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We study surface plasmons on n-type semiconductors, for realistic and nonuniform free-carrier
density profiles, and through use of a nonlocal description of the response of the electrons. A
random-phase-approximation description is employed, with the irreducible particle-hole propagator
calculated from wave functions generated by a self-consistent potential. For the case of n-type GaAs,
we present quantitative studies of the dispersion of surface plasmons, Landau damping of these
modes, and frequency shifts induced by a depletion or accumulation layer. The emphasis is on the
range of wave vectors probed in near-specular electron-energy-loss studies.

I. INTRODUCTION

One consequence of introducing free carriers into semi-
conductors is the appearance of collective excitations at
the surface known as surface plasmons. The simplest
theoretical description of these modes is within a macro-
scopic theory which regards the material as a semi-infinite
dielectric,! with frequency-dependent dielectric constant
e€(w). With retardation ignored, the frequency w; of the
surface plasmon is determined through the relation
€(lw;)=—1. If 0, is the plasma frequency of the free car-
riers,? and e the dielectric constant, then e(w)ze—a)z /w?,
and o, =, /(1+€)!/2. If the background dielectric con-
stant € is itself frequency dependent, possibly by virtue of
infrared active transverse optical (TO) phonons in the ma-
terial, there may be two or more solutions of the equation
€(w)= —1, and the surface modes are viewed as coupled
modes of the conduction electrons, and optical-phonon
modes.

Surface plasmons, or coupled surface-plasmon-phonon
modes appear as loss peaks in electron-energy-loss studies
of semiconductor surfaces, in the near-specular geometry.’
This particular form of spectroscopy is potentially a most
interesting means of probing surface plasmons. The
reason is that the range of wave vectors explored ranges
from 0, to the order of 10° cm~!. Near semiconductor
surfaces, or at the interface between a semiconductor and
another material, substantial variations in the free-carrier
profile occur on the scale of one hundred, to a few hun-
dred angstroms. If / is the thickness of this region, then
the electron-energy-loss method explores the wave-vector
regime g,/ =1, where the nonuniform free-carrier density
profile can be expected to influence the dispersion relation
and amplitude of the surface plasmons importantly. We
thus have a means of probing the dynamics of a spatially
nonuniform electron gas, and also extracting information
on the nature of free carriers very close to the surface of
semiconducting materials.

The spatial variation of the free-carrier density is
influenced by a number of factors. For an ideal surface in
vacuum, the occupied conducting states lie several volts
below the vacuum level. The resulting potential barrier
requires the wave function to have very small amplitude
on the surface; to a very good approximation the wave
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functions may be said to vanish there, when viewed on the
length scale of a few hundred angstroms. This boundary
condition on all wave functions suppresses the free-carrier
charge density near the surface, over a length scale con-
trolled by the average de Broglie wavelength of the elec-
trons. We may view this as a kinematical effect, ignored
in Thomas-Fermi descriptions of the free carrier profiles.*
Also, a semiconducting surface or interface can also carry
a net charge, by virtue of traps, defects or adsorbates
present there. This produces band bending, and an accu-
mulation (depletion) layer if the net surface charge is posi-
tive (negative). In a recent paper,” we have presented
self-consistent calculations of the spatial variation of the
conduction-electron density near the surface of a n-type
GaAs, for the case where the surface is charge neutral, or
bears net positive or negative charge. The model smears
the charge density produced by ionized donors in the bulk
into a jellium background, and introduces the effect of the
surface charge through a uniform electric field emanating
from the surface.

Given the free-carrier density profile, optimally generat-
ed through a self-consistent calculation such as that just
described, the next task is to evaluate the dispersion rela-
tion and other properties of the surface plasmons. There
is a considerable amount of literature on an approach
which proceeds as follows. The material is assumed to be
described by a dielectric constant which depends not only
on the frequency w, but position z from the surface. Thus
if D(x,0) and E(x,0) are the displacement and electric
fields and e(z,w) the dielectric function, we have
D(x,0)=¢€(z,0)E(x,0). If r(z)=n(z)/ng, with n(z) the
free carrier at z and n, the carrier density in the bulk,
then one supposes that €(z,0)=€—r (z)w} /w?, an approx-
imation surely appropriate to situations where the carrier
density varies slowly in space. With this relation between
D and E, one may analyze the solution to Maxwell’s
equations to determine the free-carrier response.

While the above-mentioned local dielectric response
description has been applied to semiconductor surfaces
where an accumulation or depletion layer is present,®” in
fact the criterion for the validity of the approach is not

" met in these systems. The difficulty is that the thickness /

of the nonuniform layer is controlled by a combination of
the de Broglie wavelength of the electrons, and the Debye
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(or Thomas-Fermi) screening length, both of which have
similar magnitude in typical cases.® Under these cir-
cumstances, the current density and consequently D(x,w)
is not proportional to E(x,®) evaluated at the same point,
but instead is an average over values of E(x,w)
throughout a volume whose linear dimension is the order
of /. A nonlocal description of the response of the elec-
tron gas must be employed.

The purpose of this paper is to present a full nonlocal
description of surface plasmons at the surface of a doped
semiconductor, with application to n-type GaAs. We re-
mark that the motivation for our investigation is the ap-
pearance of the works of Matz and Liith® and Ritz and
Liith.' These authors explored surface plasmons on n-
type GaAs and InSb, respectively, with near-specular
electron-energy-loss spectroscopy. Matz and Liith ob-
serve frequency shifts of the modes when hydrogen is
chemisorbed on the surface, evidently as a consequence of
depletion layer formation, while Ritz and Liith found a
strong dependence of mode intensity, position and
linewidth on the wave vector transfer g,. This work
raises the question of the quantitative relation between the
charge residing on the surface, and shifts of the dispersion
relation from that appropriate to the ideal surface (near
which the free-carrier density profile is necessarily nonuni-
form, for reasons cited earlier).

We use the free-carrier wave functions generated by our
earlier self-consistent calculation of the free-carrier density
profile to calculate the irreducible particle-hole propagator
Xo(qy,;z,z") which enters the nonlocal theory. We then
solve for the full response function X(q,®;z,z") within an
RPA description of the response of the nonuniform elec-
tron gas. Correlation and exchange effects are small for
the range of densities and temperatures explored here,’ so
we ignore these both in generating the free-carrier density
profile and in the nonlocal description of the dynamics of
the surface regime. We note that within this approach,
the force sum rule is satisfied.'' Given X(q,;z,z'), we
form the loss function P(qj,®) which enters the descrip-
tion of the electron energy-loss process.*!? Through an
analysis of the structure of this function, we obtain infor-
mation on the dispersion relation of the surface plasmons,
their width as a consequence of Landau damping, and the
spatial variation of the electric fields generated by the
waves. Throughout the discussion, retardation effects are
ignored. These have negligible influence on electron-
energy-loss spectra.

We also remark that there is an unphysical feature of
the local response approach®’ absent from the full nonlo-
cal approach used in this paper. The bulk plasmon fre-
quency, in notation used here, is w, /V'e, and (with the
possible exception of the case where a strong accumula-
tion layer is present), the surface plasmons lie below this
frequency. Then there is a particular value of z, zg,
where €(zg,w)=0. The electric fields generated by the
surface plasmon are singular at z =z,, where the electron
gas exhibits a strong local resonance in response to the

|

P(q),0 =%fd X f

* dt expliq-x—iot) f dz' fow dz" exp[ —q,(z'+2")]{8p (x,2

D. H. EHLERS AND D. L. MILLS 36

electric fields set up by the surface plasmon.'* Such un-

physical singularities are absent in the nonlocal theory.

We note also that in the earlier literature,” a controver-
sy appeared over the question of whether new surface
plasmon branches can appear, in the presence of nonuni-
form free-carrier density profiles. Our numerical work
fails to find such additional branches, even for very strong
accumulation layers.’* We do not regard our work as set-
tling the earlier controversy, which concerned the ex-
istence of new branches only within the framework of the
local dielectric response description. Also, some of these
structures may exist only when retardation is included.

The outline of this paper is as follows. In Sec. I we
discuss our approach, and explore properties of the basic
equation. In Sec. III we discuss issues related to the nu-
merical computations; we have found the task of achiev-
ing guaranteed convergence in the semi-infinite geometry
challenging, and the discussions of numerical procedures
in the earlier literature rather sparse.” In Sec. IV we
present and discuss our results.

