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Theoretical approach to heterojunction valence-band discontinuities:
Case of a common anion
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Band offsets for the (100), (110), (111), and (1 1 1) orientations of the GaAs/A1As heterojunction
are calculated in a tight-binding approach. A charge-neutrality condition is used. Some face-
orientation dependence is obtained: the offset of the (110) interface (0.63 eV) is different from those
of polar interfaces (0.49, 0.51, and 0.47 eV). This result differs from some other recent calculations
and the origin of this difference is discussed. The predicted (100) offset is in good agreement with re-

cent experiments. The potential barrier appears to be not exactly abrupt but extends over a few

planes. This effect will be very important in the case of superlattices made from very thin layers.
The HgTe/CdTe heterojunction is also considered. The extension to heterojunctions with no com-
mon anion is finally discussed.

I. INTRODUCTION

In recent years, the determination of band lineups at
semiconductor heterojunctions has been the subject of in-
tense activity, especially for the GaAs/A1As system which
has been the subject of many experiments. ' From a
theoretical point of view, band offsets can be treated by
two types of approach: (i) simplified theories ranging
from empirical to model calculations whose aim is to de-
scribe trends in families of compounds and, particularly,
to predict band discontinuities (Refs. 7 —9 and references
therein); (ii) more elaborate theories that calculate the lo-
cal electronic structure of the interface and allow the
determination of the band offset. To obtain the interface
electronic structure one can use either first-principles cal-
culations, based on local density plus pseudopotentials
(Ref. 10 and references therein), or tight-binding Green's-
function calculations. " ' This last method provides a
much simpler calculational tool than first-principles
theories. We apply it, with a local-charge-neutrality con-
dition to (100), (110), (111), and (1 1 1) GaAs/A1As sys-
tems. In Sec. II we report the principle of the calculation.
In particular, we show that some lack of precision in cal-
culating densities of states can lead to large errors in the
resulting offsets. We also point out the crucial importance
of a proper choice of the interface coupling parameters.
Our predicted offsets are given in Sec. III and compared
to other theoretical calculations and experimental data.
Application to CdTe/HgTe systems is also performed. In
Sec. IV we discuss possible extensions of this work and
conclude that the calculation described here can be direct-
ly applied to heterojunctions with a common anion.

II. THEORY

In this section we first discuss how to describe an ideal
interface configuration in a tight-binding framework.
Secondly we present the self-consistent method to get
band offsets and show how it can be simplified through

the use of a local-neutrality condition. Then we point out
that this problem is highly sensitive to the charge numeri-
cal accuracy. We then give the numerical method we
have used to calculate densities of states with the desired
precision.

A. Tight-binding parameters

We describe the semiconductor band structures of bulk
GaAs and A1As by means of a tight-binding model using
a sp s* basis set. ' We have reported in Appendix A the
parameters used. This fit determines all the bulk tight-
binding matrix elements except for the intra-atomic terms
which are all determined to an unknown additive constant
within each separate material. For the heterojunction, we
choose as central unknown AF.„ the discontinuity be-
tween the top of the valence band of the two bulk materi-
als. We only consider ideal heterojunctions where, on
both sides of the interface, atoms are distributed as in the
bulk (we exclude any atomic reconstruction or relaxation
near the interface). As we use a nearest-neighbor two-
center approximation, the only tight-binding elements
which, in the heterojunction case, differ from the bulk, are
those involving atoms belonging to both interface planes.
We have to consider interatomic terms (connecting the
two interface planes) and intra-atomic terms.

When the two semiconductors forming the heterojunc-
tion have a common anion, interface cations have the
same first neighbors as in the bulk. This allows to us ap-
proximate interactions between interface planes, e.g. , be-
tween the cation of semiconductor 1 (C~) and the anion of
semiconductor 2 (A q) by bulk interactions, i.e.,

Ci AP —=Cl Ai,
C2A l

=—C2 A2 .

This rule is quite unambiguous here because we have a
description involving only nearest-neighbor interactions in
a two-center approximation. However, when there is no
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C( A2= —,'(C) A)+C2A2),

C2A ) = —,'(C) A)+C232) .

We first notice that this empirical rule does not lead to
the correct value given by (1) in the common-anion case.
It is thus important to estimate how this approximation
can influence the resulting offset. For this we have ap-
plied Eq. (2) to the case of the GaAs/A1As (110) hetero-
junction. We will show in Sec. III that this produces a
AE, quite different from that obtained with Eq. (1). This
can be explained simply in terms of charge transfers (see
Sec. III).

