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Bonding and ionicity in semiconductors
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Theoretical investigations of the bonding properties of 34 elemental and compound semiconductors
are reported. From self-consistent band-structure calculations (within the local-density approxima-
tion) valence charge densities are calculated. The densities are obtained by transforming muffin-tin
orbitals to a localized basis. Using another representation, an orthogonal basis, we construct sp' hy-
brids and project out the bond and antibond characters, i.e., we derive first-principles values for sp'
bond orders. These, together with the first-principles tight-binding parameters, are used to study
chemical trends. Relations to Phillips ionicity (f;) scale are established and it is demonstrated, for
example, that the critical ionicity value f; =0.786 found empirically separating the fourfold- from the
sixfold-coordinated crystal structures also follows from total-energy calculations.

I. INTRODUCTION

The group of binary 3' B" compounds with a total
of eight valence electrons encompasses some of the tech-
nologically most important materials, the tetrahedrally
bonded compound semiconductors. Also, these materials
belong to those which have been most widely studied in
experimental as well as theoretical solid-state physics. '
Systematic theoretical studies of the electronic structures,
optical properties, and charge distributions have been re-
ported previously; see, for example, Refs. 3 and 4. The
electron densities derived from pseudopotential calcula-
tions (e.g. , Ref. 3) have been very useful for the under-
standing of the chemical bonds. Also we shall here
present results of density calculations allowing a cornpar-
ison of details in the electron distributions in several com-
pounds. The validity of the calculations is not restricted
to any particular region in space. The self-consistent
band structures are calculated by means of the (relativis-
tic) linear muffin-tin-orbital (LMTO) method. The basis
is changed to the most localized orbitals providing a con-
venient computational scheme for obtaining the nonspher-
ical charge densities. '

A particular aim of the present work is to discuss,
quantitatively, the structural phase stability of the

8 compounds. The separation between crystal
structures with coordination number (Nc. ) =4 and those
with X& ——6 is determined by the competition between the
covalent sp bonding and the electrostatic interaction,
which in its simplest form can be represented as an ionic
Madelung interaction.

It was one of the successes of the dielectric theory de-
rived by Phillips and van Vechten' that it made it possible
to ascribe, in a systematic manner, an ionicity value, f;, to
each compound, and that a specific critical value
f =0.786 provided a complete separation between Nc =4
and X& ——6 structures. This relates of course to the pic-
ture of the crystal structure stabilization mentioned above,
and follows also clearly from the analysis of the pressure-
induced structural phase transitions in ZnTe and CdTe
(Ref. 7) from the zinc-blende structure (B3, Nc =4) to the
rocksalt structure (Bl, Nc ——6) in terms of the "frozen po-

tential" method. ' Futher, the ab initio calculations
presented recently by Chelikowsky and Burdett' demon-
strate this mechanism of the compositional
Xc ——4~AC ——6 transition. They' performed self-
consistent calculations but used model potentials which
were derived from a realistic GaAs potential but where
external additional potentials were added on the anion
and cation sites. In this way the ionicity was gradually
changed, and from the theoretical charge transfers" a
mapping on Phillips f; scale was obtained. A semiquanti-
tative phase diagram was deduced, and it was shown that
these first-principles calculations also lead to a critical ion-
icity close to 0.8.

The crystal structure stability analysis presented here
differs from that of Chelikowsky and Burdett in the sense
that we do not use a "controlled" potential model ~ Rath-
er, we draw our conclusions by examining trends in re-
sults obtained for a large number of real compounds.
These include row-l, -2, -3, and -4, IV-IV, III-V, and II-
VI compounds as well as some "cross-row" compounds
such as InAs, SiC, A1As, A1Sb, InP, and GaSb. Also we
include one I-VII semiconductor, CuBr, although the
bonding properties of the copper halides are somewhat
different due to the strong admixture of the Cu 3d and
halogen p states.

The presentation of the results is organized as follows.
The calculated charge-density distributions are for
representative compounds shown in Sec. II. The calcula-
tion of sp bond orders and the discussion of chemical
trends follow in Sec. III ~ This also includes trends in cal-
culated ionicities, metallicity values, polarities, and optical
deformation potentials. The results of total-energy calcu-
lations are given in Sec. IV, and Sec. V contains a sum-
mary.

II. CHARGE-DENSITY CALCULATIONS

As mentioned in the Introduction, charge-density cal-
culations have been reported earlier for several compound
semiconductors. Experimentally, however, only recently
reliable determinations of charge distributions have been
performed, and one reason for presenting density contours
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in this work is that the validity of our calculations in prin-
ciple is not restricted in space. We thus believe that they
will prove valuable for future experimental work in this
field.

Going outwards in a row from the homopolar semicon-
ductors, i.e., studying the sequence of IV-IV, III-V, II-VI,
to I-VII compounds, the ionicity increases. This well-
known trend also follows from the quantitative density
calculations, shown in Fig. 1 for row-3 compounds. The
bond charge maximum, which in Ge is located halfway
between the atoms, moves gradually towards the anion
site (As, Se,Br). The large diff'erences in charge density
near the cation sites in (GaAs, Ge), on one hand, and
(CuBr, ZnSe), on the other, is simply due to the fact that
the charge-density shown for the latter two compounds
includes the cation 3d states. This is not the case for Ge
and GaAs. The self-consistent potential, however, for
GaAs was calculated by allowing the Ga 3d to relax as
valence states. The LMTO calculations involved two en-
ergy panels. '

Similar trends are found for the other rows, and we
show in the following figures the densities in a (110) plane
for rows 1, 2, 3, and 4. The first-row compounds differ
somewhat from the others due to the absence of p elec-
trons in the core. Thus in diamond, for example, there is
no orthogonality requirement that causes the valence p
states to be expelled from the region close to the atomic
sites. Consequently, the density does not exhibit a max-
imum but rather a saddle point at the bond center [Fig.
2(a)].

Figure 2(b) shows the density in BN, and it would sug-
gest that this compound has a large ionic bonding com-
ponent. A comparison to the density calculated for GaAs
[Figs. 1 and 2(b)] shows that an ionicity somewhat larger
than that of GaAs (f; =0.321, Ref. 1) should presumably
be ascribed to BN. The value of Phillips' ionicity for BN
(f; =0.256), however, is smaller. We shall return to this
point in the subsequent section where the calculated po-
larities and ionicities are discussed. The II-VI compound
of row I, BeO, is characterized by being very ionic as fol-
lows from Fig. 2(c).

The calculated densities for the second-row compounds,
Si, A1P, and MgS are shown in Figs. 2(d), 2(e), and 2(fl.
The constituent atoms in this row have 2p states in the
core, and the effect of the orthogonality of the valence p
states (3p) to these core states can be seen, for example, in
the electron distributions in A1P [Fig. 2(e)]. Although we
cannot" quantitatively derive a value of the ionicity
directly from the electron density, we would expect that
A1P should, in that respect, be quite similar to BN [Fig.
2(b)], maybe even slightly less ionic. MgS [Fig. 2(f)] is
clearly ionic, and in fact the value' of f; (0.786) of this
compound is just on the borderline' separating the
fourfold- and sixfold-coordinated structures.

The electronic properties of the components in the third
row are influenced by the 3d states. These are only in
germanium lying so low in energy (binding energy =30
eV) that their inffuence on the bonding properties is negli-
gible. Already in GaAs, however, the Ga 3d states have
moved so far up that they, via hybridization with the
states at the valence band top, affect' the gap. In ZnSe

and Zn 3d band is, although still rather narrow, so high
lying that it clearly influences the bonding, and finally in
CuBr the valence bands consist of very strongly hybri-
dized Cu 3d and Br 4p states. The d-p interaction pro-
duces a large hybridization gap in the halide p bands of
the copper halides, and these compounds are, to a large
extent to be considered as p-d bonded. Thus, it is not
surprising that CuBr, CuCl, and CuI do not always fit
into the trends usually expected for sp bonded semicon-
ductors. Details of the effects of the d-p hybridization in
the copper halides may be found in Ref. 13 and references
given therein. The electron densities in Ge, GaAs, and
ZnSe are shown in Figs. 2(g), 2(h), and 2(i), whereas the
distribution in CuBr is shown separately in Fig. 3(c)
(later).