II. THEORETICAL DISCUSSION

It is useful to present the results by calculating a
response function which directly enters an experimental
measurement. As indicated in Sec. I, the very beautiful
near-specular electron energy-loss studies of n-type GaAs
reported by Matz and Liith motivate us to calculate the
spectrum observed in such an experiment.

A rather general description of this experiment was
provided some years ago.'? The physical picture is the
following. There are charge fluctuations within the ma-
terial, and we describe these by the charge fluctuation
operator 8p(x,t). Those charge fluctuations characterized
by the wave vector q; parallel to the surface produce fluc-
tuating electric fields outside the crystal with the spatial
variation exp(—gq |z | ). Thus, charge fluctuations with
long wavelengths parallel to the surface produce long-
ranged fields fluctuating outside which an incoming elec-
tron couples to strongly. A consequence is that the cross
section for energy loss is very large, for the small angle
deflections produced by such long-ranged fields.

We may describe the resulting near-specular lobe by in-
troducing the scattering efficiency per unit frequency,
dS /dw, which is the probability the electron reflects off
the surface to emerge in the near specular loss lobe, with
energy loss between w and w+dw. This quantity may be
written !>

ds 2e? ul
do = |R; |2 [d%,

P(q,0)
[U%q% +(£O—V\l’qw‘)2]2

(2.1

Here, v, and v are the components of the incident
electron’s velocity perpendicular and parallel to the sur-
face, | R, | % the probability the electron scatters elastically
from the surface to emerge in the specular direction, and
if the crystal lies in the upper half space z > 0, we have

"08p(0,250)) 7, (2.2)
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with 8p(x;,z;¢) the charge fluctuation operator introduced
earlier, with argument written slightly differently, and the
angular brackets denote a statistical average of the en-
closed operator over a statistical ensemble in equilibrium
at temperature 7.

When ¢, is small, the crystal may be viewed as a semi-
infinite dielectric with (complex) dielectric function e(w),
and the fluctuation dissipation theorem may be used to
evaluate the right hand side of Eq. (2.2).!? In this picture,
one finds

—1

2
P(qH,m)=[1+n(m]—ii1m T

) (2.3)

6‘2

P(q”,w)z—fj: dte ™' fo‘j dz' foi dz”e_q”(ZI“”)(Sp*(q“,z’;t)Bp(q”,z”;O))T :

In the above expressions, the operator 8p(qy,z ;) describes
the total charge fluctuation amplitude in the crystal.'> In
our example of a doped semiconductor, we have the fluc-
tuations 8p,(qy,z;?) associated with electrons in the con-
duction band, and it is these we wish to study microscopi-
cally. There are additional contributions from sources
such as interband transitions. We incorporate these into a
background dielectric constant €, assumed described ade-
quately by optical measurements at the long wavelengths
and frequency range of interest here.

The following argument links the total charge fluctua-
tion amplitude 8p(qy,z;?) to that associated with only the
conduction electrons. Consider the electrons to be imbed-
ded in a semi-infinite dielectric, with dielectric constant €,
and calculate the potential outside the crystal. With the
crystal in the half space z > 0, this is given by

dP(x,1) =D “expliq,-x )exp(q,z) ,
with

<

41re 0 , 7q‘z' .
5 [7dze " p.qpzin . 26w

:q“(1+

In terms of the total charge fluctuation amplitude
dp(q,z’;t) we have
q><:?fo°° dz'e ¥ 8p(quzit) (2.6b)
I -

so for the purposes of calculating the electron energy-loss

cross section, we may replace Jp(q,z;t) by
[2/(1+€)18p.(q),z;t). Thus, we write
P(qﬂ’w) 2Pe(q\ww) P (2.7)

| 1+e]

where P,(q,») has the form given in Eq. (2.5), with
6p(qy,z ;1) replaced by dp.(q,z;1).

In our treatment of the dynamics of the electron gas,
we shall generate the equation satisfied by the density-
density correlation function

X(q”,t ;z’z’): lgﬁ(t) <[5PZ(QH,Z ;t),5pe(q,|,2';0)])r , (2.8)

a result we refer to later. In Eq. (2.3),
n(w)=[exp(Bfiw)—1]""! is the Bose-Einstein function.
Surface plasmons contribute as a consequence of the reso-
nance on the right-hand side of Eq. (2.3) at e(w)= —1.

To return to the general discussion, we Fourier trans-
form the spatial variables parallel to the surface by writing

. 1 iq)-x .
8p(x”,z,t):ﬁ2e "i8p(qy,z;52) , (2.4)

q)

with 4 a quantization area parallel to the surface. We
then have

(2.5)
|
which we write in the form
X(qpt;z,z)= [ 77 %:-X(q;;,w;z,Z')e et 2.9)

After some standard algebra, we find
P,(q,0)=2e’[1+n(»)]
% foi dz fofj dz'e NI +z‘>Im[X(q{|,a);z,z’)] .
(2.10)

We next turn to the description of the equation that
must be solved to obtain X(qj,w;z,z'). As remarked
above, we generate this through use of the RPA. While
the derivation is standard, we shall summarize the struc-
ture of the theory, so the various definitions are clear.

As remarked in Sec. I, our basic model is as follows.
We consider n-type semiconductors with electrons in a
parabolic band of effective mass m *, and the background
dielectric constant is €. The ionized donors are smeared
out into a uniform positive background, which just can-
cels the charge density generated by the free carriers in
the bulk. A thin sheet of charge, with charge density
—Q;, is placed on the surface. This represents the trapped
charges on the surface responsible for the accumulation or
depletion layer. The number Q; thus represents the con-
duction electron charge displaced by the presence of the
surface charge, with a conduction electron deficit (de-
pletion layer) corresponding to positive Q;. For this mod-
el, the conduction electron wave function has the form

PR
¢k”[(X)=W¢i(Z) ’

and the energy eigenvalue is Ek“, =(ﬁ2kﬁ/2m *)+¢;. The

(2.11)

conduction electrons reside in states which lie several elec-
tron volts below the vacuum level, in the systems of in-
terest. The depletion or accumulation layer has a thick-
ness of a few hundred angstroms, and on this length scale
we may ignore the small tail of the wave function which
extends into the vacuum. We thus impose the boundary
condition



(2.12)

In our preceding paper,” we discussed a means of
efficiently generating the function ¥;(z) from a self-
consistent potential, and we carried out explicit calcula-
tions for the surfaces of n-type GaAs. The procedure, in-
troduced by Baraff and Appelbaum,'® fits a model poten-
tial of the Morse form to the self-consistent potential, tak-
en to be the Hartree potential; exchange and correlation
effects were estimated to be quite small, for the case of in-
terest to us. As is the case in the present paper, our previ-
ous calculations were carried out for room temperature,
with no approximations introduced to describe the statisti-
cal mechanics of the free carriers.

The virtue of the method, exploited further here, is that
a simple series expression is in hand for the eigenfunctions
¥;(z), so these need not be generated by numerically solv-
ing a Schrodinger equation. For continuum states with
g; >0, these functions may be written

Y, (z2)=C(HIm[eM€,(2)], (2.13)

where C (i) is a normalization constant, and &;(z) has the
form

E/2)=explikP2) S by (e ~"H .

m =0

(2.14)

The bound states generated when an accumulation layer
is present are simply proportional to &,(z), with k\” imagi-
nary. The phase shift (i) and expansion coefficient b,, (i)
are determined as described earlier,>!® while @ is a pa-
rameter contained in the Morse potential.

We now use the above basic states as a representation,
and derive the equation satisfied by the response function
introduced in Eq. (2.8), by invoking the random-phase ap-
proximation. Only the final result is quoted, since the
procedure is straightforward, and save for details, has
been discussed by others in a number of contexts. The re-
sult is

X(qﬂ’w;zyzl)=x0(q“,(l);z,2’)
_fooo dz" fooo dZI”X()(qﬂ,(z);Z,Z”)

XU (q”;Z”,Z'”)

XX(qpw;z"",2") , (2.15)

where v(qy;z",z"') is a suitably defined Fourier transform
of the electron-electron interaction, and X,(qy,;z,z") is
the irreducible particle-hole propagator, given in this in-
stance by, with an explicit factor of two for spin,

[f(kH,i)——f(kH-ﬁ-q”,j)]
hm+i8+Ek”+q —Ek”,-

Xo(q“,a);Z,Z')z %22

k” i,j ”»j

XY (2 (2" W (20pi(z') . (2.16)
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Here,
S (ki) ={exp[B(Ex; —p)1+1} 7',

with f=1/kgT, is the Fermi-Dirac function. In our nu-
merical calculations, we do not work directly with the
form in Eq. (2.16), but instead rearrange the right-hand
side following the approach of Zangwill and Soven.!” We
discuss this procedure, as it applies to our case, later in
Sec. III.