There is also a difficulty concerning the intra-atomic
terms. As usual, we first consider that the effect of the
Coulomb interactions is simply to shift all levels of a
given atom by the same amount (this is detailed in the
next paragraph). The difficulty is then to find a coherent
rule for determining the differences in such intra-atomic
terms. These should not only be functions of the nature
of the atom but also of its nearest neighbors. As a conse-
quence, even in the case of a common anion we have at
our disposal two sets of values for the anion. The natural
method in such a case is then to take for the interface
anions a weighted average of the two bulk values, the
weight being fixed by the nature of the four nearest neigh-
bors and being different at the (100) and the (110) or (111)
interfaces. This reduces to a simple arithmetical average
in the (100) case (see Fig. 1). We have studied the
influence of these parameters on the predicted offsets and
found it to be small. For instance, in the (111) case, the
change in offset obtained by replacing average parameters
by bulk values is of the order of 5 meV.
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FICs. 1. Schematic representation of atomic distribution at
(100), (110), and (111) heterojunctions. Dashed lines represent
atomic planes parallel to the interface plane.

common anion several different situations can occur. The
simplest one corresponds to heterojunctions between semi-
conductors of the same class (i.e., IV, III-V, or II-VI). If
the bonds Ci A2 and C2 3 i correspond to a known bulk
material then the interactions between interface planes can
be taken equal to the bulk nearest-neighbor interactions of
these materials. In other cases it has been common prac-
tice to write

B. Self-consistent procedure

Let us now describe how we take into account the ex-
istence of interface dipoles. The perturbation due to inter-
face formation leads to some charge transfer across the in-
terface plane. This one is responsible for the dipole poten-
tial barrier that is, in principle, essential for determining
AE, . The charge disturbance will be limited only to a few
planes on each side of the interface. This is due to the
fact that in the materials considered here, the typical
screening length of the perturbation potential due to
neutral defects is of the order of 2 A. ' Such a charge
transfer induces a change in the Coulomb potential and
the problem has to be solved in a self-consistent way. As
usual in charge-dependent tight-binding calculations, we
consider that this effect only affects the diagonal matrix
elements of the Hamiltonian. This means that on each
plane i, n parallel to the interface (where i = 1 or 2
represents the material and n =1—oo numbers the plane
position away from the interface) the diagonal terms will
be shifted by a quantity U;„ from their value in the corre-
sponding bulk material. The unknowns of the problem
are thus AE, and all U;„(with the boundary conditions
U;„~0 when n~ao). As they originate from Coulomb
potentials they can be expressed linearly in terms of the
excess charge 6q;„of each plane. In turn, these charges
can be calculated as functions of hE, and the U;„and the
whole calculation has to be iterated to self-consistency. In
fact, screening in such systems with high dielectric con-
stant is very efficient, and we have shown in earlier work'
that a very good approximation to the fully self-consistent
solution is provided by the assumption of "local charge
neutrality. " This approximation has also been discussed
by other authors' in te ms of the dielectric constant e
In Appendix C we show that it is a rather good approxi-
mation if the tops of the bulk semiconductor valence
bands are not too different. This means that one can
determine AE, and the U;„by imposing that all 5q;„be
zero for a (110) heterojunction. For a polar heterojunc-
tion this "local-charge-neutrality" condition is extended to
a charge distribution which preserves the electrostatic sta-
bility of the system, i.e., prevents the potential from
becoming infinite far from the interface. ' The general
conditions for this stability have been studied for the polar
surfaces of compounds. ' The electrostatic stability of the
system can be settled by many ways. We have chosen
here the solution where only one plane (the interface
anion plane) presents a charge which is different from the
bulk charge. Then this charge is fixed by the electrostatic
stability condition and must be equal to —(q& +qi)/2 for
the (100) interface if —q~ and —qq are the anion net
charges in each bulk material. Again we have assumed
that this charge is localized on the anion interface plane
since screening occurs on very short distances.

