1]' . (3.23)

Substitution of this term into Eq. (3.15) yields

K '"(lk!,lk2, co)= + f ds exp
0 Go (lk!,co)

~ /

X d& exp
0 Go' (1k', a!)

X [exp(n; Vh3) —exp( —n; V)][exp(n; Vh3) —exp( —n; V)]

X —f dr exp[j(k! —k3).r]J(x!)2(x2)exp[j0+(x! +x2)]
V

X exp[n, V [h!—h2exp(jx3) —h3exp(jx3)+exp(jx! +jx2)]) (3.24)

Because of ~Reh2 && 1 and ~Reh3
~

&&1, we can neglect the term exp( —n; V) in the limit n; V~ oo. Performing the in-
tegrations 2(x! ) and J(x3), we obtain

+ ' I

K (Ik!,lk2, a!)=+ f"ds exp f"ds'exp
0 Go (Ik!,a3) Go (lk2, co)

1
X drexp '

k~ —k2 .r exp n; Vh~
V

(3.25)

As has been done in the preceding section, we take into account the electron-electron interaction by replacing
Go (/k, co) in the above equation with G! (Ik, co) given by Eq. (2.31). We obtain a final result
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K~ (lki, 1k', co) = + —f dr exp[j(k~ —kq) r]

ds ds'exp js co —E~ k& —2„lk], co
0 0

+js'[cu —Ei(k2) —2, (1k', co)]

+ n, dr' exp —jU; r' s -+jU; r'+ r s' —1 (3.26)

From this result, the conductivity expressed as Eqs. (3.1)
and (3.2) is given by

X Re [K ( Ik ), Ikg, co )

—K "(Ik ), Ikq, co ) ] .

CpK"' "(Ik),1k', ~)=—

we obtain

(4 2), »s the Thomas-Fermi inverse screening
length and ep the dielectric constant of the host lattice.

Now we take only the Coulomb term given by Eq.
(2.36) as the self-energy for the electron-electron interac-
tion. Defining g=(e A, /eo)s, il =(e X/e'o)s',
Il; =[co E&(k;)—]so/(e X) (i=1,2), y=4irn; /X', and

2

K "(1ki, 1k','~), (4.4)

(3.27)

It should be noted that this expression convolutes the con-
tributions from the free part and the vertex part shown in
Fig. 5.

K ' (Ik~, lk2, co)= f drexp[j(k~ —k2) r]

XG Pi' (A&, Qr,'y) .

Here we define

(4.5)

IV. DISCUSSION FOR PRACTICAL CALCULATION

In this section we put the result obtained in the previ-
ous sections in more tractable form. Let us first discuss
the screening of the bare potentials starting with the
dielectric screening constant e(q, co). Neglecting the retar-
dation effect of the screening, we take m=0 so that we
have

G i, (Q„Q2,y)= f dg f dil exp[jgII~+jilfl2
0 0

+yg i(k, +n;r)],

(4.6)

where

U;(q) = U;0(q)/~(q, O), (4.1) g t (P~+)I; &) = dy exp — exp( —y)4~

e(q, O)=op(1+A, /q ), (4.2)

considering the electron-impurity interaction as an exam-
ple. Noting that e(q, O) is given in the form

+ — exp( —
I
y+x

I
) —1

jZn
I
y+x

I

U;(r) = exp( —kr) .
Ze
6'pl

(4.3)

with the use of the Thomas-Fermi approximation, we ob-
tain

+jz (4+v) (4.7)

G (Ik, co)= G (&),
e

(4.8)

with x=kr (x =A,r) and y=A, r' (y =Xr'). In Eq. (4.6) we
take +g for G~~ and —g for G~q. On the other hand, by
defining II = [co E (k1)]e /( oAe. ) —and

Eq. (2.32) is rewritten as

G i'(~) = —f "d g exp[jgA, +yg (4) ]
0

(4.9)

K"(/k, )/k2; ~ ) free part vertex part
with

g(g)= f™
dyy exp — exp( —y) —1 +JZP .