Our conduction electrons are imbedded in a semi-
infinite dielectric with dielectric constant €. Thus, when
two electrons are placed within the material and close to
the surface, one of these interacts with the second not
only by means of the direct electron-electron interaction,
but it also senses the image charge of the second. Let the
coordinates of the first be x=(x,z) and the second be
x'=(x{,z’) and let py=x,—x|. Then the electron-electron
interaction V (x,x’) has the form

2
Vixx)=L [ —L
€ | [py+2z(z =27 |
el - . @1
e+1 | |p +2(z+2')|

and the definition of v (q;2,z’) in Eq. (2.15) is

v(qy;z,2")= f dzpne ~rare Vix,x'), (2.18)
so we have
. " 27T€2 —4q) |z —z"| e—1 —q(z +2')
vi(qyz,z' )=—|e £ e 7Y
€9, e+1
(2.19)

The effect of the image charges is to increase the repulsive
interaction between the electron pair, when they are close
to the surface, so long as € > 1.

In general, to deduce information from Eq. (2.15), one
must proceed to its solution by numerical methods (Secs.
III and IV). First however, for the discussion of long-
wavelength surface plasmons, our interest lies in the limit
q,—0, with the frequency w held finite. For this case,
and o sufficiently large, it is possible to extract the struc-
ture of the solution by analytic methods. This is done in
the Appendix, where it is demonstrated that

lim fwde(q,,,w;z,z’)e 92
q”ﬂO 0

_ —(Iﬁ n(z') (2.20)
m*eo® | 4wn(co)e’ 1 ’

m*(e+1) w?

with n (o0 )=ng the bulk free-carrier concentration in the
material. For the purposes of the proof, in the Appendix
we have included the correlation and exchange contribu-
tions to the effective electron-electron interaction, in the
manner used commonly in extensions of density-
functional theory to the analysis of response functions at
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finite frequency.

The result in Eq. (2.20), derived from the generalization
of Eq. (2.15) just described, has a number of implications.
If we multiply each side by exp(—gz’), integrate on z’
from zero to infinity, note that as g, —0,

[=dzre niz)="n, . 2.21)
0 9
Then use Eq. (2.10), we have, with a)}2,=41m(oo)ez/m*
the plasma frequency,
1/1 1 o (e I er(w)—e
T T ey o || T w1

=(e+ DIm(1)+(e+1)*Im {

so that

—1
tim, Pelay ) I+er(o)

[1+n ©)](1+€)*Im l
9~

(2.24)

When the relation between P,(q,0) and P(q ) given in
Eq. (2.7) is noted, we have

; (2.25)

2q, —1
. — Ay —
R el e

the result derived some years ago from dielectric theory.'?
Thus, we show that in the limit described here and in
the Appendix [note the remarks between Eq. (A3) and
(A4)], the RPA equation for the dynamic response
function, supplemented by exchange and correlation if
desired, reproduces the result obtained from dielectric
theory. As remarked in the Appendix, it is essential to
include the image terms in the effective electron-electron
interaction [Egs. (2.17) and (2.19)] to obtain this result.
The image effects are thus crucial as soon as one aban-
dons the simple jellium model with background dielectric
constant of unity, studied so extensively in the literature
on metal surfaces.!®
The proof also establishes that as g, —0, the only mode
which contributes to P(q,») to leading order in g, is the
surface plasmon of macroscopic theory. That this is so is
independent of the charge profile of the free carriers. We
have also made no assumption about the distribution of
charge in the jellium background, except that it is uniform
in the bulk of the material so the electron density n (z) ap-
proaches the value n(w) as z— o. Thus, it applies to
the model examined by Equiluz and Campbell,!® who
studied the dynamics of a thin overlayer on a free-electron
metal, by adding to jellium film a thin overlayer modeled
as another jellium film whose background charge density
differs from that of the substrate.
The proof does not rule out the existence of other

lim P,(q,0)=— —L[1+n
q”—»O 21

2
1 o,
XIm |1 / l———

[ (e+1) @2
where we assume implicitly that o is replaced by w-+i8
and n (w) again is the Bose-Einstein function. Now € is
the background dielectric constant, assumed real, and let

er(a))—-:e—a)f, /w? be the total dielectric constant, includ-
ing the free-carrier contribution. Then

|

(2.22)

—1

—_— 2.23
1+6T(CO) ( )

f

modes in the limit g;—0, but it does require their oscilla-
tor strength to be smaller than that of the principal mode
by at least one factor of g;. If / is the thickness of the
transition region between the surface and bulk, then the
oscillator strength of additional modes will be smaller
than that of the principal mode by at least one factor of
g,l. In this sense all other modes which exist in the limit
g,—0 must have the character of multipole modes, possi-
bly similar to those which appear in the hydrodynamic
model of Eguiluz and Quinn.'*

This discussion raises the question, in our view, of
whether such modes will emerge within any less schemat-
ic theory of collective excitations in the surface. For
qu << 1, their oscillator strength must be small, and the
modes difficult to detect, by an external probe. As g,/ in-
creases, so will the Landau damping overlooked in both
local dielectric response and hydrodynamic models.
When g/ ~1, our calculations show this damping to be
severe for the principal mode, and similar conclusions
ought to apply to the multipole modes. We note that
Equiluz and Campbell19 searched for, and failed to find,
additional modes in their fully microscopic theory of a
dense overlayer on a less dense substrate. Here we fail to
find evidence for such modes also, even for very strong
accumulation layers, as we discuss in Sec. IV. The
reasoning in this and the preceding paragraph provides
the explanation, in our view.

The point is also illustrated by the model considered by
Eguiluz and Campbell, viewed entirely within dielectric
theory. The relevant formulas are given elsewhere.? We
have a substrate, with electron plasma frequency a)ﬁ,”), and
an overlayer in the form of a film of thickness d, with
plasma frequency a);,” Both background dielectric con-
stants have the value unity, and we let w;f’>a);,b). There
are two surface plasmon branches whose dispersion rela-
tion is easily established from existing formulas.? As
q,—0, one mode, the principal mode, has a frequency
which approaches w;,b)/\/z The second has frequency
which approaches w(s’ itself. As g;—0, the contribution
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to P(q,®) from the high-frequency mode (an example of
a multipole mode) is smaller than that of the principal
mode by a factor of g,d.

This completes our discussion of general questions. We
now turn to the representation we have used for
Xo(qy,w;2,z'), and the computational procedures we have
employed.

III. CALCULATIONS

In all of our calculations, and in the equations
displayed below, we convert all quantities to dimension-

J

d? "u Uf (g +qp) —f (k1) ]

7 (Eqi—Eyvqy) —0—18)

22f vz

X (q“,w z,z

In our dimensionless units, E, ; =x?+k?, where k?> 0 for
K, i I i i
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less units. Energies and frequencies are all expressed in
units of kT, and the numerical calculations we present
are all carried out for 7 =300 K. A unit of length A, as
in our previous work,> is defined by writing
(#/2m* ) =kyT, or A=(#*/2m*kyT)""?. Thus, dis-
tances are measured in terms of A, and we have for wave
vectors k =x;/A, with k, dimensionless. For GaAs,
m*=0.069m,, the free electron mass, so at room temper-
ature, A=46.2 A, and k,=1 refers to a wave vector of
2.16x10® cm 1.