Obviously, if qi and qq are equal, the local-charge-
neutrality condition corresponds to the exact self-
consistent solution. In our tight-binding framework, with
parameters defined in Appendix A, we have, for
Hg Te/CdTe, q i ———0. 124 e/atom and q 2

———0.269
e/atom and, for the GaAs/AlAs system, q &

——0. 178
e/aton and q2 ——0.394 e/atom. Then, as qi and q2 are in
the same range but different, the good quality of our ap-



36 THEORETICAL APPROACH TO HETEROJUNCTION VALENCE-. . . 1107

proximation is mainly due to strong screening, that is, to
a large value of 7/C defined in Appendix C. A more de-
tailed discussion of the self-consistency condition for (100)
heterojunctions or quantum wells will be the object of a
forthcoming publication.

The application of the local-neutrality condition to
determine the perturbation potentials U;„ is relatively
easy. We only write charge conditions (as defined in Fig.
2) for a finite number of planes N near the interface. N
has to be high enough to provide AE, with a precision of
the order of 0.01 eV. In practice we find that N =5 is
large enough (the difference between b,E, obtained with
N =5 and N =7 is much lower than 0.01 eV). For polar
interfaces we consider the common-anion plane and two
planes on each side. For nonpolar interfaces we consider
three planes on one side, and two on the other side. We
have checked that interchanging the two sides does not
alter the solution appreciably. We then have five equa-
tions to solve and five unknowns to determine. These un-
knowns are AE, and four intraplane potentials U;„. A
central issue of this problem is that if the desired precision
on AE, is a few hundredths of an eV, then one has to cal-
culate the 5q,„ to better than 0.001e. This is simply un-
derstandable from the fact that the susceptibility (i.e., the
ratio hq /6 U) for bonds across the interface plane is of
order of a few tenths per volt. Appendix B relates the
procedure used to reach this precision.

In this section we have then described how a tight-
binding calculation can provide charges on each plane
parallel to the heterojunction. We have also shown how
the interface induces charge transfers that imply a change
in the Coulomb potential. The problem has to be solved
self-consistently. Munoz et al."' have proposed recent-
ly an approximate self-consistent treatment (where
Madelung terms are averaged on planes parallel to inter-
face). In the present work we have chosen to use the ap-
proximate charge-neutrality condition which is, for the
semiconductors under study, very close to the exact solu-
tion (see Appendix C). The purpose of the next section is
to provide and discuss the band offsets resulting from the
calculation we have just described in the case of
GaAs/A1As and CdTe/HgTe heterojunctions. We also
give the potential shape for different orientations.

III. GaAs/AlAs AND HgTe/CdTe BAND
OFFSETS AND POTENTIAL SHAPE

A. GaAs/AlAs systems

We consider four different orientations (100), (110),
(111), and (1 1 1), the difference between (111) and (1 1 1)
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being defined in Fig. 3. In the same figure we have plot-
ted the potential shape (i.e., the U;„and hE, ), while the
calculated band offsets are given in Table I, where they
are compared to the results of other calculations.

We have first to explain the difference between our re-
sults (first column) and those of Ref. 12 (second column)
which are, in principle, equivalent calculations. In case of
polar interfaces, there is a slight discrepancy between both
results. There may be two reasons for this: (i) a very
slight difference can be due to the use of different bulk pa-
rameters (those given in Appendix A differ slightly from
Vogl parameters' ) but we have checked that this effect is
very weak; (ii) an improved accuracy on the charges due
to an increased number of special points in the Brillouin
zone, and a different integration contour in the complex
energy plane (we have checked that in all cases our accu-
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FIG. 2. Charge distribution preserving electrostatic stability
of (100), {110),and (111)heterojunctions. Dashed lines represent
atomic planes parallel to the interface plane.

TABLE I. GaAs/A1As band oA'sets (in eV).

Orientation

(100)
(110)
(111)
(111)

This
work

0.49
0.63
0.51
0.47

Flores (Ref. 12)
charge neutrality

condition

0.44
0.36
0.40
0.40

Flores (Ref. 12)
self-consistent

calculation

0.37
0.32
0.37
0.35

Martin (Ref. 10)
self-consistent

local density calculation

0.37
0.37
0.39
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FIG. 4. Atomic charge transfers near interface for different

descriptions of interface interactions: left-hand scheme corre-
sponds to Eq. (1) description and right-hand scheme to Eq. (2)
description (see text). Arrows indicate charge transfer across in-

terface plane. On the lower line are indicated charges by plane
parallel to the interface plane (represented by dashed lines).
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(6q~q from Ga to As atoms and 6qq~ from Al to As
atoms). These charge transfers lead to a dipole
[+(5q2~ —6q~2)] which is essential to the determination of
b,E, . If now the interactions (P~,P2) are replaced by the
mean values, i.e.,
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FIG. 3. Potential shapes at different GaAs/A1As heterojunc-
tions. Dashed lines represent atomic planes parallel to the inter-
face plane.