0
FIG. 5. Diagrams for the free part and the vertex part of the

two-particle Green's fonction K (1kl, 1k'', co).
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An important relation between gI(g, +21;r) and g(g) is
that we have

lim G 11(QI,Q2,'r) = + G (Q 1)G "'"(Q2) .
l' —+ oo

(4.12)

lim gI(g, +rl;r) =g (g)+g(+21) .
T'~ oo

Therefore we obtain

(4.1 1)

Now it is noticed that it is impractical to calculate o.

from the expression Eq. (3.26) because this expression
contains multiple integrations. To facilitate the calcula-
tion, we consider the range r & r, where Eq. (4.12) is prac-
tically valid; where r, is some critical value. As a result
we obtain

& ~'~(lkI, lk2, «) = +- b, (kI —k2)G (QI)G ' "(Q2)

dr exp j k] —k2 r G&p 0i &2 & —Grf &] &2 ~
r &r

(4.13)

In obtaining g(kI —k2) above, we have used Eq. (3.7) with k=k1 —k2. By replacing g„with [VI(22«) ] f dk, we obtain

after some manipulation

o =o ]+o'2
2

2/3
g f den e(co) f"dk k [ImG (Q)]

32« (m ) e A,

2 2

g f den e(co) f dx f"dk1k1 f"dk2k2 —y2cos(y2x)+y1cos(y1x)
dc' 0 0 0

(4.14)

(4.15)

2+—[y2sin(y2x) —y1sin(y1x) ]

2 2+yo [cos(y2x) —cos(y1x)]
X

+ Re[G II(Q1 Q2 x)+ G II(Q1,Q2', x)) (4.16)

(4.18)

f"dg f'd/3. . = f"d/3 f"dg

where as is the Bohr radius II1 col(m*e ), y1=
~

k1 —k2
~

IA, , y2 ——(kI+k2)IA, , and yo=(kI+k2)IA, ; in place of r in
G 11' (QI, Q2, r) we write x (=kr). It can be shown that O'I coming from the first term of Eq. (4.13) corresponds to the
free part, and o.2 to the vertex part, of the two-particle Green's function, as shown in Fig. 5.

Let us restrict the discussion hereafter to the case of temperature of 0 K. Although the calculation of o.
i is straightfor-

ward, the expression. for o.2 is still in an impractical form because the integration involved is too multiple to be performed
on a standard computer. To further facilitate the calculation we study GII'"(QI, Q2, r) given by Eq. (4.6). Let us define
new variables g=(+2) and /3=/ —2) where g&0 and —g &p& g. Defining p(g /3)=gI((21;r) we obtain

G 11(QI,Q2, «)= f dg f d/3exp[j —,'g(QI+Q2)+ j—,'p(QI —Q2)+yp(g, /3)], (4.17)
0 0

G II(Q1 Q2 «)= f dgexp[j —,g(QI —Q2)]Re f d/3exp[J —,/3(Q +QI)+2ry(/3

where we have used the relations gI(g, —2);r)=p(/3, g), I/(g, —/3)=p(g, /3), and p( —/3, $)=p*(p,g), which are found
directly from Eq. (4.7). Integration by parts is performed over P or g in each of Eqs. (4.17) and (4.18), respectively, and
then use is made of the relation

followed by interchange of the variables P~~g. We obtain

Re[G 11(QI,Q2, «)+G "(QI,Q2, r)]= — Re f dgexp[j —,'g(QI+Q2)]
Q) —02 0

X f d/3sin[ —,'p(QI —Q2)] exp[@/(g, /3)]

f dpsin[ —,'p(QI —Q2)] ImG "(—,'(QI+Q2), /3;r) .0]—Q2 0
(4.19)

The final step is obtained under the definition
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G (Q,/3;r)= —f™
dgexp[j gQ+yp(g, p)] .

J 0
(4.20)

As a special case we have G (A,p;0) = G (f1,0,0)=G (0). For practical calculations it is convenient to use
ImG (Q,P;r)=0 in the range 0 ~ y, which is shown in Appendix D, because we do not obtain ImG (SI,/3;r)=0 even
for 6 & y in practical calculations, owing to numerical error.

When P is sufficiently large, we have

1
sin[ —,'P(Qi —Ilp)) =ir6(Oi —Q2) .

0) —0,2
(4.2 l)

Let us define a critical value of p, i.e. , p, , for which the above equation is a good approximation under p)/3, . Then we
obtain

Re[GPi(Qi II2'r)+ Gi~i(&i &2'r)] = —2ir5(Qi —Az)lmG (II i,P„r)
+ f"dpsin[ —,'p(& —&2)] G ( —,'(&~+&2),p;r) .