We begin by discussing the structure of the irreducible
particle-hole propagator defined in Eq. (2.16) which be-
comes

Wi (2" W ()t (z')

r

ditions, while g (x%0z’) vanishes. Here ¢(z) is the self-

consistent potential, fitted to the Morse form®

continuum states, and «? <0 for bound states. Thus, the
Fermi-Dirac function is f(k,i)=[exp(kf +x7—p)+1]"". Vo
We rewrite Eq. (3.1) by following Zangwill and o(z)= a_p (e ~M—Be ~%#7) . (3.3)
17 —

Soven.!” We introduce a Green’s function g(k%z,z’)
which satisfies the differential equation

2
dd S +6(2)—« g (kP2,2)=8(z —2') . (3.2)

As z— « with z’ fixed, we have outgoing boundary con-

J

Xo(q{waZ)—zzf . O/ DL @tz

This simplifies further when, as in our case, the ¥;(z)’s are
real. Then X, is symmetric in z and z’ as are the Green’s
functions. Their exp]icit form is

g (k%z,z' 2 (2')0(z"' —2z)

(3.5)

+ S22 (2)0(z —2')] .

")g (k7 —2K):q—qf +0+i8;2,2" )+ ¢ (z

For a given choice of bulk carrier density, and surface
charge Q;, the numerical values for the parameters in Eq.
(3.3) are determined as in our earlier paper, only here we
do not include the electrostatic potential induced shift of
the donor level. Typical parameters are listed in Table 1.
Given the Green’s function just introduced, we have!”

1//1 Z)g '—ZK\I Qu —iB;Z’,Z)] .

(3.4)

f

Here 9,5 (z) is that solution of the homogeneous version of
the differential equation in Eq. (3.2) which obeys the
boundary condition #,5(0)=0, while ¥, (z) obeys the out-
going boundary condition. Finally, W, is the Wronskian

w, [ 4% e

K

wx - ¢K ’ (3.6)

TABLE 1. For GaAs at room temperature we give the parameters Vo (surface potential in units of
ksT) and p~' (in units of A) for different bulk carrier concentrations and surface charges Qs (in units of

A2,
10'7 ¢cm 3 3% 10" ecm~? 10"® cm~3

O Vo w! Vo u! Vo u!
—0.16 —4.48 2.56 —3.96 1.51 —3.70 1.04
—0.08 —2.81 2.49 —2.45 1.54 —2.43 1.05
0.00 —0.30 2.48 —0.54 1.58 —1.05 1.05
+ 0.08 4.94 3.39 2.10 1.91 0.59 1.04
+ 0.16 6.58 2.04 2.42 1.21
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a quantity independent of z.

From the point of view of numerical work, the virtue of
the Zangwill-Soven scheme is that one need not evaluate
Eq. (3.1) directly, with its singular denominator, and also
one integration less to perform. Also, for the potential
given in Eq. (3.3), both ¥7(z) and ¢¥,5(z) may be ex-
pressed in terms of series similar to that given in Eq.
(2.14). Indeed, after replacing " by « Eq. (2.14) reads in
dimensionless units

Ed2)=e™ S b, (ke " 3.7)
m =0
and the (normalized) outgoing wave is simply
Y2 (2)=C (k)& (z2) . (3.8)

Equation (2.13) for ¢,5(z), however, has to be modified
for complex energies as they appear in the numerical eval-
uation of the Green’s function, where & is small but finite.
We have

—e®12=2"1[p, (—K)b

It is useful to note that the Green’s function obeys the
relations

g (k42,2 V=g (k*;2',2) (3.11a)

and

2 (3.11b)

gkr=c?—i8;z,z")=g*(k*=c?+1i8;z,2") .
These identities reduce the number of times one must
compute the Green’s functions which enter Eq. (3.4).

Note that the Green’s function is independent of the
normalization convention chosen for the functions ¥, (z)
and ¥,5(z). Also, when the sum on 7 in Eq. (3.4) is con-
verted to an integral over the continuum as in Ref. (5), the
normalization of the continuum states ,(z) drops out.
However, when bound states are present, of course they
contribute in the sum over i, and these must be explicitly
normalized.

We have chosen q parallel to the x direction, which
leads to no loss of generality, since all quantities depend
on only |q,|. In the numerical work, it is then con-
venient to convert the integral on K},") to one over ¢, where
the Green’s functions are written g (c2+i8;z,z").

Our basic numerical procedure is to discretize the vari-
ables z"” and z'” which enter Eq. (2.15), also cutting off
the integration on both variables at a value z.. The in-
tegral equation is then solved by a matrix inversion. Of
course, it is essential to check convergence by varying the
grid spacing for fixed z., and also increasing the value of
Z.

Quite clearly, examination of the various functions
which enter the theory, such as the electron-electron in-

2 (KO —2)+ b, (K)b, (—K)O(z —2")]} .
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1[/K<(z):C(K)Ellt[ef"(")gK(z)—D(K)e —mg ()],  (3.9a)
with the phase shifts now determined by

_ Im[s (k) =D(x)s (—«)]
Re[s (k)+D (k)s(—x)]

tann (k)= (3.9b)

and

DW= |sw)|/|s(—K)|, s=S bk .

m =0

(3.9¢)

For k2>0 and real, D(k)=1 and hence we recover Eq.
(2.13), of course.

In the formulas above, we must always choose k such
that Im(x) >0, and then we are assured that the appropri-
ate boundary condition is satisfied as z— oo.

When the results are assembled, and one notes
Ex(k)=& _ «(z). The Green’s function has the explicit

form

2 e —pu(mz +nz’){eix(z +z')92in(K)bm (K‘)bn(K)/D (k)

(3.10)

teraction [Eq. (2.19)] shows that we cannot explore values
of g, so small that g z; S1. Thus, for the semi-infinite
geometry explored here, in the numerical work, we cannot
achieve the limit gy —0. We have been able to obtain reli-
able results for g, as small as 0.1 in our dimensionless
units, however. One advantage of studying a finite film,
as opposed to the semi-infinite geometry examined in this
paper is that the integration on z” and z'” are both
bounded, so the limit g;—0 may be studied explicitly. At
the time of this writing, studies of the finite film have been
initiated.

Griffin and Harris®® have derived an important sum
rule which provides a useful check on the numerical cal-
culations. In our reduced units, the sum rule reads,
where P is measured in units of (A%k»zT) ™', and when the
factor of e? is omitted from its definition,

[*dowP(q0)=2m¢} [“dznze F (312
0 0

and n(z)=3; In(1+e"" )| ¢;(z) | ? is the electron densi-

ty at z, in units of A 3. In the calculations reported here,

the sum rule is found to be satisfied to within roughly

1%.

We next turn to the properties of the kernel
Xolqy,w;z,2'). As both z and z’ are moved into the bulk
of the material, the kernel becomes a function of only
(z —z’). Furthermore, the values of Xy(q,®;z,z") in the
bulk should be independent of the choice of the details of
the near surface region, such as surface charges. We have
checked this by comparing the bulk behavior of
Xolq),w;z,z") calculated with the eigenfunctions v,(z) gen-
erated by the self-consistent potential, and those provided
by the infinite barrier model, to find this condition
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FIG. 1. For g;=0.4 and Q, =0, we illustrate the dependence of Xo(q®;z,z") on z and z’, for three values of the dimensionless fre-

quency . The bulk carrier concentration is 7o=3x 10" cm ~*

satisfied. A comparison with the Xy in a model with
periodic boundary conditions provided a useful check on
the various factors that enter the expression for
Xolg,®;z,z"), and the accuracy of the integration routines.

In Fig. 1, we plot the kernel Xo(q,w;z,z") for a carrier
concentration of 3x 107 e¢cm™?, g,=0.4, Q;=0.0, and
various values of the frequency. Except in the static limit
where X,(z =z’) mimics the density profile n (z), the range
of the kernel is quite large, when either z or z’ lies near
the surface. It is not obvious why this is so, but from
these graphs one easily appreciates the need for a proper
nonlocal theory, if the influence of the near surface region
on the properties of surface plasmons is of interest. It is
difficult to justify use of the local dielectric theory em-
ployed in the earlier literature.®’

As remarked above, we must cut off the integrations on
z'" and z"" in Eq. (2.15) at some value z., and one expects
z, must scale as qH_1 to achieve convergence. We have
found the choice z. =4/q, to be quite satisfactory, when
calculating the loss function in Eq. (2.10). This simple
rule was found to hold even for g as big as unity, where
z, is not so far from the inhomogeneous surface region;
we see in Fig. (1) that the range of Xy(q,w;z,z') can be
appreciable. Perhaps the strong Landau damping causes
the response of the system to be smooth and to exhibit
strong spatial decay so that in the end, z. need not be
larger than given by the above rule.