racy on the charges was better than 10 electron).
On the other hand, for the (110) interface the great

discrepancy between both calculations is simply due to the
fact that they correspond to different tight-binding
descriptions of interface interactions. AE, =0.63 eV has
been obtained as described in Sec. II: As there is a com-
mon anion, interface interactions are approximated by
bulk interactions [Eq. (1)], whereas AE„=0.36 eV corre-
sponds to the use of average bulk interactions through the
interface. Such a discrepancy could appear a bit surpris-
ing, as bulk interactions are not very different in GaAs
and A1As. In order to explain this fact we have calculat-
ed AE„using Eq. (2) and obtained hE, =0.27 eV (the
difference between our 0.27 value and the 0.36 value of
Ref. 14 can be explained in the same way as for polar in-
terfaces).

The mechanism of the difference between the use of Eq.
(1) and of Eq. (2) can be simply explained using a bond
orbital model as suggested in Fig. 4: As the two interface
planes are connected by (/3~, P2) there are some charge
transfers from cations to anions across the interface plane

to first order 5q&2 will be changed to 5q&2+6q, whereas
6qz& will be modified to 5q2& —6q. This leads to a cumu-
lative effect: Both modifications in charge transfers modi-

fy in the same way the dipole which becomes
+(5q2~ —5q~q —26q). From this change of dipole will re-
sult a change in AE, . We have calculated charges near
an interface modeled by using Eqs. (1) and (2). The
mechanism just described has been observed. For A1As
and GaAs, (P~ —P2)/2 is of the order of 0.1 eV. Then we
find 25q equal to 0.08 electron. As bQ/AE, =0.2, one
obtains the difference [0.26 eV for Eq. (2), 0.63 eV for Eq.
(4)] between the two off'sets. As explained in Sec. II, with
the use of two-center interactions, the natural description
is Eq. (1), as an interfacial cation atom has the same envi-
ronment as in bulk.

We have estimated the accuracy of our calculations to
be 0.01 eV. If we consider only the polar interface we ob-
tain (Table I) a slight dependence of the band offsets on
the face orientation: AE, =0.49+0.02 eV. We can ob-
serve a good agreement between our (100) values (0.49 eV)
and recent experimental data ' (0.45 —0.56 eV). One ex-
perimental work has studied the orientation dependence
of band offsets. In this work only (100) and (311) orienta-
tions were considered. But there is no experimental ob-
servation that invalidates the theoretical difference found
here between the (110) and usual polar interfaces: we
have obtained, indeed, that for (110) nonpolar interface
the band offset (0.63 eV) is quite diff'erent from those for
polar heterojunctions (0.49+0.02 eV).

In Fig. 3 are reported potential shapes near the hetero-
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TABLE II. CdTe/HgTe band offsets (in eV).

Orientation
This
work

Flores (Ref. 12)
charge neutrality

condition

Flores (Ref. 12)
self-consistent

calculation

(100)
(110)
(111)
(111)

0.38
0.31
0.38
0.38

0.54
0.30
0.43
0.43

0.53
0.28
0.40
0.41

junction. We can
spreads over three
should be taken into
superlattices (where
angstroms).

observe that the potential barrier
atomic planes (about 4 A). This
account in calculations on ultrathin
layer widths are a few tens of

B. CdTe/HgTe systems

IV. CONCLUSION AND EXTENSIONS

CdTe/HgTe band offsets can be calculated using the
same approach. Bulk description of CdTe and HgTe are
those given in Ref. 20. We have checked that considering
spin-orbit coupling (SOC) does not strongly modify the
calculated band offsets [for (111) orientation b,E, =0.39
eV if SOC is considered, and b,E, =0.38 eV if not].
These calculated band offsets (where SOC is not taken
into account) are given in Table II, where they are com-
pared to the results of other calculations. We obtain once
more that the band offset for the (110) interface (0.31 eV)
is different from those for polar heterojunctions (0.38 eV).
The value for (111) face is in good agreement with recent
experimental evidence (0.35+0.06 eV). ' Differences with
results" ' can be explained in the same way as for
GaAs/AlAs systems. A more detailed study of
CdTe/Hg Te heteroj unction and of the band offset
differences between polar and nonpolar interfaces will be
the object of a forthcoming publication.
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APPENDIX A: TIGHT-BINDING PARAMETERS
OF GaAs AND AlAs IN AN sp s* MODEL