0 2 a
(4.22)

If P is sufficiently small, the second term of the above equation is negligible because we then have approximately

a ag a a~ a
ap

=
ap ag

+
ap a~

a

an
~ ~ o 0

(4.23)

An actual calculation shows that the contribution of the second term on the right-hand side of Eq. (4.22) to o is negligi-
ble as compared with that of the first term even if p is not so small. Thus the second term in Eq. (4.22) is omitted as an
approximation. Final forms of ~] and o.

2 for a practical calculation are

oi= g f dQ(QF —6) [ImG (0)]3' I aB —CQ

2

cr2= f '
dx f dII[lmG (A, ,P, ;x)—ImG (Q,P„'oo )]

0 oo

2 2k
X . 1 —cos x

X

4k . 2k 2k 2k
sin x + 1+cos x

xk
(4.24)

where x, =kr, and IIF=[eoi(e A)]coF wi. th co~ as the
Fermi level measured from the band edge; we have
k =(2X/as)(QF —0).

Now let us discuss the Thomas-Fermi inverse screening
length A, . As shown in Appendix E, a general form of k
is given within the framework of the bent-band model as

8&2 X 1

aB

xg f dQ f dII(A —0)'~

8 2

f dc' e(~)lm[K (/ki, lk2', co)
l, kl, kp

—K (lki, lk2', co)],

(4.25)

considering the arbitrary temperature in general. Since
we know the actual form of K ' (lki, lk2', co), we can cal-
culate A, from Eq. (4.25). However, as has been seen in
the case of the o. calculation, the computation is impracti-
cal due to the multiplicity of the integration. Therefore
we only take the first term of Eq. (4.13) approximately,
i.e., we take the free part of k ' (lki, lkz', co). Then con-
sidering the temperature of 0 K, we obtain

X ReG (II)lmG (0, ) . (4.26)

4
n (coF)

0 a F

where the electron concentration n (coF) is given by

(4.27)

The right-hand side of the equation also depends on k im-
plicitly through G (II) as well as explicitly, so that the
above equation should be solved for k. Although the ap-
proximation adopted above is not proved to be useful, it is
felt that the approximation is good at least for doping lev-
els above the metal-insulator transition simply because the
vertex part is found to be not so important for such dop-
ing levels in the calculation of the conductivity.

An alternative method of calculating X is the direct use
of the Thomas-Fermi approximation. We have
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n (coF)= J da) p(co) (4.28) TABLE I. Band parameters. mp is the electron mass in Ua-

CQO.

at 0 K; p(co) is obtained from Eq. (2.35) as
2 . 3/2V'2 ~o

7T e ag

X g f dQ(Q —II)' ImG "(0), (4.29)

Material

n-type Ge
p-type Ge
n-type Si
p-type Si
n-type GaAs

mg /mD

0.12
0.31
0.26
0.49
0.067

mD/Mp

0.22
0.36
0.33
0.53
0.067

15.4
15.4
1 1.4
1 1.4

1.32

with Q„=[col(eA)](co, AE—~); HEI is the energy of the
edge of the Ith band measured from the Fermi level.

V. RESULTS AND DISCUSSION

In this section, the theory in the previous sections is ap-
plied to Ge, Si, and GaAs at 0 K. The calculated results
are compared with experimental data available on n-type
Ge, p-type Ge, and n-type Si at sufficiently low tempera-
tures. Because Ge and Si are indirect-ban-gap materials
having equivalent valleys with anisotropic effective
masses, the theory in the previous sections should be
modified to take into account this situation.