Independently of the value of g, the grid size in the z
variable was taken to be Az=0.25 in our spatial integra-
tions. This is sufficient for proper resolution of the spatial
structures near the surface. Since Az was chosen indepen-
dently of g, (clearly this is required, since the dimension-
less length A controls the range of the spatial inhomo-
geneity near the surface), the size of the matrix X, which
must be calculated varies strongly with q,. For a typical
intermediate value of ¢, such as g =0.4, we are dealing
with a 40 <40 matrix.

The sum over / in Eq. (3.4) includes a discrete number
of bound states, if these are present, and one then includes
the continuum in which the sum formally is replaced by
an integration. Clearly a sufficient number of continuum
states must be included in the numerical work for the
charge density to be properly reproduced in the region
O<z <z,. No numerical oscillations must appear, as a
result of inclusion of too few continuum states. Thus, if
Ak is the spacing between adjacent level, we must have

. Recall that Xy(q w;z,z’) is symmetric under interchange of z and z’.

Akz. =m/2. This means, notice, that as g, decreases, we
must also make Ak smaller. Not only does the size of the
matrix one must invert increase, but at the same time the
k integration grid must be made finer.

We proceeded as follows, in all calculations reported
here. For z.=40, appropriate to g, =0.1, the smallest
value of g, we have considered, and k,,,=3.5, we need
roughly 100 continuum states. We have kept this number
constant for the larger values of ¢q;. The same value 3.5
has been chosen as the upper limit for the remaining two
integrations on the components of k;, the total electron
energies never exceeding (3.5)%,T. This cutoff is large
enough, so long as the Fermi energy does not lie too far
above the bottom of the conduction band. As remarked
earlier, the integration on «, is converted to an integration
over ¢, the argument of the Green’s function in
g(c?+1i8;z,z"). In order to ensure numerical convergence
in this step even for small g, we take Ac =Ak, /2.

Considerable care has to be taken in the choice of the
“infinitesimal” quantity 8. This is kept small but finite in
the numerical work. If it is too small, one encounters ac-
curacy problems in the integration over ¢, and if it is too
large, then results of the computation will vary with 8, in
effect introducing artificial damping. We experimented
with the choice of § by noting that in the bulk of the ma-

terial, one may derive a simple expression for
Im[Xo(q; =0, w;z,z)]. This is
Im[Xo(g; =0, w;z,2)]
wd 14et—*
= [y | Lt ! (3.13)
0 47?2 14et—o=% | (w417

We found that & has to be chosen equal to Ax, here the
grid width in the integration over the continuum states.
In the integral over the variable ¢ involving
g(c*+i8;z,z'), we therefore chose §=Ac. For small
values of g;, we then reproduced results that closely
match those obtained from Eq. (3.13), when z and z’ are
large enough for the bulk limit to be realized.

We consider our calculation of the loss function to have
converged, when its accuracy was better than 2%. The
frequency was scanned with a grid of width Aw=0.025
near the peak of the loss function, and we required the
peak to be stable in position, on such a mesh. These two
specifications were met with the integration and matrix
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sizes controlled by the parameters given above, and, once
again, the sum rule displayed in Eq. (3.12) has been
checked, and found to be obeyed at the 1 % level.

With the integration procedure and matrix sizes given
above, the calculation of one spectral point of the loss
function for an intermediate wave vector g, =0.4 typically
requires 5 sec of CPU (central processing unit) time on a
Cray XMP supercomputer.

We now turn to a discussion of our results.

IV. RESULTS AND CONCLUSIONS

We present our results in terms of the dimensionless
units introduced earlier. Thus, units of wave vector q
are the inverse of the length A=(#2/2m*kpT)2=46.2
A, for GaAs at T =300 K. As remarked earlier, q,=1
corresponds to a wave vector of 2.16 X 10® cm~!, and the
range 0<q; =1 corresponds to that explored in near-
specular electron-energy-loss spectroscopy. Frequency is
measured in units of kg T. Then w=1 corresponds to 209
cm™!, again at T =300 K. At the carrier concentration
of ny=3x%10"7 cm~!, the bulk plasma frequency of n-
type GaAs is w,=189 cm~!, or in our dimensionless
units, w, =0.91kpT. For these numbers, the background
dielectric constant € is taken to be equal to 10.9, the value
of €, in GaAs.

In Fig. 2, for several values of g, we plot P(g,w) for
n-type GaAs at room temperature (T =300 K), with
no=3x10" em~3, and zero surface charge, O, =0. In
the Thomas-Fermi description of the charge profile near
the surface,* this is the case of zero band bending, though

P T 7ﬁ T T ™ T
3x107 cm™3
0.003 | .
Qs =0.0
0002} .
q,=02
0.3
0001} |
0.4
0.6
08 .,
1 1 L A
) I 2 3 4
w

FIG. 2. For the carrier density no=3x 10" cm~3, in n-type
GaAs at T=300 K, we plot the loss function P(g,w) for
several values of g. The units are the dimensionless units
defined in the text.

the fully quantum mechanical discussion shows a dipole
layer is necessarily present, as a consequence of the
boundary condition in Eq. (2.9). Because of this, the
value of the self-consistent potential at the surface, mea-
sured relative to the bulk is nonzero, so in fact we have
band bending by this criterion.

The results in Fig. 2 are typical of those we have ob-
tained in various cases we have examined. They are also
similar to those obtained in theoretical studies of surfaces
of nearly free electron metals, though here the interesting
range of wave vectors g is the order of 10® cm~!, while
in the case of metals the relevant scale is 108 cm~!. For
small g,, P(q,») is dominated by a single, prominent
surface plasmon resonance close to the surface plasmon
frequency w,=[4mnge?/m*(e+1)]'"? given by dielectric
theory. There is appreciable dispersion, even for the
smallest value of g, shown in Fig. 2. Thus, for ¢,=0.2,
the peak in the loss function lies a bit above w=1, while
in our dimensionless units, w;=0.87. As g, increases the
peak moves upwards and broadens, to the point where
when ¢, =0.8, P(q,w) consists of a broad, structureless
feature. The broadening has its origin in Landau damp-
ing, which is absent from both local dielectric theories®’
and hydrodynamics models.!* This Landau damping
occurs because the surface plasmon frequency lies within
the particle-hole continuum, so when a surface plasmon is
excited, its lifetime is limited because it may create
particle-hole pairs.

In Fig. 3, we show P(g,,») as a function of Q,, for
¢,=0.4, and again a carrier concentration of ny=3x 10"
cm™3; recall that Q, measures the charge deficit in the
conduction electrons produced by the presence of charge
trapped on the surface. Thus, a negative value of Q; cor-
responds to an accumulation layer. The surface plasmon

P T T T T T T -
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FIG. 3. For no=3x10"7 cm~?, T =300 K and q,=0.4, we
show the loss function as a function of surface charge Q,. The
inset plots the position of the peak in the loss function, against
Q;. Again, dimensionless units defined in the text are employed.
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peak shifts upward with accumulation layer formation,
and downward with a depletion layer present. This is as
expected on qualitative grounds. The inset in Fig. 3 plots
the position of the peak in P(q,w), as a function of Q.
We see a roughly linear dependence. Another striking
feature of these results is the variation of the width of the
loss structure with Q;. The surface plasmon loss feature
narrows and increases in intensity with formation of an
accumulation layer, and is broadened and weakened by
the more diffuse depletion layer, acquiring a predominant-
ly single-pair excitation character as discussed below.

The dashed portion of the curves in Fig. 3 correspond
to regions where we find rather fine oscillations of the or-
der of £10% in the calculated loss function. These are
strongest at low frequencies, and hence become relatively
more prominent at lower carrier concentrations, e.g., 10"
cm~3. These oscillations are present in the kernel X, and
survive in the full solution X. Since they occur only for
the cases where an accumulation layer is present, they
may be real with origin in interband transitions between
bound levels produced by the accumulation layer, or be-
tween a bound level and the nearby continuum. We find
the oscillations only when one or more bound state is
present. (Note: These oscillations do not survive when
integrating the Green’s functions over energies far off the
real axis.)