Tight-binding parameters of GaAs and A1As in an

sp s* model are reported in Table III. For GaAs, they
correspond to those given in Ref. 14, and for AlAs they
have been slightly modified to obtain direct and indirect
bandgap width given in Ref. 19, i.e., E(I -X)=2.16 eV,
E(I -L)=2.36 eV, and direct gap equal to 2.95 eV. In
this approximation only nearest-neighbor interactions are
taken into account in a two center approximation.

APPENDIX 8: CALCULATION
OF THE CHARGES q;

We have shown that a precision of 0.01 eV in AE, re-

quires us to know q;„with an accuracy of the order of
0.001e. To reach this precision we use the following nu-
merical procedure: (a) Charges are obtained by integra-
tion of Green's functions up to EF. (b) Green's functions

In this work we have described a tight-binding calcula-
tion of band offsets. We have obtained —for polar
interfaces —a slight dependence of band offsets on the face
orientation. On the other hand, we obtain a clear
difference between (110) and usual polar interfaces. We
have also pointed out that this type of calculation is very
sensitive to charge precision. Thus charge modifications
have to be calculated very cautiously. Here we have used
a "local-charge-neutrality condition" and an interesting
development of this work could be to consider the effect
of complete self-consistency on the band offsets. The cal-
culation described here can be directly applied to any
heterojunction with a common anion or where interface
bonds correspond to an existing bulk material. For other
heterojunctions a serious problem of parametrization ap-
pears, as there is no longer a "natural" description of in-
terface interactions. This problem was previously ig-
nored. It would be interesting to solve it in order to vali-
date or invalidate existing tight-binding band offset calcu-
lations in such cases.

Tight-binding

parameters

E (sa)
E(pa)
E(s*a)
E (sc)
E (pc)
E(s c)
V(s, s)
V(x,x)
V(x,y)
V(sa,pc)
V(sc,pa)
V(s a,pc)
V(pa, s*c)

CsaAs

—8.3431
1.0414
7.5412

—2.6569
3.6685
6.7397

—6.4513
1.9546
5.0779
4.4800
5.7839
4.4378
4.8083

A1As

—7.9473
0.8933
7.3930

—1.5827
3.4967
6.6373

—7.0281
1.7673
3.6922
4.4272
4.5084
4.1392
3.3886

TABLE III. Tight binding parameters (in eV) of GaAs and
A1As, in an sp s* model. The notations are those of Ref. 14.



1110 B. HAUSSY, C. PRIESTER, G. ALLAN, AND M. LANNOO 36

are calculated by the decimation technique, at special
points of the Brillouin zone. A summation over these
special points will give the total Green's functions. Let us
notice that the interface breaks one of the symmetries of
the bulk system so that one can no longer work with the
usual reduced first Brillouin zone in the case of polar in-
terfaces. In the (100) case, —,

' instead of —„' of the first Bril-
louin zone and in the (111) [or (1 1 1)j case, —,

' instead of —,
'

of the first Brillouin zone has to be considered.
In the decimation technique, poles on the real axis

prevent us from calculating the Green's function for real
energies. The calculation can be only done in the com-
plex plane. The integrated density of states is then ob-
tained by integration along a contour surrounding the
poles. The method is quite similar to the one used for
bulk defect. At fixed real energy EF at midgap, we in-
tegrate from EF —i c„to .EF +ie„(E„=1 eV) with a
spLINE interpolation done with 20 calculated points.
From EF+ic„ to EF+i oc, we use 16-G Legendre points.
The integration over half a circle to close the contour is
done analytically at infinite radius.

dip

2

111181111P111811818

1111111111111111HZ'

FIG. 5. Different energy levels near an heterojunction (all
quantities are defined in Appendix C).

For zero charge transfer, one gets

gEzc Vzc. +gE0 (C3)

where Vd;„ is the value obtained with the local neutrality
condition. If the self-consistent result is close to the
zero-charge result one can linearize the charge transfer Q
across the heterojunction

APPENDIX C: VALIDITY OF THE
ZERO CHARGE APPROXIMATION

Near a heterojunction, one can write (Fig. 5)

Eq ] +AEv =Ev2+ Vdip )

Q = —X( Vg;p —Vd;p ) .