We assume that the intersubband scattering among the
equivalent valleys is negligible for both the electron-
impurity and the electron-electron interaction. Thus the
summations over the band index appearing in a number
of expressions should be replaced with the multiplicative
factor v, which is the number of valleys, i.e., gl ~v. For
the conduction band, the anisotropic effective mass, which
is given by the longitudinal and transverse masses m~~ and
mz, respectively, can be defined in the equation of the en-
ergy E (k) as

E(k)=
2

(k'+ k,')+
m

1 k2
Z (5.1)

with k=(k„,k„k,). Then we obtain
3/2

J dF-&Ef(E), (5.2)

Then one criterion may be A,ro/2 ~ 1, which requires that
there should be a sufficient number of impurities within a
screening range. Using Eq. (5.3) and y defined just above
Eq. (4.4), the above criterion is rewritten as

1/3
A,ro

(5.4)
2 8y

Figure 6 shows calculated values of [3/(8y)]' for Ge
and Si of both types and for n-type GaAs. The values are
plotted as functions of the doping level, including the crit-
ical level n, for the metal-insulator transition, which is
given by Mott as

a~n, ' =0.25 . (5.5)

To obtain y, we have calculated A, from Eq. (4.27), al-
though Eq. (4.26) is found to give practically the same
value as Eq. (4.27). It should be noted that the value of A,

calculated for a sufficiently heavy doping is well approxi-
mated by the value for unperturbed states. On the other
hand, A, becomes much smaller than the value for unper-
turbed states, as n; is decreased down to n, . It is found
that (3/8y)' is nearly equal to or smaller than unity, as
shown in Fig. 6, over the doping range of practical in-
terest. Thus the criterion (5.4) is nearly satisfied.

Now let us go into the discussion of the conductivity.
Figure 7 shows a comparison of the present theory
(dashed line) with the previous ones' (solid lines) and
with experiments' (open and solid rectangles) at 4.2 K.

where f (E) is some function of energy appearing in the
expressions for the density of states, the conductivity, and
the screening. In Eq. (5.2) mD is the density-of-states
mass, i.e., mD =(m~~mq)' . As the effective mass appear-
ing in the expression for the conductivity, e.g. , Eq. (3.1),
we can use the conductivity mass m~ given through
mc '=(m

~~

'+2m' ')/3. In practice we use
Qs =Pl Eo/mDe in Eqs. (4.23), (4.24), (4.26), and (4.29),
and multiply the right-hand sides of Eqs. (4.23) and (4.24)
by a factor (mD/mc). As for the valence band, the
effective mass is not so simply given as for the case of the
conduction band and we use the empirical values. Band
parameters used for the calculations below are listed in
Table I.

Now we find a criterion under which the bent-band
model is useful. Let the average distance between the
nearest impurities be ro, which is given through

IO

O. I

IO

p-type Ge n-type Si

IO

I

IO IO IO IO

I MPURITY CONCENTRATION ( cm ~)

IO

4m

3
I'on; = 1 (5.3)

FIG. 6. Number giving a criterion for the validity of the
bent-band model, which is shown as a function of the impurity
concentration for various materials.
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IO
9-PRESENT THEORY

a Ge- As

o Ge- Sb

E L

10
O
I—
M
CO
Ld
CL

IO

5 l8

DONOR CONCENTRATION (cm ~)

FIG. 7. Resistivity vs the donor concentration, which is ob-
tained from the present theory (dashed line), from previous
theories (solid lines) on n-type Ge, and from experiments on
Ge:As (solid rectangles), and on Ge:Sb (open rectangles) at 4.2
K.

The solid lines have been calculated by Katz' on the
basis of the treatments of Conwell-Weisskopf' (CW), of
Gulyaev (G), and of Brooks-Herring (BH). It is seen
that the calculated resistivities of the previous theories are
much smaller than the experimental ones on Ge:As (open
rectangles) and Ge:Sb (solid rectangles). The main reason
of the discrepancy may be that multisite and multiple

scatterings are not taken into account in the previous
theories. In contrast, the present theory explains experi-
ments very well on Ge:As and considerably well on
Ge:Sb.

Figure 8 shows comparisons of the present theory with
experiments on n-type Ge and p-type Ge. The solid line
and the dashed line are the theoretical results on n-type
Ge and p-type Ge, respectively. Experimental data at 4.2
K are shown on Ge:Sb (solid circles and solid rectan-
gles' ), on Ge:As (open rectangles' ), and on Ge:Ga (open
circles ). In the figure the resistivities are plotted versus
the net doping level over a wide range covering that
around n„ i.e., n, =9.5 X 10' cm for Ge:Sb,
3.5 )& 10' cm for Ge:As, and 1 )& 10' cm for
Ge:Ga. It is seen that the theory explains the experiments
very well on Ge:As and considerably well on Ge:Sb and
Ge:Ga at doping levels down to n, .