In Figs. 2(g) and 2(h) the covalent bond charges are
clearly seen —compare also to Fig. 1. In Fig. 2(i) (ZnSe)
this feature is less clearly distinguished.

The charge distribution [Fig. 2(i)] in ZnSe is close to
what one would expect to obtain simply from (partly)
overlapping almost spherically symmetric ionic distribu-
tions. This does not imply however, that sp bonding is
unimportant in ZnSe, but the ionic contribution to the
bonding must obviously be very large. This is also ex-
pressed in terms of its high value (0.630) of Phillips ioni-
city.

We mention that in the case of GaAs we compared our
calculated density to that obtained by means of the
norm-conserving, relativistic and self-consistent pseudopo-
tential theory. ' ' The shapes of the contours obtained in
this way were quite similar to those of Fig. 2(h) except for
the regions close to the atomic sites. There the
pseudodensity, by nature, cannot represent the electron
distribution properly. But as far as the bond charged dis-
tribution is concerned, the two types of calculations give
similar results.
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FICx. 1. Calculated density of the valence electrons along the
bond direction in Ge, CxaAs, ZnSe, and CuBr. The 3d-core-like
states are not included in the cases of Ge and GaAs.
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(a) CuBr (c)

0.5—

AlAs (b) InAs

Al—

FIG. 3. (a) SiC density contours. (b) A1As density contours. (c) CuBr density contours. (d) InAs density contours (including the
In 4d states). (Density units as in Fig. 2.)

When passing down through the rows in the Periodic
Table, the metallicity (to be defined more clearly later) of
the tetrahedrally bonded compounds increases —and the
gap between occupied and empty states decreases. In the
fourth row, metallization of the homopolar "compound"
(Sn) has occurred —the I q state in a-Sn lies below the top
of the p bands (I q5). Although Sn is a metal, it still is
characterized by strong sp covalent bonding, and it as-
sumes at ambient conditions the diamond crystal struc-
ture (a-Sn). The covalency of the bonding in a-Sn also
follows from the density calculations [Fig. 2(j)]. The max-
imum of the bond charge density, however, is clearly
lower than in Ge [Figs. 1 and 2(g)].

With increasing ionicity, i.e., going to the III-V and II-
VI compounds of the fourth row, InSb and CdTe, the gap
opens. The electron distribution in InSb [Fig. 2(k)] shows
similarities to that of GaAs [Fig. 2(h)], and we would ex-

pect the ionicities of these compounds to be similar.
Indeed, they are; f;(GaAs)=0. 310 and f; =(InSb) =0.321
(Ref. 1). Also our bond-order calculations will support
this (see the next section). The density shown for CdTe
includes the contribution from the Cd 4d states [Fig. 2(l)].

The density contours of SiC, A1As, CuBr, and InAs are
shown in Fig. 3. The III-V compounds A1As and InAs
are examples of cross-row compounds. Apart from the
large contribution from the In 4d states both electron dis-
tributions have great similarities with that of GaAs [Fig.
2(h)]. In spite of this similarity, Figs. 3(b), 2(h), and 3(d)
clearly show the trend of increasing ionicity with increas-
ing cation row number for a certain choice of anion con-
stituent.

We found it interesting to include in this study the IV-
IV compound SiC since its bonding properties exhibit
some anomalies. According to the Phillips scale it has a
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low f; value, 0.177. This is surprisingly small when the
trends in ionicity are compared to those of the transverse
charge (Table 9-4 in Ref. 2), from which we would expect
SiC to be considerably more ionic than indicated by the
value f; =0.177. Indeed the density calculation, illustrat-
ed by Fig. 3(a), shows that a large fraction of the valence
electrons are accumulated in the vicinity of the carbon
atom. This charge flow is possible because C has no p
states in the core, i.e., there are no orthogonality require-
ments that would prevent the valence p states to accumu-
late near the nucleus. Thus electrons easily flow from Si
to C, and the compound gets a large ionicity. A similar
conclusion was reached by Churcher et al. ,

' who from
their calculated pseudodensity suggest that SiC should
have an ionicity comparable to that of ZnS. Also, this
would agree' with the similar r parameters' of SiC and
ZnS.

III. IONICITIES AND BOND ORDERS:
CHEMICAL TRENDS

In this section the calculation of sp -bond orders,
metallicities (a ), polarities (a~) and ionicities (f;) are
described. This requires two diA'erent types of calcula-
tions. The quantities a, a~, and f, will be defined in
analogy with those given in Refs. 1 and 2, and their evalu-
ation thus requires the construction of a transformation to
a formal sp tight-binding Hamiltonian of the size 8&&8.
This transformation is only approximate, but sufficiently
accurate for the study of chemical trends in o;, az, and
f;. Our method differs from that of Ref. 2 by allowing us
to deduce these quantities directly from potential parame-
ters derived from the first-principles LMTO calculations.
Also, this means that we can study the variation of them
with, for example, pressure.

For the purpose of calculating the bond orders, sp
bonding and antibonding contributions, we use another
formulation of the LMTO, or rather another representa-
tion, namely, the (nearly) orthogonal representation.

Section III is divided into three parts: III A, III 8, and
III C. Section III A contains the essentials of the formal-
ism needed for the transformations and necessary to es-
tablish the connection to f;, a, and a~. Section III 8
contains the explicit expressions of these quantities in
terms of the potential parameters, and the numerical re-
sults are collected in Sec. III C.

A. LMTO: Choices of representation

Details of the LMTO formalism which we use may be
found in Refs. 18, 19, and 5, and 20—22. In order to
define the terminology and to introduce the relevant pa-
rameters we shall, however, describe here how we choose
the proper representations.

The wave function corresponding to a state j may, in a
representation "a" (see below), be expressed as

r) = & l
x (rz ) & RL MRI, &

=l & & u'
R, L

where the index R refers to the position vector R of an
atomic site (real-atom or "empty-sphere" site), L =(l, m)
is combined angular-momentum index, and u is the eigen-
vector. The basis functions g are of the form' ' ' '

+RL ( R ) 0RL ( R )+ g 4 R'L'( R') R'L', Rl. ++RL ( R )
R', L'

(2)

The last term in Eq. (2) is, for example, specified in Eq.
(6) of Ref. 6. The function P„l (rR) is a product of a
spherical harmonic and the solution P zi( l

rR
l

) to the ra-
dial wave equation inside a sphere centered at the position
R and corresponding to a certain energy E Rl. The func-
tions P are linear combinations of the P functions and
their energy derivatives P. The label "a" specifies the
choice of this linear combination, i.e., the representation.
The matrix h is

where the structure constants in the o. representation are
given through

S =S(1—aS) (4)

1 s
2 LO

[5@ ]R I

where tc is the (average) Wigner-Seitz radius, i.e., the ra-
dius of (overlapping) space-filling spheres of equal size.
The quantity 4, and a similar 4+, are (omitting indices
R and 1)

=(5„+co
(6)

in terms' of the radial wave function P, and its energy
derivative evaluated at r =s. The coefficients co+ and co

are co(l) and co( —1 —1) with co(D) as defined in Eq. 3.45
of Ref. 22. The inverse of the potential function I', re-
ferred to above, is, in terms of the parameters 6 and C,

P(E) ' = +y,E —C

~here""

1 s
2(21+ 1) w

2l +1

+ R, l

('7)

Relations between P(E) and the logarithmic derivatives
D(E) are given in Refs. 18 and 22:

in terms of the conventional' ' ' structure constants S .
The diagonal matrix g contains the parameters specifying
the screening chosen. The choice a =0 corresponds to the
conventional LMTO as described in Ref. 18. This is also
the formalism which is used by Skriver, and which is
implemented in his computer codes. The diagonal ma-
trices c and 6 contain potential parameters which
determine„within the linearization scheme, the potential
functions P (E). In the conventional representation
(a=0), the parameters c =Col (1 indicating the angular
momentum), and 6=6~1 are the bond-center and band-
width parameters. CRl is the energy' ' for which the
logarithmic derivative of the radial wave function, at r =s
(the atomic sphere radius) equals —1 —1. The parameter
6 is given by

2l +-1
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P (E)=2(21+1)
D(E) l—

R, l

(9)

From these functions, the band structure may be obtained
using the bare, structure-constant matrices in k space,
SL L (k), from the' ' atomic-sphere-approximation
Korringa-Kohn-Rostoker (ASA-KKR) equations:

det[P~(E)5r ~ —S~ L(k)]=0 .