In Figs. 4(a)-4(c), and for three values of Q;, we plot
the variation with g, of the maximum of the loss function.
It is evident that as g, —0, all frequencies lie near w;, as
required by Eq. (2.22). The insets show the spatial varia-
tion of the free-carrier densities n (z) for each case con-
sidered. It is evident that greatest sensitivity to the free-
carrier profile occurs when g/ ~1, with [ the thickness of
the transition region between the surface and the bulk.
As the carrier concentration n( increases, / decreases, and
the “bulge” in the three sets of curves moves to larger
values of q,.

For Q,=0, and ny=10"" cm~3, the surface plasmon
dispersion curve is quite linear, in its dependence on g,

over much of the range explored. A distinct upward cur-
vature appears as the carrier concentration decreases. The
origin of this behavior is that the surface plasmon fre-
quency approaches the particle-hole excitation spectrum
with increasing g at the lower concentration, and upward
curvature is induced by the resulting coupling. As the in-
tensity of the plasmonlike feature decreases with decreas-
ing electron density or increasing g, it merges into the
contribution to the spectrum which is due to single pair
excitations.

Notice that rather strong accumulation layers have been
explored in Fig. 4. For ny=10" cm~3, and Q, = —0.08,
the maximum charge density in the accumulation layer
rises to roughly four times the bulk value. As remarked
in Sec. I, for all of our calculations, we find only a single
loss peak, with no evidence of contributions from extra
branches®’ or modes of multipole character,® a result we
have commented on earlier in this paper. We examined
this issue for stronger accumulation layers than illustrated
in Fig. 4; for no=10'"" cm~3, we have examined values of
Qs as large as —0.40 (or 2 10'? e /cm?), to always find
only a single plasmon peak in the loss function.

So far, we have explored the dynamic response of the
surface region for free carriers placed in a semi-infinite
dielectric, with dielectric constant € independent of fre-
quency. In fact, GaAs (and other polar semiconductors)
have an infrared active transverse optical phonon at long
wavelengths. The background dielectric constant then is
frequency dependent, and of the form

Cl)’zro(éo—ex )

+
* a)'zro—a)z

where wtg is the frequency of the long-wavelength trans-
verse optical phonon, and €, the static dielectric constant.
Since wtp and w, can be comparable in value, the calcula-
tions must be extended to incorporate the dynamic
response of the lattice. Within the framework of dielectric
theory applied to the semi-infinite medium, surface modes
occur when er(w)=—1, where er(a))ze(w)—a)f, /w3,

elw)=¢€ , 4.1)

—

(a) 7

107 em™3
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FIG. 4. For T =300 K, and a carrier concentration of (a) no=10'7 cm~3, (b) no=3x10'7 cm~?3, and (c) ny=10"® cm~

qII qll

3, we plot

the position of the peak in the loss function as a function of g, for the values of the surface charge deficit shown. The insets show the

spatial variation of the free-carrier density, for each case considered.
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with e(w) given by Eq. (4.1). There are now two roots of
the equation €y(w)=—1; each surface mode can be
viewed as an admixture of a surface plasmon, with a sur-
face optical phonon (the Fuchs-Kliewer mode). The pa-
per of Matz and Liith® presents calculations of the fre-
quencies of the coupled surface modes, as given by dielec-
tric theory, as a function of carrier concentration, for n-
type GaAs.

We may incorporate the lattice response into our calcu-
lations of P(q,w) as follows. First, in the expression for
the electron-electron interaction, Eq. (2.19), we use the
frequency-dependent form in Eq. (4.1). Also, when we
convert the electronic contribution to the loss function,
P,(q,,w) to the full loss function through use of Eq. (2.7),
we also use the frequency-dependent dielectric function
here as well. This procedure is rigorous in the limit of
zero damping of the lattice motion. In our numerical cal-
culations, we added a damping term of the form —iwD
into the resonance denominator of Eq. (4.1), choosing
r=o0.1.

We display results of such calculations in Fig. 5, where
for Q;,=0.0 and different carrier concentrations, we
display the various loss functions. In each figure, the
dashed lines show calculations of P(q,,®) which ignore
the dynamic response of the lattice by replacing € by €,
everywhere. These curves are thus calculated within the
framework used for the results shown earlier. The
dotted-dashed curve gives P,(q,w) calculated with use of
full dynamic dielectric constant in Eq. (4.1). So that the
result is readily displayed on the same graph as the other
functions displayed, we have multiplied P,(g,») by the
numerical factor 4/(1+¢€_ )% Finally, the solid curve in
each inset is the full loss function P(q,w) given in Eq.
(2.7), with dynamic screening incorporated also in the pre-
factor.

The frequency of the Fuchs-Kliewer surface phonon on
the surface of undoped GaAs is wroll+€)!"2/(1
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+€,)"?, and this equals 1.40 in the present units. Thus,

as one sees from the dashed curves in Fig. 5, the range of
free-carrier concentrations explored cover the regime
where w; lies well below 1.40, to that where it lies well
above the Fuchs-Kliewer frequency. When w, lies either
well below [Fig. 5(a)] or well above [Fig. 5(d)] the Fuchs-
Kliewer frequency, the full loss function consists of a dou-
blet, as expected from dielectric theory. In Fig. 5(a), there
is a modest upshift of the high-frequency peak to 1.43
produced by the presence of the electron plasma, while in
Fig. 5(d), the low frequency feature lies at 1.40. At a con-
centration where w, lies quite close to the Fuchs-Kliewer
frequency [Fig. 5(b)], we have a single structure with a
highly asymmetric line shape.

Given the response function X(qy,w;z,z"), we can also
analyze the response of the surface region to an externally
applied electric field. Suppose the system is driven by an
external electric field E.,,(X,?), derivable from an external-
ly applied potential. Let the electric field have frequency
, spatial variation parallel to the surface given by
explig;x), and let E(q,,w;z) describe the spatial varia-
tion of its amplitude with distance from the surface. Such
a field sets up charge fluctuations in the material which
give rise to an induced electric field Eing(qy,w;z). The in-
duced field is given by

Einlq),0;2)=— fox dz’' fom dz"v(q ;2,2 )X (q),w;2",2")

X E (g ,0;2") .
(4.2)

Here of course the cutoff z. in the integration has to be
chosen larger than when calculating the loss function. To
evaluate Ej,  for z <z,,, we used z. =z,, +8/q,.

In Fig. 6, we illustrate the response of the system to a
field that is independent of z, i.e., the external field has

— — : —
P |2x107cm3 (@] | 2x10'7 em™3 )| | 4x10'7 em-3
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4,702, a, =04 q, =04
0.002 | o 1+ -
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FIG. 5. For Q;=0, and various carrier concentrations, we illustrate the influence of the dynamic response of the lattice on the loss
spectrum. In each inset, the dashed line displays P(q,w) calculated with € replaced by €, everywhere. The dotted-dashed line
displays 4/(1+€,,)?P.(q,0), with the dynamic response of the lattice incorporated into the calculation of P,, and the solid line is the
full loss function, calculated from Eq. (2.7) with the dynamic response of the lattice used everywhere.
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E(q),0;2)=Ec(q,0). The calculations are for an
electron density of 10'® cm 3, Q, =0.0, and q,=0.4, and
the figure shows the induced field for several frequencies.
There is an exponential tail of the induced field that
necessarily extends into the vacuum, as a consequence of
the fact that the induced potential ¢;,qy must satisfy La-
places equation in the vacuum outside the material. We
see the induced field rises quickly to a constant value in-
side the material, as expected from elementary considera-
tions. One notes, however, an appreciable spatial varia-
tion for the two frequencies w=2.1 and w=2.2. These
lie just above w; and very close to the bulk plasma reso-
nance, and the resonant response of the free carriers is
suppressed near the surface by the reduced electron densi-
ty there. Thus, one must penetrate into the material some
distance before the proper bulk behavior is realized, at
such a frequency. In these calculations, the phase of the
induced field exhibits little dependence on z, at all fre-
quencies explored. The frequency variation of the phase
of the induced field at the surface z =0 is illustrated in
the inset. Below the plasma resonance, the induced field
is 180° out of phase with the external field, as one would
expect from dielectric theory. As one passes through the
plasma resonance, we see a 180° phase shift so above the

z/ A\

FIG. 6. We show the magnitude and spatial variation of the
induced field which appears in response to an externally applied
field with the spatial variation exp(ig;x), independent of z. The
external field has amplitude unity, as indicated. The calculations
are for a carrier concentration of 10'® cm~* and Q, =0.0, and we
have set g =0.4. The inset shows the phase of the induced field,
relative to the external field, at the surface.

resonance, the induced field is in phase with the externally
applied field.