Figure 9 shows comparison of the present theory (solid
line) with experiments on n-type Si. The experimental
data at 4.2 K are shown on Si:P (solid circles ) and on
Si:As (open circles ). The resistivities are plotted versus
the net doping level in a wide range covering that around
n„i.e., n, =3.74 && 10' cm for Si:P (Ref. 29) and
8.5 &( 10' cm for Si:As. Agreement between the
theory and the experiments is not so bad but is worse
than in the case of Ge:As.

There may be two possible causes of the discrepancy
between the theory and the experiments. One is the use
of the impurity potential of the type given by Eq. (4.3)
and the other is the use of the bent-band model. We first
discuss the former problem. As is seen in the cases of
Ge:Sb and Ge:As and of Si:P and Si:As, experimentally
obtained resistivity is different from dopant to dopant of
the same type at a given doping level. This may be relat-
ed with the fact that the impurity binding energy and n,

0
I

— ~

—I

IO
E

~ g
~ N

THEORY
n-type Ge——p-type Ge

EXPERIMENT
~ Ge: Sb

Ge: Sb
X ~IO

THEORY
n-type Si——p-type Si

EXPERI M ENT

IO

V)
(A
IJJ
Ct

lO

0-
IO

Q)
V)
LLJ

IO

l8
IO

l9 2 2

IO IO
l9 IO20 3

IMPURITY CONCENTRATION (cm 5)
I MPURITY CONCENTRATION (cm ~)

FIG. 8. Resistivity vs the donor or acceptor concentration,
which is obtained from the present theory on n-type Ge (solid
line) and on p-type Ge (dashed line), and from experiments on
Ge:Sb (solid circles and solid rectangles), on Ge:As (open rectan-
gles), and on Ge:Ga (open circles) at 4.2 K.

FIG. 9. Resistivity vs the donor or acceptor concentration,
which is obtained from the present theory on n-type Si (solid
line) and on p-type Si (dashed line), and from experiments on
Si:P (solid circles) and on Si:As (open circles) at 4.2 K.
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TABLE II. Empirical binding energy and estimated Bohr ra-
dius and effective mass. mo is the electron mass in Uacuo.

Material

Ge.As
Cxe:Sb
Cxe:Ga
Si:P
Si:As

Fb (meV)

12.7
9.7

11
45.3
53.5

ag (A)

36.9
48
43
14.0
11.8

m */mo

0.22
0.17
0.19
0.43
0.51

2
lp

O

Cy

)
I 0

C3
z.'
O
O

are also different from dopant to dopant. The dopant
dependences are considered to arise from the effective im-

purity potential which is different for different dopants in
a region especially near the impurity atom. A convenient
method, which is often adopted, of taking into account
the effect of the impurity potential is an appropriate
choice of the Bohr radius a~ so that the binding energy
Eb, given by Eb ——e /2a~ep in the hydrogenic picture,
may agree with an experimental value. In the hydro-
genic picture, az is given by az ——A ep/m *e, from which
an empirical value of the effective mass I' can be ob-
tained as an adjustable parameter. In Table II we show
experimental values of Eb and the values of a~ and m*
chosen as mentioned just above. By comparing Tables I
and II, we find that the values of m* and mD show good
agreement especially in the case of Ge:As, suggesting that
use of Eq. (4.3) as an impurity potential is suitable. This
may be the reason why the theory and the experiments of
the conductivity show good agreement, especially on
Cxe:As. We see that m* and ID are very different on
other materials.

Now we consider another criterion for the bent-band
model, which requires that there should be a sufhcient
number of impurities within one wavelength, i.e.,

IO" Ip l8 Io)'

ACCEPTOR CONCENTRATION ( cm-~)

FIT+. 11. Conductivities vs the acceptor concentration, which
are obtained from the present theory on p-type Ge for o. and o&
with o. =o.i+o.q.

k
rp 512' (5.6)

for a given wave vector k. For a suKciently heavy dop-
ing, we have k (kF, where kF is the magnitude of the
Fermi wave vector given by k~ = (3' n; /v)', so that we
obtain (k/2n)ro & (kF/2m)r0-0. 3/v' . Therefore the
criterion (5.6) is satisfied for a heavy doping. On the oth-
er hand, especially when n; is below n„we have nearly
bound states so that we have k/2~5a~ '. Especially for
k/2m -a~ ', the criterion (5.6) is rewritten as
a~n ~ R(3/4n)'~ &0.25. In view of Eq. (5.5), therefore,
the bent-band model may not be so useful for n; 5 n, .
However, for n; & n, the bent-band model is considered to
be useful, as seen just above, and the discrepancy between
the theory and the experiments may be ascribed mainly to
inappropriate choice of the impurity potential as given by
Eq. (4.3).