In an arbitrary representation cz, we have' ' '

[P (E)] '+a=[P(E)]

(10)

Apart from the choice of representation already men-
tioned (a=0) there are two others of particular impor-
tance. The values

0.348 50, I =0
cx~ —— 0.053 03, I = 1

0.010 714, I =2

correspond to the case with maximum screening. In this
version the LMTO is transformed into a first-principles
tight-binding (TB) scheme. This representation is the one
which is most convenient for the calculation of the charge
distributions ' due to the strong localization of the orbit-
als. To lowest order, the Hamiltonian is

H'"=c +5 " 'S 6 " '=h +E V

with

PHH (pH gHH) —1 (18)

where P is the diagonal potentia1-function matrix given
by the second-order matrix expression

P (Eg)= E C +~"
H d

(19)

For the energy E~ we use

metallicity, etc. , and with a small modification to be de-
scribed below, the method is sufficiently accurate for this
purpose. A more accurate, and from a theoretical point
of view more appealing, method would consist in folding
the empty-site p and d states and the real-atom d states
down by a procedure related to that described in Ref.
21. The matrices are then 10&(10, and correspond rough-
ly to a first principles version of the sp s' model.
Such a full down folding would, however, produce a par-
tial unscreening and may therefore not be very adequate
when we wish to use a localized basis. We use, for the
purposes mentioned above, the Hamiltonian in Eq. (13a),
but with 5 slightly modified. This change consists in for-
mal down folding of the d states on the real atomic sites.
This is done by replacing S=S [L here means s and p
states, H means d-states (higher 1 states)] by

g ~L —g LL+S L&P &&(E )g &L

or, in the notation of Ref. 20,

~ (1) C+g 1/2g g 1/2 (13a)

Ea =C~+ (20)

C =E~+6) (14)

with

CO

co = 1+(a—y) co (15)

1+(a—y) (16)

The structure constants which we use here for the zinc-
blende-type semiconductors are those given in Table I
(Ref. 20) for the bcc lattice since we include the "empty
spheres. " In the following we shall use an overbar (e.g. ,
b, ) to indicate that (13)—(16) are evaluated with (12).

The localized representation (12) will later be used to
estimate cation and anion s and p energy levels (E;g),
sp -hybrid energies (E'&) and sp —bond-antibond hybrid

SP

levels. For this purpose we neglect the empty spheres,
and we further approximate the overlap matrix by a unit
diagonal matrix. If we then further neglect the d states
on the atomic sites, the Hamiltonian [Eq. (13)] is formally
equivalent to the (s,p,p~,p, ) 8&&8 tight-binding Hamil-
tonian as used, for example, by Harrison (Ref. 2). This is
convenient for the study of chemical trends in ionicity,

The real-space structure constants are given, for this
scheme in Table I of Ref. 20. The values of c and b, (C
and b, ) in the tight-binding scheme are given by

with P&
' set equal to zero. Thus EH here is taken to be

the "square-well pseudopotential, "
Vz (see for example

Ref. 18). With this choice P = —a ~
'.

We shall not use this scheme for accurate band-
structure calculations. For that purpose we apply the full
LMTO or its exact transformation into a tight-binding
formalism with 36 basis functions. Nevertheless, in order
to justify our application of the scheme for the purposes
mentioned, we compare, for Si, in Table I the crude esti-
mates of eigenvalues at I obtained from the 8)&8 Hamil-
tonian (13) and (17) to full LMTO calculations. All cal-
culations were based on the same potential.

The first column of Table I contains the "correct"
LDA (local-density approximation) eigenvalues obtained
from a self-consistent LMTO calculation with s, p, and d
partial waves on the Si sites as well as on the empty-
sphere sites (E). Further, the "combined correction
term" is included in this case (a). This corrects' for the
nonspherical shape of the cells an, d for the truncation of
higher partial waves. The lowest row in Table I gives the
calculated values of the p-s gap, E(1 q) E(I qq), and it is-
seen, as demonstrated elsewhere, ' that this correction
is very important if accurate band-gap values are required.
This becomes, of course, much more pronounced if the
number of partial waves is further reduced as in the calcu-
lations illustrated by columns c and d. With a cutoff at
I „=1 on all sites the combined correction term shifts
the I q5 level (valence-band top) by —1.35 eV. The last
two columns in Table I give the crude tight-binding ener-
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TABLE I. Si: Eigenvalues and p ~s gap at I in eV. Scalar-relativistic LMTO calculations including
"empty spheres" are given. In all cases the same potential (self-consistent with specifications as in
column a) was used. The same maximum I was used on real-atomic sites and those of the empty
spheres. a indicates s, p, and d, combined correction term included. b indicates s, p, and d no combined
correction term. c indicates s and p, combined correction term inclued. d indicates s and p, without
combined correction term. e indicates s and p, crude 8X 8 formal tight binding. f indicates s and p, for-
mal 8)& 8 tight binding with Si d states "folded down. "

I 2(c)
I »(c)
I 2~(v)

I 1(v)
I z

—I 25

2.161
1.813

—0.868
—12.92

3.029

2.820
1.539

—1.046
—12.93

3.866

2.051
2.825

—0.120
—12.91

2.171

2.823
5.808
1.225

—12.92
1.598

1.539
7.223
1.277

—10.22
0.262

2.826
8.338
0.161

—11.51
2.665

m
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InP
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FIG. 4. Valence-band edges (I ») as estimated from our for-
mal 8 )& 8 (s,p,p~,p, ) tight-binding Hamiltonian versus the
"correct" values (i.e., calculation as column a in Table I) ~ (Ener-
gies are given in eV on the natural LMTO scale on which the
reference level is the potential at infinity from a single atomic
sphere. )

gy levels obtained from (13) and (17). Clearly, without
the down folding (column e) the p-s gap is very much in
error, 0.26 eV as compared to the "correct" value 3.03 eV
(a). This kind of calculation would thus, for Si, lead to a
by far too large value of the metallicity. The simplified
down folding, however, improves the results considerably.
The value of the valence-band top in column f has
dropped by —1.1 eV as compared to the value in e, i.e.,
this result does not differ very much from the calculation
with s and p basis function and the inclusion of the com-
bined correction term (column c). In general, i.e., for a
large number of zinc-blende-type compounds, we find that
the energy levels [1"„1;,, and I', , or 1,(v), I z, (v), and
1 2(c) in the homopolar semiconductorsj systematically
are 0.5 —0.8 eV too high in energy when estimated from
the type of calculation used in column f of Table I. This
is illustrated in Figs. 4 and 5, where we have plotted the
estimated I && and I

&
levels versus those calculated using

the full LMTO method with combined correction term.
Note that in Fig. 5 we plot I

&
relative to the valence-band
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FIG. 5. Direct p~s gaps (I
&

—I ») as given by the 8&8
Hamiltonian vs the full LMTO results.

top (I"»), i.e., we have shown the Eo gap (not always the
"true" gap, cf. Si and Ge). The energies in Fig. 4, on the
other hand, are measured with respect to the natural
reference level in the LMTO; namely, the potential at
infinity of a single atomic sphere. In our TB scheme we
"automatically" get the energies on that scale. This is im-
portant to keep in mind when our TB scheme is com-
pared to that of Harrison, where the diagonal matrix ele-
ments are taken from free-atom calculations, i.e, they are
volume independent.