If we write

Q = CVd;p,

where C is the capacitance of the dipole layer, we get
(Cl)

(C4)

(cs)

AEU = Vdip+ AEU with AEU —Ev2 EU~ (C2)

where E, ~ and E,2 are the top of the valence bands re-
ferred to the zero electrostatic potential in the bulk infinite
semiconductors, AE„ the valence-band off'set, and Vd, p the
heterojunction dipole layer. Due to surface dipole layers
E, ~ and E„,2 are not equal to semiconductor work func-
tions. Then we get

E =QEzc + QE0
1++/C 1++/C (C6)

The limit 7/C equal zero corresponds to neglect the
heterojunction dipole layer (Vd;~=0) whereas 7/C&&1
gives the zero charge transfer condition. If the charge
transfer only occurs between tv o planes near the hetero-
junction, 7 is close to 0.2 electron/eV and 7/C=6. This
shows the importance of an accurate evaluation of AE, .

~G. Duggan, J. Vac. Sci. Technol. 8 3, 1224 (1985).
W. I. Wang and F. Stern, J. Vac. Sci ~ Technol. B 3, 1280

(1985).
3D. Arnold, A. Ketterson, F. Henderson, J. Klem, and M. Mor-

koq, J. Appl. Phys. 57, 2880 (1985).
4P. Dawson, B. A. Wilson, C. W. Tu, and R. C. Miller, Appl.

Phys. Lett. 48, 541 (1986).
5W. I. Wang, T. S. Kuan, E. E. Mendez, and L. Esaki, Phys.

Rev. 8 31, 6890 (1985).
J. Batey and S. L. Wright, J. Appl. Phys. 59, 200 (1986).

7A. D. Katnani and G. Margaritondo, Phys. Rev. B 28, 1944
(1983); G. Margaritondo, ibid. 31, 2526 (1985).

J. Tersoff, Phys. Rev. 8 30, 4874 (1984).
W. A. Harrison and J. Tersoff, J. Vac. Sci. Technol. 8 4, 1068

(1986).
' C. G. Van De Walle and R. M. Martin, J. Vac. Sci. Technol.

8 4, 1055 (1986).
'A. Muhoz, J. C. Duran, and F. Flores, Surf. Sci. 181, L200

(1987).
A. Munoz, J. C. Duran, and F. Flores, Phys. Rev. 8 (to be
published).

' B. Haussy, C. Priester, G. Allan, and M. Lannoo, Proceedings
of the 18th International Conference on the Physics of Semi
conductors, edited by O. Engstrom (World Scientific, Singa-
pore, 1987); C. Priester, G. Allan, and M. Lannoo, Phys. Rev.

B 33, 7386 (1986).
' P. Vogl, H. P. Hjalmarson, and J. D. Dow, J. Chem. Solids

44, 365 (1983).
'5M. Lannoo and G. Allan, Solid State Commun. 33, 2931

(1980)~

' W. A. Harrison and J. Tersoff, J. Vac. Sci. Technol. B 4, 1068
(1986).

'7P. Masri and M. Lannoo, Surf. Sci. 52, 377 (1975); R. W.
Nosker, P. Mark, and I. D. Levine, ibid. 19, 291 (1970).

' M. Lannoo, Electronic Structure of Crystal Defects and of
Disordered Systems, Summer School, Aussois, 1980, edited by
F. Gautier, M. Gerl, P. Guyot (Les Editions de Physique,
France, 1981).

' H. J. Lee, L. Y. Juravel, J. C. Woolley, and A. J.
Springthorpe, Phys. Rev. 8 21, 659 (1980)~

A. Kobayashi, O. F. Sankey, and J. D. Dow, Phys. Rev. 8 25,
6367 (1982).
S. P. Kowalczyk, J. T. Cheung, E. A. Kraut, and R. W.
Grant, Phys. Rev. Lett. 56, 1605 (1986).
F. Guinea, J. Sanchez-Dehesa, and F. Flores, J. Phys. C 16,
6499 (1983); F. Guinea, C. Tejedor, F. Flores, and E. Louis,
Phys. Rev. B 28, 4397 (1983).
S. L. Cunningham, Phys. Rev. 8 10, 4988 (1974)~

24M. Schliiter (private communication).