Now let us discuss the contribution of the vertex part to
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FIG. 12. Conductivities vs the donor concentration, which
are obtained from the present theory on n-type CsaAs for o. and
o.

p with o. =o.l+o2.
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given in Eq. (2.25) under k &n .From the definition of
Q(k, M„)and R (k;M„)given by Eqs. (2.23) and (2.24),
we directly obtain

Q(1;M„)= f 2)r„(ui ) "=R(1;M„), (A2)

IO)
I—
M
M
LLI
Ct

IO

5
2

IO IO

DONOR CONCENTRATION (cm ~)

IOis

so that Eq. (Al) holds for k= l. It is also easy to see
directly

Q(2;M„)=R(2;M„)—
1

R (1;M„), (A3)

so that Eq. (Al) holds for k=2. Now we assume that Eq.
(Al) is valid for k &1 (&n). From the definition of
Q (k;M„)and R (k:M„),we obtain

Q(1+1;M„)=R (1+1;M„)
FIG. 13. Resistivity vs the donor concentration, which is ob-

tained from the present theory on n-type CsaAs.

the conductivity, which is represented by o.
2 given by Eq.

(4.24). It is found that o.
2 is negative and positive for n;

giving EF 0 and EF 50, respectively, where EF is the
Fermi level measured from the unperturbed band edge.
The value of n, giving EF——0 may define approximately a
theoretical value of n, . As discussed above, the bent-band
model is not useful for n; & n, so that positive values of 0.2
obtained may be incorrect. From this viewpoint, in Figs.
6—8 we have shown theoretical u-n; curves only in the
ranges of n; where 0.2's are negative.

In Figs. 10—12, we show 0.2's as functions of the dop-
ing level for n-type Si, p-type Ge, and n-type GaAs, re-
spectively, as examples. It is seen that the contribution of
aq to o. becomes important as n; is decreased toward n, .
We find that the contribution of o.2 to o. is very important
especially in n-type GaAs. As a result, the conductivity
shows a steep rise with decreasing n; down to n, in this
material, as shown in Fig. 13. It is suggested therefore
the o.2 offers the cause of strong localization as far as it is
calculated on some more correct method. Use of the
pseudopotential approach to the Green's-function formal-
ism, which has been developed by the present author
especially for band-tail states, may be one of such
methods where Eq. (4.25) should be used for A, . Use of an
appropriate effective impurity potential in combination
with the above approach may offer a comprehensive un-
derstanding of the quantitative behavior of the conductivi-
ty over the whole range of the doping level, although this
is beyond the scope of the present work.

Q(1+1;M„)=R (1+1;M„)
1 + 1 'y

( I )~
'1 + 1 —cz

a= 1 J8=0
a /3

~R (1+ 1 —a —P;M„).

(A5)

This equation can be rewritten in the form

1

Q(1+1;M„)=g ApR(1+1 P;M„), —
P=O

where Ap is determined from Eq. (A5) as

Ao ——1

and
p 1+1

( 1)p—~ 1+1 a
a P —a

(A6)

(A7)

=( —1) g ( 1) a' a=1

( 1)p 1+1
(A8)

The last step of Eq. (A8) has been obtained by using

T

Q (1 + 1 —a;M„). (A4)
a=1

Because Q(1+1—a;M„)is given in the form (Al) under
1 &a &1 from the assumption above, Eq. (A4) is rewritten
as
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a=O

From Eqs. (A6) —(A8), it is found that Eq. (Al) is valid
for k =l+1 as long as it is valid for k &I. Because Eq.
(Al) is known to be valid for k= 1 and 2, the equation is
valid also for all k's under k & n.

APPENDIX A APPENDIX B

We prove the validity of the formula

k —1

Q(k, M„)=g ( —1) R (k —a;M„)
a=O

(A 1)

An expression for the conductivity which is based on
the two-vector dependent Green's function is given in a
tractable form. Starting from Kubo's formula, ' the dc
conductivity tensor a.