The calculation of the bond orders, i.e., bonding-
antibonding contributions to the occupied states in the
diamond-type crystals, require a different kind of scheme.
The values obtained depend on which type of basis is
used. If, for example, we had chosen a basis consisting of
bond-centered Wannier functions, we would get 100%%u~

bonding for the tetrahedral bond for all the semiconduc-
tors. Thus, in this way we would not learn anything
about chemical trends in the bonding characteristics. In
our conventional LMTO calculation we project out the s,
p, and d occupancies (njt t) at each site: 3, (0,0,0); B,
(1,1,1)a/4; C, (1,1,1)a/2; and D, ( —1, —1, —1)a/4. Here
3 and B are occupied by real atoms and C and D are the
empty-sphere positions. In the construction of sp hy-
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brids for the A —B bond we wish to use nz„nzp, nz„
and nzp without changing their values. For this reason
we use the LMTO method with the orthogonal basis.
This is done' ' by choosing a111

——yR& [Eq. (8)]. For the
atoms 3 and B we combine the s and p orbitals to form
the sp' hybrids [ —,'(s+p +p~+p, ), etc.] Then the sp'
hybrids on neighboring sites are combined to form sp-
hybridized bond and antibond orbitals. Thus a new basis
set is formed; it consists of four bond orbitals, four anti-
bond orbitals, ten d orbitals on the sites 3 and B, and 18
empty-sphere orbitals (C and D). The latter 28 orbitals
are unmodified. In this basis we calculate the eigenvec-
tors. The components of the eigenvector for band n with
wave vector k corresponding to the bond orbitals are
called b;"", and those referring to the antibond orbitals a&""

(j=1,2,3,4). The total bond character X is obtained by
integrating over the Brillouin zone

g g Ib, "I'
k&BZ n =1 j=1

(21)

From the coefficients aj"", the antibonding character, A,
is calculated in the same way. The bond order b for the
tetrahedral bond between the two ("real" ) atoms in the
compound is

B. Definition of ionicity metallicity, and polarity

E;=&s'
~

H
~

s') =C;+S;S;",
E'=(p'

(
H (p') =C~+b, ~s~",

(23)

(24)

and similarly for E; and Ep. Off diagonal (in the notation
of Potz and Vogl ):

V 4(g a)1/2S (g c)1/2

v..=4(s; )'"s..(s; )'",
V 4(g a)1/2S (g c )1/2

4(g a )1/2S (g e)1/2

(25)

(26)

(27)

(28)

[V =4E„(Harrison), Ref. 2], and similar xz, xy, sy, etc. ,
expressions. In Eqs. (23) and (24) S;z are the onsite bcc
screened structure constants. The structure constants in
Eqs. (25)—(28) are the nearest-neighbor s-s, p -p s-p,
structure-constant matrix elements of S (Ref. 20) if no
down folding is made, or S, Eq. (17), with d down fold-
ing. The diagonal elements, E;~ [(23)—(24)], correspond
formally to Harrison energies e,'p, but our s and p levels
are derived from the actual crystal potential, whereas

The preceding subsection describes how the bond or-
ders are calculated in the orthogonal representation, and
how the TB formulation is used to construct a formal
8& 8 tight-binding Hamiltonian. This is the one which
we use in estimates of metallicities, etc., from the first-
principles potential parameters. The matrix elements of
this Hamiltonian in the basis of cation (c) and anion (a) s
and p states are as follows. Diagonal:

those of Ref. 2 are taken from free-atom calculations.
The sp -hybrid energy levels are

Ea, c (Ea,c+ 3Ea,c)/4p3 p (29)

The energy separation EG between sp -hybrid bond and
antibond states has two components, AE 3 and —2h,
where

AE p
——E'

3
—E'3

sp sp sp

and h is the hopping integral

b = ,'(& +—p.'+p,'+p", lH'"
l

&' p.' —p,
' —p.'&-

=
—,', [V„—3 V —6 V y

—3 ( V,„—V„, ) ]

(30)

(31)

and

[(gE )2+(2b)2]1/2 (32)

(&E, 3)'
f;*=(~E, 1)'/EG ——

(AE 3) +(2h)
(33)

(We use an asterisk to distinguish our calculated ionicities
from the values f; on the original Phillips scale. )

The s-like energy levels at I are, in the tight-binding
scheme

E (I )
1 (Ea+Ec)+[ 1 (Ee Ea)2+ V2 ]1/2 (34)

and the p-like status have the energies

E(&1s)= ,'(E'+E')+[ ,'(E' —E')'+V' ]' —'—(35)

These equations were used in the calculations of the en-
ergies in Table I, columns e and f and Figs. 4 and 5. For
the homopolar semiconductors the label I 2q(U) —1 15 and
I 2(c)—I 1, but the energies are still given by (35) (minus
sign) and (34) (plus sign). From Eqs. (34) and (35) we
find that the gap Eo between the top of the valence band
(p) and the bottom of the s-like conduction band is

Eo= —Eo' +Eo'(1) (2}

with

E111—' (Ea+Ee) & (Ea+Ec)

(36)

(37)

E12) [ 1(Ec Ea)2+ V2 ]1/2+ [ i (Ec Ea)2+ V2 ]1/2

(38)

The competition between these terms determines the gap
Eo, and it is natural to define the metallicity a through

In a homopolar semiconductor AE 3 vanishes, and only
sp

the hybridization contribution, —2h, to EG is nonzero.
The magnitude of AE 3, i.e., the offset of the cation and

sp

anion hybrid energy levels is a measure of the ionicity of
the bond. Obviously this quantity is the component
which Phillips' refers to as "C," and his "Ej," is
equivalent to —2h. Thus we can in our model directly
calculate the ionicity f;* within a definition that agrees
with that used by Phillips



N. E. CHRISTENSEN, S. SATPATHY, AND Z. PAWLOWSKA 36

~~ =Eo /Ep (39) plies to our model, we include in Table II calculated
values of

This definition is identical to Harrison s (Ref. 2, Sec. 3-E).
We also calculate the polarity a& using the definition
which is similar to that of Ref. 2:

d In[(Z tZ')'~ ]
d lnd

(42)

aq ——,'(Eg —Eg—)[ '(Eg — Eg —) + V„] (40)

C. Numerical results

f2

~a
mpd

(41)

where d is the bond length. This d scaling is widely
used, for example in calculations of deformation poten-
tials. In order to examine whether this scaling also ap-

This subsection contains the numerical results obtained
for the bond orders ionicity parameters, etc. First, we give
in Table II a listing of potential parameters 6 as well as s
and p levels [Eqs. (23)—(24)] E,'g. Harrison's phenomeno-
logical model assumes that that the s-s, s-p, and p-p in-
teratomic matrix elements have the form

[The scaling in Eq. (41) corresponds to g= —2. ] It fol-
lows that the interatomic matrix elements in our model
scale are different from those of Harrison's model. For
the p-p elements we have typically g= —2.7 and for the
s-s elements g= —3.0. This does not imply that we claim
that our calculations prove the volume scaling of
Harrison's model to be wrong. The scaling exponents cal-
culated from (42) in our case refer in fact to a first-
principles tight-binding scheme with 36 basis functions,
i.e., with s, p, and d orbitals on the real-atom sites as well
as on the empty-sphere sites. Further, in our TB scheme
the diagonal elements, the energies E,'~, are calculated
from the actual crystal potential. This means that their
values depend on the volume. This is not the case in
Harrison's model, where these levels are taken from free-
atom calculations. Thus, it is not surprising that our g
values for s and p orbitals differ from —2.

TABLE II. The potential parameters 6 [Eqs. (12) and (16)], s and p levels [Eqs. (23) and (24)], and powers P&f [Eq. (42)]. E and b,
are in rydbergs.