In Fig. 7, we show the induced field in response to an
external field with spatial variation in the z direction pro-
portional to exp(—gz). For two frequencies, we show
the real and imaginary part of the field. We see that for
w=1.8, below the bulk plasmon resonance, both the real
and imaginary part decay monotonically, beyond the in-
homogeneous surface layers. The inset shows the depen-
dence of the complex phase of the induced field with z for
such an external field, for several frequencies. For
w=1.8, one sees the phase is almost independent of z.
For frequencies above the plasma frequency, such as
w=2.4, we see an oscillatory response. In the medium,
the phase now varies linearly with z, as indicated in the
inset. Quite clearly, the external field has launched a bulk
plasma wave, with a wave vector that increases with fre-
quency, as one moves above the bulk plasma frequency.
Only the magnitude of the induced field decays monotoni-
cally with z, for frequencies above the bulk plasma fre-
quency, incidentally. The bulk plasma wave experiences
appreciable Landau damping, so the attenuation length is
rather short.

In a recent paper, Stahl’! has presented a microscopic
study of surface plasmons, for parameters appropriate to
GaAs. His study employs the infinite barrier model, for
which the free-carrier density profile is not generated by
wave functions derived from a self-consistent potential.
Stahl also presents calculations of the response of his
model system to an externally applied field with exponen-

10'8cm™3

z/ X\

FIG. 7. The real (solid line) and imaginary part (dot-dashed
line) of the induced field for ®=1.8 and w=2.4, in response to
an external field with the spatial variation exp(igjx —qyz). As in
Fig. 6, the free-carrier concentration is 10'* cm~3, Q; =0.0 and
we have q;=0.4. The inset shows the variation of the phase of
the induced disturbance, with distance from the surface.
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tial profile, and finds results qualitatively similar to those
displayed in Fig. 7.

As remarked earlier, these calculations were motivated
by the experimental studies of Matz and Liith, who ob-
served shifts in the surface plasmon frequencies of n-type
GaAs, in response to chemisorption of hydrogen on the
surface. Unfortunately, we are unable to offer a quantita-
tive interpretation of their data, at this time. In the exper-
iment, as is standard in near-specular electron-energy-loss
studies of dipole losses,’ the angular variation of the
near-specular dipole loss feature is not resolved. All elec-
trons which emerge from the crystal within roughly one
degree of the specular direction are collected; hence the
loss spectrum is an average over a range of wave vectors,
as we see in Eq. (2.1), with 0<gq < 10° cm~! the relevant
range. Our calculations show that there is appreciable
dispersion of the surface plasmon loss feature in this range
of wave vectors, and also that shifts in the loss peak pro-
duced by a change in the free carrier profile depend
strongly on wave vector (see Fig. 4). It is thus difficult to
interpret, in quantitative terms, the shift of a structure in
the loss spectrum from a feature that is an average over
such a range of wave vectors, in view of these results.

We can make some qualitative remarks. The calcula-
tions show that the surface plasmon is rather heavily Lan-
dau damped in this wave-vector regime, and we also see
the broad particle-hole spectrum prominently in our cal-
culations of the loss function P(q,,w). If Matz and
Liith’s data on doped GaAs is compared with their data
on the insulating form of the material, we note that for
the insulating material the Fuchs-Kliewer mode stands
out clearly as a resolved line, well outside the quasielastic
peak. In the loss spectra taken on the n-type material, the
loss peaks appear instead as shoulders on a broad back-
ground evidently produced by scattering from particle-
hole pairs. The combined effects of dispersion and Lan-
dau damping such as one sees in our calculation evidently
are responsible for the degradation in the prominence of
the loss peaks found for the doped material.

We also note that Matz and Liith also examined only
the case where the adsorbates induced a depletion layer.
We have seen that (Fig. 3) as a depletion layer is formed,
the surface plasmon resonance is broadened and, as ex-
pected from the f-sum rule, weakened. These are in fact
trends evident in other calculations we have performed
which are not displayed in this paper. It would be of con-
siderable interest to see experiments on surfaces where an
accumulation layer is present. We see, again from Fig. 3,
that in this case the surface plasmon feature sharpens and
increases in intensity. Thus, the surface charge induced
shift in the surface plasmon frequency should be easier to
observe quantitatively.

In our view, it would be of very great interest to see an-
gle resolved studies of the near-specular dipole lobe in sys-
tems such as that explored here. This would provide
direct experimental access to both the dispersion and Lan-
dau damping of surface plasmons found in our calcula-
tions, and through modulation of the free carrier profile
by chemisorption one could also examine the dependence
of the line shapes and frequencies on the free-carrier den-
sity profile. In principle, such angle resolved studies of

the near-specular dipole peak could provide unique and
detailed data on the dynamic response of the nonuniform
electron gas; we know of no other spectroscopy which has
the potential of exploring the inhomogeneous electron gas
in precisely the range g;/~1, with [ the spatial scale of
the nonuniformity in density. In addition to addressing
the basic question just described, such spectroscopic stud-
ies would be of great interest as a probe of free carriers
near the surface of technologically important semicon-
ducting materials.

Very clearly, angle-resolved studies of the near-specular
lobe cannot be carried out by minor modifications of ex-
isting electron-energy-loss spectrometers. However, the
intensity in the dipole lobe is substantial. It would be of
great interest to explore the feasibility of designing a sys-
tem which could achieve high resolution in wave vector
near the specular, possibly achieved by sacrificing intensi-
ty. Clearly, pursuit of this question is beyond the scope
of the present authors.

It is not necessary to have full angle-resolved capability
to obtain information on wave-vector-dependent features
in energy-loss spectra such as studied here. In their study
of surface plasmons on the surface of InSb, with depletion
layer present, Ritz and Liith'® have explored the position
and width of the surface-plasmon-loss structure as a func-
tion of primary beam energy. As the beam energy is de-
creased, the surface-plasmon-loss structure shifts to higher
frequency, broadens substantially, and decreases in inten-
sity. These authors argue that the average wave vector of
the surface plasmons sampled in the experiment varies in-
versely with the square root of the beam energy, a result
which follows from the general structure of the dipole-loss
cross section. Thus, with decreasing beam energy, they
sample surface plasmons with increasing wave vector; the
sequence of loss spectra in their Fig. 1 bear a striking
qualitative resemblance to the calculations displayed in
Fig. 2 of the present paper. It remains true, however, that
each of their loss spectra remains an average of a range of
surface plasmon wave vectors, so quantitative comparison
with calculations of P(q,») cannot be made. Of course,
the experiments also explore InSb, and not GaAs.
Straightforward application of our calculation to InSb is
also not possible, since for the carrier concentrations ex-
plored, deviations from parabolicity are important in the
conduction band.
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APPENDIX: THE BEHAVIOR OF THE
RESPONSE FUNCTION AT FINITE FREQUENCY,
IN THE LIMIT q; =0

We begin by noting that the single-particle eigenstates
in Eq. (2.16) are always real, so we may begin by studying
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Lf (ky, i) — f (ky+qy, /)]

2 ’
Xolq,w;z,2')=—- Ui (20 (2" W (2)Y(2") (A1)
olqy 4 kz % (o + B+ qp.) — Exi) o
which may be rearranged to read
1
Xo(@@322)= 50 S 52 2 2 e 1 ! -— . (A2
ky ij 1“%(Ek“‘i_Ek”+q”,j) 1+%(Ek”,i_Ek”+q”,j)

We assume the frequency is sufficiently large that we may expand in inverse powers of . We do this, and retain only
the leading term, so

X (q”,ﬂ) ZZ 2 z 11}1 z)',b] dji(z,)lpj(Z')f kH’ )(Ek Ek”+qH’j) . (A3)

ﬁz 2A ¥ k,‘

Note that the validity of the step just taken is not insured by the assumption that q; is small. This suffices for the in-
traband contributions with j =i, but not for those from the “interband” virtual transitions. We require both that q; be
small (so the expansion is valid for intraband terms), and also that w be large compared to the energy of the interband
contributions.