& is given by
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lim g de'8(co')G (/ki, /kq', co'+co)lmG (/kq, /kl', co');R

77 V ( ni ) 63~0 c)c0
(B1)

in this expression the spin multiplicity has been taken into account. The equation is easily rewritten as

2 3

f dao'8(co') ImG (/kq, /ki', co'), G (/ki, /kq, cg') —ImG (/ki, /kq, co'), G "(/kq, /kl', co')

(B2)

Using abbreviations G ( 1 ) = G (/k l, /kq, co ) and
G (2) = G (/kq, /kl, 'co), the quantity in the large
parentheses of Eq. (B2) becomes

ImG (2),ReG (1)—ImG (1),ReG (2)
a a

Bco Bco

2 e A d
k, k f de', 8(co')

37TV (m *) dco

)C ImG (/ki, /kp, co')

X ImG (/kp, /ki, co'),

a—j,[ImG (1)ImG (2)] .

On the first and the second terms of Eq. (B3), we see

g ki„kq„f den'6(co') ImG (2), ReG (1)
kl, kg

Bco

(B3)

under o.„,=A(p —v)o.

APPENDIX C

We prove the validity of the formula

Q(ui, up, . . . , ul, ', M„)

(B6)

—ImG (1),ReG (2) =0
Bco

(B4)

by an interchange k~~~k2 for the second term in the large
parentheses. On the second term of Eq. (B3) we have

f des'6(co'), [ImG (1)ImG (2)]
a

n —1

( —1) g R (ui. ..ui, ,). . . , ui,„',Mn ) (Cl)
a=O (h)

Q(ui, M„)=R(ui, M„) (C2)

so that Eq. (Cl) holds for k= l. It is also easy to see
directly

given in Eq. (3.13) under k &n From . the definition of
Q (u i, uq, . . . , u„;M„)and R (u i, uq, . . . , ui„M„)given
by Eqs. (3.11) and (3.12), we directly obtain

de', 6 co' gmG & ImG 2 B5
dc' Q (u i, up, Mn ) =R (u i, up, Mn ) —[R (u i',M„)+R(uz,'Mn )],

(C3)

by performing the integration by parts using 6(co')=0
and G (l)=G (2)=0 under co'~ —oo. Considering the
cubic symmetry, we can put ki„kq„=klkq/3 in Eq. (B2).
We finally obtain

so that Eq. (Cl) holds also for k=2. Now we assume
that Eq. (Cl) is valid for k & / ( & n). From the definition
of Q(ul, uq, . . . , uq, M„)and R (ui, uq, . . . , uq', M„)we
obtain

I

ul~u» ~ &~™n)= ( l~u2& '
& l~ ul uli™+) np p Q(uk, ~uk&~ . ~ukl l iMn)

a= 1 (k)
(C4)

where ui, (p=1,2, . . . , /+1 —a) agrees with some one
of (ui, uq, . . . , ul+i) and gl„lmeans a sum for all possi-
ble combinations of (ut. ..ui, , , . . . , ui. . . ) under the re-

striction that u~ with smaller p should take up with
smaller P. Because Q(ut. ..ui, , . . . , ui, . . .M„)is given

by Eq. (C 1) under 1 & a & / from the assumption above,
the second term in Eq. (C4) is rewritten as

I I —a

a= 1 (k) P=O

g R (ut. ..ul, , , . . . , ui. . . ,'M„).
(h)

(C5)

Here ul, (p = 1,2, . . . , / + 1 —a —p) should agree with
some one of ut. . .ui, , , . . . , ui. . . and gl&l means the
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for all

1

( —1)~ R (ili,
, ii/2 1/i J, M )

a=1 (k) y=a

(C6)

sum possible combinations of
( ui. ..ui, , , . . . , ui. . . ) under the restriction that ui,

with smaller p should take ui, with smaller v. gii,.i
com-

ing from Eq. (C4) means the sum of all possible combina-
tions of ui. ..ui, , , . . . , ui-, , Putting y=a+P, the ex-

pression (C5) is rewritten as

Here gii, i
and g~&i refer to (ui, , ui, , , . . . , ui. . . ) and to

(ui. . .ui, , . . . , ui, , ), respectively. Let us call the form-

er group and the latter group as the uh group and the uk

group, respectively. Each element of the uh group is
found from the ui, group. The expression (C6) is rewrit-
ten as