Compound

AIAs
A1P
AISb
BAs
BN
BP
BeO
BeS
BeSe
BeTe
CuBr
Cds
CdSe
CdTe
GaAs
GaP
GaSb
HgPo
InAs
InP
InSb
MgS
SiC
SiGe
ZnPo
Zns
ZnSe
Zn Te

C
Si
Ge
Sn
Pb
NR-Pb

0.174
0.183
0.141
0.208
0.368
0.233
0.308
0.196
0.182
0.156
0.178
0.176
0.160
0.138
0.179
0.199
0.145
0.119
0.164
0.188
0.143
0.159
0.308
0.168
0.132
0.178
0.190
0.145

0.387
0.182
0.163
0.131
0.077
0.101

0.083
0.086
0.072
0.103
0.172
0.114
0.146
0.090
0.084
0.074
0.153
0.071
0.067
0.062
0.090
0.096
0.077
0.054
0.078
0.085
0.072
0.064
0.147
0.094
0.113
0.076
0.158
0.069

0.186
0.100
0.094
0.077
0.058
0.060

0.152
0.158
0.146
0.256
0.321
0.275
0.209
0.201
0.193
0.195
0.100
0.082
0.076
0.144
0.170
0.181
0.176
0.082
0.113
0.134
0.141
0.107
0.235
0.167
0.123
0.132
0.126
0.162

0.387
0.182
0.163
0.131
0.077
0.101

—a

0.100
0.099
0.092
0.143
0.164
0.150
0.126
0.126
0.127
0.121
0.083
0.073
0.0?6
0.080
0.097
0.099
0.093
0.074
0.081
0.082
0.080
0.082
0.123
0.096
0.094
0.093
0.093
0.094

0.186
0.100
0.094
0.077
0.058
0.606

QC

—0.077
—0.022
—0.235
—0.064

0.732
0.045
1.138
0.253
0.170
0.041
0.083

—0.030
—0.089
—0.188
—0.226
—0.186
—0,383
—0.376
—0.252
—0.160
—0.340

0.200
0.384

—0.387
—0.229
—0.029
—0.041
—0.192

0.259
—0.319
—0.501
—0.533
—0.798
—0.547

0.370
0.429
0.220
0.412
1.051
0.514
1.151
0.467
0.405
0.309
0.942
0.399
0.336
0.237
0.395
0.440
0.222
0.150
0.297
0.404
0.212
0.451
0.998
0.236
0.510
0.411
0.813
0.287

0.899
0.312
0.247
0.120

—0.040
—0.022

0.714
0.634

—0.646
—0.392
—0.428
—0.245
—1.068
—0.809
—0.853
—0.691
—1.356
—0.954
—0.989
—0.942
—0.721
—0.654
—0.661
—1.441
—0.828
—0,740
—0.738
—0.933
—0.242
—0.478
—1.037
—0.989
—1.035
—0.897

0.259
—0.319
—0.501
—0.533
—0.798
—0.547

Ea

0.149
0.128
0.125
0.555
0.521
0.575
0.094
0.122
0.174
0.233

—0.318
—0.194
—0.182
—0.131

0.140
0.106
0.112

—0.154
—0.008
—0.006

0.013
—0.128

0.475
0.273
0.019

—0.109
—0.082
—0.027

0.899
0.312
0.247
0.120

—0.040
—0.022

—3.15
—3.09
—3.27
—2.92
—2.70
—2.74
—3.52
—2.97
—3.09
—3.14
—3.59
—5.06
—5.23
—4.80
—3.76
—3.49
—4.05
—4.16
—3.54
—3.85
—3.89
—4.45
—2.56
—3.19
—3.83
—3.36
—3.29
—3.94

—2.57
—2.98
—3.40
—3.61
—4.96
—3.76

—2.57
—2.65
—2.69
—2.57
—2.83
—2.S4
—2.68
—2.76
—2.77
—2.77
—2.34
—2.90
—3.04
—3.27
—2.88
—2.70
—3.09
—3.10
—2.67
—2.71
—2.88
—2.55
—2.25
—2.65
—2.17
—2.78
—2.24
—3.04

—2.52
—2.S7
—2.67
—2.70
—2.82
—2.85

—2.66
—2.72
—2.77
—2.58
—2.68
—2.S3
—2.34
—2.57
—2.60
—2.62
—2.83
—3.11
—3.26
—3.39
—3.11
—2.93
—3.44
—3 ~ 16
—2.92
—3.02
—3.19
—2.70
—2.37
—2.88
—2.94
—2.73
—2.67
—3.10

—2.54
—2.77
—3.03
—3.16
—3.89
—3.31

—3.07
—3.02
—3.18
—2.90
—3.03
—2.75
—3.87
—3.15
—3.26
—3.29
—3.09
—4.84
—5.01
—4.69
—3.52
—3.26
—3.70
—4.11
—3.28
—3.54
—3.58
—4.30
—2.43
—2.96
—3.05
—3.41
—2.86
—3.88

—2.54
—2.77
—3.03
—3.16
—3.89
—3.31
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In Table III we compare the calculated covalent and
ionic average gap components, Eh* and C*, to the spectro-
scopic values derived by Phillips. ' Also, we compare the
ionicity values f;* calculated from Eq. (33) to the Phillips
ionicity f;. In the last two rows of Table III we give re-
sults for Pb calculated for the (hypothetical) diamond
structure. The row labeled NR-Pb contains results where
all relativistic corrections are excluded. Relativistic effects
are very important for the bonding properties of Pb. The
mass-velocity downshift of the 6s states with respect to the
6p levels is so large that the formation of strong sp co-
valent bonds becomes unfavorable, and the crystal
structure which is stable at ambient conditions is the
face-centered cubic. Omitting all relativistic effects we
found that the diamond structure of Pb has a lower total
energy than the fcc. The bonding properties of NR-Pb
are quite similar to those of Sn.

The results in Table III show that the ionicities calcu-
lated in our model exhibit the same chemical trends as
those found in the values derived from the Phillips —van
Vechten theory. In general, our ionicities tend to be

somewhat larger than f;. At least in one case, SiC, we
feel that our larger value gives a more adequate descrip-
tion of the ionicity than Phillips value. This was men-
tioned in Sec. II. A general comparison of the theoretical
ionicities f; to the Phillips scale is given in Fig. 6.

The sp bonding and antibonding characters, X and A,
and the bond orders b =X—A as derived from Eq. (21)
(and the equivalent for A ) are given for some of the com-
pounds in Table IV. Apart from a few cross-row com-
pounds (listed at the bottom as InAs, AIAs, InP, and SiC),
results are given only for in-row compounds. For these,
the results are given first for the first row of the Periodic
Table (C, BN, BeO, IV-IV, III-V, II-VI), then for the
second, etc. In the same table, Table IV, we again list the
bond length d which is the experimental value. This is
(third column) compared to the theoretical equilibrium
value, d'", obtained by minimizing the total energy (see
also Sec. IV, Fig. 11).

Table IV includes columns labeled do, d' and g. The
latter is the internal-strain parameter as defined by Klein-
mann. The quantities do and d' are deformation poten-

TABLE III. Bond length, d, ionic and covalent gaps C [=DE 3, Eqs. (29) and (30)] and Ez [=—Zh,

Eq. (31)], and ionicities f;. Quantities with an asterisk (» ) are present calculations, those without are
from Ref. 1.