On physical grounds, the second condition is required because surface plasmons are Landau damped even at q;=0 by
virtue of the breakdown of momentum conservation normal to the surface. Only when w is large compared to the inter-
band transitions may Landau damping be set aside in the surface problem, and then an expansion such as that in Eq.
(A3) may be used.

To proceed, recall Ek| =€ +ﬁ2kﬁ/2m *. Then for small q;, Eq. (A3) may be replaced by

Xolq),w;2,2") = 7 ZA ——5— > 3 @)@z 02" f (ky,i)e —g)) (A4)
ij k”
I
or Hence in the limit of interest, we have
N 1
Xo(qy,@;2,2') = %2 R (20 (20 (2 Wy (2" )(e; — ;) Xol0,032,27) = —— "5 2, nii(2)¢;(2)
w ij 1,
dlﬁ,
(AS) — |
where
., 9Y;
ni:% f(k,;yi) , (A6) —¥;(2") dz' (A9)
k

We now turn to the equation satisfied by the full
response function X(qy,w;z,z"). For the purposes of the
issue at hand, it will be useful to generalize Eq. (2.15) to
include also the effective short-ranged electron-electron

7 di; couplings generated by exchange and correlation. If we

T om* —;;2—+V(z)11/,-:s,»1/;,- (A7) introduce exchange and correlation into Eq. (2.15), of
course, self-consistency requires its influence be incor-

with V' (z) the self-consistent potential, and one then porated into the self-consistent potential which generates

the number of electrons in subband i.
Now the single-particle wave functions obey the
Schrodinger equation

derives the identity the single particle states 1;(z),!! though we need not take

" d d explicit account of this at present. Thus, we extend Eq.

(&) — € 1y (200 (2) # d ; Y; g ‘/’; ) (A8) (2.15) to read, replacing Xo(q,w;z,z") by Xo(0,w;z,z") for
2m* dz dz present purposes,

X(q”,w;Z,Z')‘—‘Xo(q“,w;Z,Z')—fow dzu fooc dZ”’Xo(0,0);Z,Z”)U(q”;Z“,Z’”)X(qu,a);zul,z’)

— f0°° dz" Xo(0,m;2,2" vy (2" )X (q,w;2",2") . (A10)

In the X, which appears in the inhomogeneous term, it is important to retain q, as finite, though our interest is in the
case q very small.
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Call the exchange-correlation term on the right-hand side of Eq. (A10) I',.(zz"). With Eq. (A9) inserted,

' d n_G " d¢’ ( " dd]/ ” T All
Dulzz)=+— zznw, () [ dz =L Ly e T i) ok oele Mg i2,2) (A1)
A partial integration gives
” 1 L " " dd}' " dlpl d 12 -7 ’
[olzz")=— m*ngnitpf(z)dlj(z)fo dz" |2 =i | S sz X (g @iz 2 )] (A12)

where the boundary terms vanish by virtue of the condition in Eq. (2.12), and the fact that for finite
z’, lim,_, , X(qw;z",z')=0. A second partial integration on the term proportional to ¥;(dy; /dz"") gives

' 2 © ” n IJ)’ d T
Iyelzz")=— m*o? % n;Y;(z) f dz ¢j 2" dz" — o [vxe(z )X((IH,CL),Z ,2')]
—7172 n,«tlx,—(z)tle(z)foo dz" (2" Wh;(z") d’ 7 vk (2")X (g, 0;2",2")] . (A13a)
m w ij 0 (d )
We may now invoke the completeness relation
2 Y (2);(z")=8(z —z") (A13b)
and note n (z)=73,; n; 1[}2 (z) is the electron density at point z. We then have, as q,—0 with w finite,
, 1 d d I
Teelz,2')= — s |” (Z)vac(z)}\’(q”,w,z,z ) (A14)

We now turn to the direct Coulomb term, and consider the combination

T.(z,2)= fo°° dz" Xo(0,0;2,2" W (q;2",2") (A15)
which becomes, after use of Eq. (A9) and a partial integration,
, 1 w o o diy; d:/)j dv(g;z”,z")
T.(z,z)= m—wzzj n,'t//i(z)dij(z)fo dz" |4z~ — () — T : (A16)
As q;—0, we have from Eq. (2.19) of the text
dv(q;z",z") 2
lim ——202 2 dme” \ 1o ez (A17)
q,—0 dz e+1 | €
When this is employed in Eq. (A16), after a partial integration we find
, 4 1 o dy;
T,(zz ):_—E‘ﬁzn ,(2) % ) lz ;(2);(z") ] +2 [T dz (B |
(e j z j
" ,, dll)l
_f dz [z P (2)Y;(z Ry (A18)
After use of the completeness relation in Eq. (A13b), Eq. (A18) may be reduced to
2 2
[o(zz)=— 30D 5, oy Ame__dn o, - Lloe—z) (A19)
em*o m*(e+1)w* dz €
When Eq. (A19) and Eq. (A14) are introduced in Eq. (A10), as g, —0 with o finite, Eq. (A10) is replaced by
4 2
X(q,®;2,2" ) =Xo(q,w;2,2")+ Ln%)%)((qu,w;z,z’)
em*w
+L fdz"X w;z",z’ f dz"X(q,,w;z",z")
(e+1)m*w? dz 7 » ’
1 d d /
m*wz Ez_ n (Z)FZ-UXC(Z)X(q”’w;Z’Z ) (AZO)
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Further partial integrations and rearrangement leads us to rewrite Eq. (A20) as

’ . ’ 477-62 d ®© 12 R
X(q,0;2,2")=Xo(q,0;2,2 )-———Un v = n (z)fz dz"' X(q,w;z",z")
4re? dn © 3 e 1 d d ,
+:n__—*(6+1) Iy fo dz"X(q,0;2",z")+ ) e n (z)~—dz Uy (2)X(q,0;2,2") (A21)

We now integrate both sides of Eq. (A21) from z =0 to z = «o. The boundary conditions in Eq. (2.12) of the text re-
quires 7 (z) to vanish at z =0. This again combined with the fact that lim, ., , X(g,w;z,z")=0 with z’ fixed means that
the exchange term drops out, after this integration. We then find

“d Jw;z,2)= | “d ;2,2
fo z X(q,,;2,2") fo z Xolq,w;2,2")+ m* et

4mn (0 )de” 1 o
Amniwle 2 [ dz X(q,,w;z2") .
" fo zX(q,,w;z,2")

(A22)

Throughout the discussion except in certain sensitive places (the inhomogeneous term, for example), we have let
q,—0, so where g, appears it is to be viewed as very small. For such small values of g, and z’ fixed near the surface,
there is no difference between fgc dz X(q,,0;z,z"), and fg‘ dz X(q,,0;z,z")exp(—q,z). Thus, we have established the fol-
lowing identity, from the RPA equation supplemented by exchange and correlation corrections:

lim [fo‘” dz Xolq,w;z,2")

. o 9,0
lim dz X(q,w;z,z")exp(—qz)= A23
quﬂofo gl P = lamn (0)e2/m* (e+ Da’] (a23
Finally, consider the numerator in Eq. (A23). In the high-frequency limit, Eq. (A3) gives
2 ’
o L 4 N2, __gin(z)
fo dz Xolq,w;z,2") = m%f(k“,l)llli(z )(EkH’i ‘Ek‘\*qW‘i )= — W (A24)
Hence we have established the following identity:
p— 2 ’
lim f “dz X(q,w;z,2")e ) ll n(z) (A25)

070

The right-hand side has a pole at the frequency w; that
is the frequency of the surface plasmon of dielectric
theory. The frequency is
172

2
47n (e ’ (A26)

m*(e+1)

* 2
MIOT | Ldan (e0)e? /mH e+ D] 5

w

unaffected by details of the surface profile, or the presence
of exchange and correlation.

To obtain the result displayed in Eq. (A25), the reader
will appreciate that inclusion of the image-charge contri-
bution to the electron-electron interaction is essential.

*Present address: Max-Planck-Institut fir Festkorperforschung,
Heisenbergstrasse 1, D-7000 Stuttgart 80, Federal Republic of
Germany.
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