I y

g ( —1) R(ui. ..ui, , , . . . , ui, . . .M„).
y=1 (h) a=1 (k)

(C7)

Let us consider the sum gii, i, which is equal to the
number of all the uk groups containing a given uh group.
In a given uk group, the number of all the elements which
do not agree with those of a uh group is given by
1+ 1 —a —(1+ 1 —y) =y —a. On the other hand, the
number of the elements in (ui, u2, . . . , ui+t) which do
not agree with the elements in a uh group is
l+ I —(1+1—y)=y. Therefore the number of the ui,

groups containing a ui, group is y'Cr (=—yC ), which is

just pi&i. With the use of the relation

r r
g g( —1)r =( —1) g ~

( —1)
a=1 (k)

FIG. 14. Paths of the integration over z in the complex plane.

where gi(g', rl;r) is defined by Eq. (4.7). Consider the in-
tegration paths C1, C2, and C3 in the complex plane, as
shown in Fig. 14. Because there is no singularity of the
integrand of Eq. (Dl) in the region enclosed by those
paths, the integration path can be transformed from

d . in Eq. 01 to + d. . . We re-
Ci C2 C3

strict the discussion to the case of Z'&0 in Eq. (4.7),
which is of practical interest in this paper. Then we find
that the contour integration over C2 vanishes only under
A~y in the limit of an infinite path radius. As a result
we obtain

G (Q,p;r)= ——f dgexp[jgII+yp(g, /3)],
J joo+0

which can be rewritten as

= —( —1)r,

the expression (C7) becomes

(Cg)
G (fl,p;r)= f dg'exp[ —g'fI+yp(jg', f3)] . (D3)

1

( —1)r gR (ui. ..ui, , , . . . , ui, . . .M„).
(h)

(C9) Because P(jg', P) is found from Eq. (4.7) to be real, we ob-
tain ImG (A,P;r) =0.

Substitution of this into Eq. (C3) leads us to the con-
clusion that Eq. (Cl) is valid for k =1+I as long as it is
valid for k &1. Because Eq. (Cl) is known to be valid for
k=1 and 2, the equation is valid also for all k's under
k (n.

APPENDIX E

We derive an expression for the Thomas-Fermi inverse
screening length. The expression for the dielectric screen-
ing constant is given by

APPENDIX D
E(q, co) =co+ VUO(q)M (q, co), (E1j

We show that we have ImG (Q,P;r)=0 in the range
0 ~ y. For this purpose we use the expression

where M (q, ~) is given by

G (fl, f3;r)= —f"dgexp[jgfI+yp(g, p)]
J 0

together with

(D 1)
M (q, co) = g Kii(/k —q, lk;1k'+q, lk';co) .

l, kl, k2,

(E2)

g+p g —p (D2)
Here Kii is the two-particle retarded Careen's function.
We first consider the electron-impurity interaction alone.
Then we obtain
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K~(lk+q, lk;Ik' —q, lk', co)= —I dco'B(co')[6 (Ik, lk'+q;co'+co)ImG (lk', lk —q;co')

+G "(lk', Ik —q;co' —co)ImG (Ik, lk'+q;co')) . (E3)

Now we neglect the retardation eff'ect of the screening and
use the Thomas-Fermi approximation. This means that
we take M (0,0) in Eq. (El). Then we obtain

e(q, 0)= eo 1+ (E4)

where k is a constant given through

I dco 6(co)ReG (Ik), lkz, co)
I, k],k2

Here the spin multiplicity has been taken into account.
Now the ensemble average is taken over the impurity
sites, i.e.,

(ReG (Ik~, lkq, co)lmG (Ikq, lk~, co)) .

Noting the relation

ReG (1)ImG (2)= [6"(1)6 (2)—6 (1)G (2)]/2,
where 6 (i) (i = 1,2) is the abbreviated expression, we
should calculate (6 (1)6 (2) ) and (6"(1)G"(2)).
After taking an ensemble average, we obtain the expres-
sion (4.25).

&(ImG (Ikp, lk)., co) . (E5)
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