Compound

A1As
A1P
A1sb
BAs
BN
BP
BeO
BeS
BeSe
BeTe
CdS
CdSe
CdTe
CuBr
GaAs
GaP
GaSb
HgPo
Hg Te
InAs
InP
InSb
MgS
SiC
SiGe
ZnPo
ZnS
ZnSe
ZnTe
C
Si
Ge
Sn
Pb
NR-Pb

d (A)

2.43
2.36
2.66
2.07
1.52
1.97
1.65
2.10
2.20
2.40
2.53
2.63
2.81
2.47
2.45
2.36
2.65
2.93
2.80
2.62
2.54
2.81
2.44
1.88
2.42
2.70
2.34
2.45
2.64
1.54
2.35
2.45
2.84
3.17
3.17

C (eV)

2.67
3.14
2.07
0.38
7.71
0.68

13.9
3.99
3.36
2.05
5.90
5.50
4.90
6.90
2.90
3.30
2.10

4.0
2.74
3.34
2.10
7.10
3.85

6.20
5.60
4.48
0
0
0
0

Ep (c V)

4.38
4.72
3.53
6.55

13.1

7.44
11.5
6.31
5.65
4.54
3.97
3.61
3.08
4.14
4.32
4.73
3.55

5.0
3.67
3.93
3.08
3.71
8.27

4.82
4.29
3.59

13.5
4.77
4.31
3.06

C* (eV)

4.50
5.16
2.38
0.35
9.35
0.254

18.28
7.13
5.84
3.26
9.19
8.35
6.35

17.75
4.29
5.00
2.08
5.71
5.82
5.06
6.15
3.39
9.75
7.47
0.06
7.79
8.57

12.51
5.60
0
0
0
0
0
0

Ep* (eV)

5.89
6.04
6.38
8 ~ 33

11.87
8.70
9.21
6.62
6.86
6.16
4.67
3.62
3.77
6.66
6.40
6.66
5.95
3.58
3.96
4.55
5.68
5.13
4.44
9.27
6.08
6.59
4.76
7.41
4.97

13.31
6.82
6.38
5.18
3.75
3.95

0.274
0.307
0.250
0.002
0.256
0.006
0.602
0.286
0.261
0.169
0.685
0.699
0.717
0.735
0.310
0.327
0.261

0.65
0.357
0.421
0.321
0.786
0.177

0.623
0.630
0.609
0.000
0.000
0.000
0.000
0.000
0.000

0.367
0.421
0.163
0.002
0.383
0.001
0.798
0.537
0.420
0.222
0.794
0.841
0.739
0.877
0.310
0.361
0.108
0.718
0.74
0.553
0.534
0.303
0.828
0.394
0.0001
0.582
0.764
0.740
0.560
0.000
0.000
0.000
0.000
0.000
0.000
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TABLE IV. Experimental (d) and theoretical (d'"), bond lengths, sp' bonding characters (), bond orders (4—A ), optical defor-
mation potentials do, d') entering Eq. (47) and internal-strain parameter (g). The last column gives the g values [g(int)] obtained by
"chemical interpolation" (cf. Fig. 7). (1Vote added. Since the submission of this paper we have calculated dp and d' with the inclusion
of the nonspherical parts of the potentials [L. Brey, N. E. Christensen, and M. Cardona, Phys. Rev. B (to be published)]. The correc-
tions to the deformation potentials are large, but the chemical trends as discussed here are not affected, and the g values are almost un-
changed. )

Compound

C
BN
BeO
Si
A1P
MgS
Ge
CzaAs
ZnSe
CuBr
Sn
InSb
CdTe

A1As
InAs
InP
SiC

d (A)

1.54
1 ~ 57
1.65
2.35
2.36

2.45
2.45
2.45
2.49
2.80
2.81
2.81

2.43
2.63
2.54
1.88

1.54
1.57
1 ~ 64
2.35
2.38
2.44
2.45
2.45
2.45
2.44
2.84
2.82
2.83

2.45
2.64
2.54
1.89

0.770
0.675
0.685
0.725
0.697
0.662
0.720
0.719
0.698
0.690
0.710
0.723
0.692

0.700
0.715
0.712
0.682

0.760
0.706
0.529
0.687
0.622
0.508
0.670
0.644
0.587
0.490
0.660
0.604
0.581

0.620
0.625
0.619
0.615

dp (eV)

53.8
32.7
13.3
22.7
14.9
6.83

23.6
17.5
7.53

—4.26

14.6
6.33

15.7
14.3
14.1

19.1

d' (eV)

—2.35
—3.80
—3.29
—2.46
—3 ~ 34
—3.07
—2.27
—2.20
—2.95
—1.54

—2.63
—2.78

—3.27
—2.65
—3.01
—5.24

0.50

0.46
0.53
0.45
0.83

0.65
1.28

0.27
0.57

g(int)

0.28
0.41
0.75
0.45
0.58
0.80
0.48
0.53
0.64
0.82
0.50
0.61
0.65

0.58
0.52
0.59
0.59

tials defined as follows. With the inclusion of spin-orbit
coupling, the valence-band top ( I ", 5) is split into the
fourfold-degenerate I &+ and the twofold-degenerate I 7+

state ("split off"). A deformation of the crystal that dis-
places the two sublattices relative to each other by u„,~

causes a splitting of the I 8+ state by Ae. The deformation
potential do is related to this splitting by

(43)

—,'(e +2e ~
) for i =j

E,j
—,'(e —e ) for i&j

(44)

With the cation, for example, located at (0,0,0) and the
anion at R, = (1, 1, 1)a /4 before the strain, the anion posi-
tion in the strained crystal (strain axis [111])is

R,' = [E—g(E —1)]R, , (45)
where a is the lattice constant. A uniaxial, volume con-
serving trigonal strain may be expressed in terms of a de-
formation parameter 6 via the transformation matrix E
with the elements

1.0

0.9—

0.8—

07-
0.6—

)K. p

Q 4—

0.3—

0.2

Q. 1

In
BeS ~

BeSe
~ AlP

SiC ~ ~

AiAs
GQAS

A[Sb
GaSb

CuBr

CdSe ~

BeO ~ CdS/
ZnS: ~ CdTe

ZnSe

Te

P ~~ 1 i 1 I 1 I I 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f(

FIG. 6. The ionicities f;* as derived from our calculations
plotted against f;, Phillips ionicity values.

where g is the internal-strain parameter mentioned above.
The splitting 6cu, caused by this strain (6~0) of I s+ is

6 =3' d6,
where the deformation potential d is

——dpi'

(4&)

(47)

The values of d' and do given in Table IV were ob-
tained by calculating d by means of the LMTO method
for strained crystals with two choices of g, and then using
the relation (47). The internal-strain parameters listed in
Table IV were then derived from Eq. (47) with the experi-
mental value of d. The measured deformation potentials
were taken from Table 4 of Ref. 31 and from Ref. 32.
The magnitude of the internal-strain parameter and its
comparison to experiments is discussed for particular
cases, elsewhere. ' Here we wish to show the chemical
trends in g and do. Intuitively, we would expect the bond
order 6 =X—A to be a measure of the covalent bond
strength, and therefore that a large value of b should cor-
respond to a small internal strain and vice versa. Figure 7
shows indeed that g decreases with increasing sp bond
order. For a given trigonal strain, i.e., a certain value of 6
in Eq. (44), we expect that large value of X—A would
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imply that the band splitting would be large; i.e., it is nat-
ural to assume, that do should increase with increasing
bond order. This is also what follows from Fig. 8. The
chemical trends in the do values are quite similar to those
found for b =X—A.

The valence-force-field theory developed by Keating
and further extended by Martin has been useful in the

description of the elastic properties of zinc-blende type
crystals. In this model, the elastic shear constants C»,
C&2, and C44 are described in terms of two force con-
stants, a and P. These are the bond stretching (a) and
bond bending (P) parameters. For a crystal where the co-
valency is weak, i.e., where the bonding is predominantly
ionic, a small value of the ratio f3/a is expected, whereas
a crystal with a large sp bond-order value must have a
relatively large bond-bending coefficient. This explains
the trend of P/a (we use the values from Ref. 36) versus

S/(%+A) as shown in Fig. 9. The trend in Fig. 9 is

quite similar to that found in Fig. 3.2.c in Ref. 1, and this
comparison also demonstrates that the sp bonding part of
the total number of s and p A and B electrons decreases
with increasing ionicity, as is natural.

The value of g for InAs appears, cf. Fig. 8, to be far too
low. A similar anomaly, for this compound, is not found
in the a/P plot of Fig. 9, and consequently we suggest
that the experimental determination of the deformation
potential d = —3.6 eV (Ref. 32) should be revised.

Table V contains the metallicities a and polarities a~
as calculated from Eqs. (39) and (30) from the potential
parameters. For comparison we also list the values ob-
tained from Harrison's model, Ref. 2. In general we find
values of a which are somewhat larger than those given
by Harrison. This is mainly reflecting the fact that the
conduction states are lying too low in energy when
calculated —as we do here —within the local-density ap-
proximation (LDA). In two cases, GaSb and InP (see the
numbers in Table V labeled "c" also) we have used self-
consistent band structures where the gaps have been ad-
justed. This was done by adding very sharply peaked
external potentials on the atomic sites. With these ad-
justments we see (Table V) that a is reduced and, in
fact, very close to the values of Ref. 2. As mentioned ear-
lier, the down-folding procedure is very important to the
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FIG. 8. Deformation potential do versus sp '-bond order
b =X—A. . (See also Note added in the caption to Table IV.)

FIG. 9. Ratio P/a of bond-bending and bond-stretching force
constants versus the calculated values of /(%+A. ).



N. E. CHRISTENSEN, S. SATPATHY, AND Z. PA%'LO%'SKA 36

TABLE V. Polarities (a~) and metallicities (a ) as derived from Eqs. (36)—(40). Our results are

compared to those obtained by Harrison (Ref. 2).

Compound Ref. 2'
Polarity a~

This work
Metallicity a

Ref. 2b This work

AlAs
AlP
AlSb
BAs
BN
BP
BeO
BeS
BeSe
BeTe
CuBr
Cds
CdSe
CdTe
GaAs
GaP
GaSb
HgPo
HgTe
InAs
InP
InSb
MgS
SiC
SiGe
ZnPo
ZnS
ZnSe
ZnTe
C
Si
Ge
Sn
Pb
NR-Pb

'Table 6-2.
bTable 4-1.
'Adjusted.

0.44
0.47
0.54
0.00
0.41
0.00
0.64
0.21
0.32
0.00
0.79
0.77
0.77
0.76
0.50
0.52
0.44

0.53
0.58
0.51

0.39

0.73
0.72
0.72
0
0
0
0

0.38
0.47
0.19

—0.19
0.45

—0.08
0.78
0.50
0.33
0.13
0.91
0.77
0.82
0.75
0.40
0.49

0.20, 0.20'
0.65
0.691
0.59

0.61, 0.61'
0.40
0.79
0.54

—0.07
0.64
0.77
0.81
0.59
0
0
0
0
0
0

0.64
0.57
0.68
0.55
0.34
0.47
0.37
0.42
0.47
0.48
0.44
0.48
0.54
0.49
0.71
0.62
0.74

0.71
0.63
0.74

0.45

0.47
0.53
0.53
0.34
0.66
0.81
0.87

0.76
0.67
0.85
0.66
0.36
0.57
0.29
0.52
0.57
0.66
0.63
0.60
0.73
0.84
0.83
0.74

0.90, 0.78'
1.08
0.949
0.95

0.73, 0.66'
0.91
0.51
0.50
0.94
0.98
0.68
0.76
0.83
0.37
0.76
0.99
1.06
1.95
1.14

tight-binding value obtained for the Eo gap, and thus to
the metallicity. The results quoted so far therefore were
obtained with this down folding. Without it we would get
a values which are considerably larger. For example,
the Si value would be cx =0.97 instead of 0.76, and for
Sn the scheme without down folding gives a =1.34 as
opposed to 1.06 (Table V). The close agreement between
the metallicities and polarities as derived from our scheme
and those given by Harrison (Table V) clearly shows that
it is possible to establish, in a simple manner, a relation
between the first-principles electronic structure theories
and the parameters entering the more empirically based
models. In this way we can, from the first-principles cal-
culations, derive the quantities which traditionally are
used to describe the physical and chemical trends in the
tetrahedrally bonded compounds. In addition we can,
from self-consistent calculations carried out at different

volumes, calculate the volume and pressure dependences
of these parameters.

We have already (Table II) specified the volume varia-
tion of the interatomic matrix elements. In Table VI the
volume derivative df;*/d ln V, da /d ln V, and
daz/d lnV are listed. With a few exceptions (e.g. , SiC)
we find that df;*/d lnV is positive, i.e. , most compounds
become less ionic when compressed. This result may
seem surprising in view of the remarks in the Introduction
claiming that a larger ionicity value tends to stabilize the
crystal structure with the high (6) coordination number
and that the zinc-blende-type crystals under pressure
transform to the rocksalt structure. The ionicity itself,
however, is not directly a measure of the ionic interaction
energy. This scales, for fixed charges, in its simplest ap-
proximation, with the inverse of the lattice constant. The
ionicity, on the other hand, is rather a measure of the di-
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Compound
dC*

( V)
d 1nV

TABLE VI. Vo1ume coefficients d ( x)/d 1n V of x =Fq C, f;, a~, and a

dEg* df dcxp

d 1nV
(eV) d 1nV d lnV

d elm

d lnV

A1As
Aip
A1sb
BAs
BN
BP
BeO
BeS
BeSe
BeTe
Cds
CdSe
CdTe
CuBr
GaAs
GaP
GaSb
HgPo
HgTe
InAs
InP
InSb
MgS
SiC
SiGe
ZnPo
ZnS
ZnSe
ZnTe
C
Si
Ge
Sn
Pb

—4.57
—5.10
—4.69
—6.57

—10.48
—7.41
—8.81
—5.88
—5.81
—5.10
—6.67
—5.40
—5.35
—5.08
—5.97
—5.55
—5.96
—3.96
—4.31
—4.00
—5.07
—5.65
—4.24
—5.81
—5.35
—5.27
—4.88
—5 ~ 58
—5.39
—9.21
—5.21
—5.07
—4.15
—3.32

—1.19
—2.28

1.09
—4.89
—5.42
—0.63

—10.09
—0.50

1.07
3.99

—6.64
—6.67
—2.87
—7.14
—1.44
—2.34

1.62
—0.84
—2.00
—3.16
—4.43
—0.71
—5.34
—7.04
—0.68

0.31
—4.47
—5.91
—0.26

0
0
0
0
0

0.369
0.235
0.379

—0.043
0.200

—0.002
0.185
0.487
0.591
0.743
0.477
0.197
0.407
0.092
0.342
0.266
0.363
0.450
0.336
0.171
0.221
0.478
0.161

—0.114
—0.002

0.488
0.190
0.127
0.553
0
0
0
0
0

0.213
0.143
0.358
0.336
0.110
0.310
0.101
0.387
0.459
0.687
0.434
0.139
0.306
0.047
0.238
0.175
0.426
0.335
0.206
0.077
0.138
0.389
0.106

—0.103
0.047
0.386
0.087
0.052
0.391
0
0
0
0
0

0.478
0.416
0.547
0.525
0.359
0.444
0.195
0.269
0.260
0.341
0.536
0.360
0.425
0.085
0.700
0.649
0.928
0.305
0.418
0.681
0.679
0.957
0.218
0.436
0.830
0.305
0.299
0.184
0.403
0.391
0.566
0.928
1.142
2.720

pole moment, i.e., ionic charge times bond length. In
terms of ionicity values the pressure-induced
Nc ——4~Nc ——6 transition should rather be considered as
a result of a competition between the decrease of f; with
pressure and a more rapid decrease of the critical ionicity
separating the two types of crystal structure. (We shall
comment further on this decrease after the discussion of
the total-energy calculations, Sec. IV.) The few com-
pounds (like SiC) where df;* IdP is positive would then be
expected to have an "unusually" strong tendency to trans-
form to the rocksalt structure. The total-energy calcula-
tions in the next chapter support this.

A connection between ionicities or polarities and
effective ionic charges is not easily established. The
defintion of the charge depends critically on what physical
quantity is assumed to be measured. It is customary to
define a "transverse effective charge, " e~ from the
longitudinal- and transverse-optical-phonon frequencies:

where e is the dielectric constant, Ao the cell volume, and
M is the reduced mass.

Using a derivation analogous to that given in Chap. 9
of Ref. 2 we find

0CXpe*=4 a +ez- aP+ d lnV
—AZ, (49)

gaeep
~x = ~yz800

(50)

where AZ is the anion-cation atomic number difference.
[The relation (9-24) in Ref. 2 assumes the d scaling of
the interatomic matrix elements. We use do.p/d lnV as
calculated directly here (Table VI)]. Another effective
charge, the piezoelectric charge, ez, is defined in terms of
the strain-induced polarization density

z 2
2m. (ez*-)

COLO —COIO =
MADE

(48) where g is the internal-strain parameter discussed previ-
ously. Using again a derivation similar to that of Har-
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rison, we get

d exp

d lnv
(51)

IV. TOTAL-ENERGY CALCULATIONS

In this section we give the results of the calculated
volume dependences of the total energies and the structur-
al energy differences. In particular we shall discuss the
relative stability of the rocksalt (B 1) and the zinc-blende
(B3) structures. From these calculations it will be shown

The derivations of (49) and (51) are approximate as point-
ed out in Ref. 2. Further, it is not obvious whether one
should use az as defined in (40) which refers to p states
only or a polarity defined in terms of the hybrids. In the
latter case we would replace az by (f;* )'

The effective charges er and ep are tabulated in Table
VII, where we again compare our data to Harrison's ca1-
culations and to experiments where such data are avail-
able. The piezoelectric charge, Eq. (51), depends sensi-
tively on the internal-strain parameter. We use here the
values which we have calculated (Table IV). As in the
case of the calculations in Ref. 2, the agreement between
the theoretical and experimental values of eT and ep is

only semiquantitative. As follows from the column la-
beled er(hyb) in Table VII, the agreement, in the case of
er*, is improved if we use the hybrid values (f;*)'i, in-

stead of a~, as suggested above.
It should be stressed that Eqs. (49) and (51) are derived

with the assumption that the bond-length dependences
can be obtained simply from the volume dependences.
This approximation may be particularly bad in our TB
scheme which contains volume-dependent diagonal matrix
elements. The bond-length scalings of the ofT'-diagonal

elements in a volume-conserving distortion may thus
differ from the one which we have used.

that a critical ionicity value separates the fourfold- and
sixfold-coordinated structures. The total energies are cal-
culated within the local-density approximation, and we
use the Barth-Hedin scheme.

First we show, in Fig. 10, an example of theoretical
pressure-volume relations. We have chosen to show the
results for diamond, since a detailed comparison to anoth-
er, recent calculation is possible in that case. The
LMTO and pseudopotential calculations agree extremely
well. The fact that our pressure calculation (see the table
inset in Fig. 10) appears to agree slightly better with ex-
periments than Nielsen's data is probably fortuitous. In
Fig. 11 we compare the theoretical equilibrium bond
lengths to the experimental values. The straight line indi-
cates exact agreement. The root-mean-square error in the
theoretical values is less than 0.2%. The largest errors
are found for ZnTe and CuBr. A more detailed compar-
ison between the theoretical and experimental equilibrium
lattice constant is given in Table IV for some of the com-
pounds.

According to the structural phase diagram calculated
by Chelikowsky and Burdett' we would expect that the
IV-IV compound SiC under pressure should undergo a
transition from the zinc-blende structure to the P-Sn
structure. In order to examine this, within the framework
of our total-energy calculations, we compare in Fig. 12
the volume variation of the total energy of SiC in these
three structures. For the /3-Sn structure we have assumed
that the c/a ratio is &4/15=0. 5164. In that case the
coordination number is 6, i.e. , the same as that of the
rocksalt structure. According to our calculations, Fig. 12,
the cubic SiC is expected to go to the B I structure under
compression, and not to the P-Sn structure. The calculat-
ed pressure of the B3~81 transition is P, =590 kbar.
This is obtained from the calculated enthalpy as a func-
tion of pressure. This result is thus in contrast to that of
Ref. 10, but it does, of course, not invalidate the general

eT (hyb)
This calculation

eT
This calculation Expt.

TABLE VII. Effective charges ez and ep derived from Eqs. (49) and (51). The quantity e& (hyb) was obtained from Eq. (49) with
a~ replaced by (f;*)' . The ep values labeled (a) were calculated with g=g(int) (Table IV).

ey. e~
Compound Ref. 2 Expt. Ref. 2 This calculation

AlAs
AlP
AlSb
BAs
BN
BP
Beo
BeS
BeSe
BeTe
CuBr
Cds
CdSe
CdTe
GaAs
GaP
GaSb
Hg Te

1.91
2.03
1.78

—0.26
1.17

—0.38
1.12

—1.32
1.49

—1.19
1.04
1.97
1.95
1.94
1.92
2.43
1.74

1.38
1.46
1 ~ 19

—0.41
1.23

—0.08
1.51
1.53
1.17
1.29
0.82
2.80
1.86
2.21
1.56
1.65
1.53
2. 12

2.49
2.32
2.49

—2.72
2. 1 1

—1.06
1.98
2.26
2.42
3.04
0.94
2.64
2.10
2.39
2.26
2.29
2.52
1.59

2.3
2.28
1.93

2.47

1.83

1.49
2.77
2.25
2.35
2.16
2.04
2.15

0.46
0.59
0.46

—0.68
0.1 1

—0.61
—0.15
—0.34
—0.13
—0.37

0.42
1.12
1.08
1.01
0.47
0.90
0.36

—0.08(a)
0.46(a)

0.15(a)

0.97(a)

0.59

1.25
—0.23

—0.22

—0.13

0.06
0.52
0.09

—0.47
—0.28
—0.42
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FIG. 10. Pressure P vs atomic-sphere radius s for diamond.
The lattice constant a =s(64m. /3)' '. The curve labeled OHN
represents the pseudopotential calculation by Nielsen (Ref. 38).
The curve drawn with a solid line is the present LMTO result.
The theoretical equilibrium lattice constants (a o ) and bulk
moduli (8) are compared to experimental values in the table in-
serted.

qualitative trends found in that work' that a specific
compound behaves differently. We have already men-
tioned, in Secs. II and III, that SiC according to our cal-
culations is more ionic than is often assumed. Further,
we found that df;*IdP (P being the pressure) is positive

9 v I & 1 &
l I t 1 l 1 I2.

Bond lengths

—2.5-
Cl
(D)
L
4P
lA

O

BAs .
BPI

' SiC

InSb +:.CdTe
SnZnP

Ga Sb. AlSbInAs ~ g &Zn7
Inp& CdSe

GaP CuBr /lGe~-,—GaAs, ZnSe
A(As

ZnS- -.'Alp BeTe
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B
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FIG. 11. The observed equilibrium bond lengths vs the
theoretical values obtained by minimizing the total energy. All

calculations are made for the zinc-blende (diamond) structure.
(See also Table IV.)
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06
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I
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FIG. 12. Calculated total energies of SiC vs volume ratio,
V/V& ( Vo is the equilibrium volume in the 83 structure), in
three crystal structures, zinc blende (B3), rocksalt (Bl), and P-
Sn. The c/a ratio for the f3 Sn structure -was taken to be the
ideal, c/a =&4/15. With this choice, the coordination number
is Ng =6, i.e., the same as in 81.

where the first term is the difference in the one-electron
energy sum, AE M,d,~„„g is the structural difference in
Madelung energy, with fixed charges, and the last term
is the (complicated) charge-redistribution contribution.
This latter term, however, in our case is small compared
to the first two, and the relative stability of the B3 and B 1

structures may thus be viewed as a competition between
the "band-structure term, " b, Q,. E;, and the ionic term,

AEM, d,~„„g. The former contains the contributions from
hybridization and covalent bond formation, and it will
therefore tend to stabilize the covalently bonded structure
B3. The second term, on the other hand, favors the
structure with the larger coordination number, i.e., B1.

Two examples of calculations using the FPM are
shown in Figs. 13 and 14. In both cases the compounds
are of type III-V, but their ionicities are quite different.
The more ionic compound, A1P (Fig. 13) is much more
easily transformed into the rocksalt structure than the

in that case.
By means of the "frozen-potential method" (FPM) for

calculations of structural energy diff'erences at fixed
volumes, we have elsewhere demonstrated for CdTe and
ZnTe that the ionic electrostatic interaction drives the
pressure-induced B3-B1 transition. Within the FPM, the
structural energy difference' is given by

OCC

AE =6 g E; + 5E~,~„„„+AE ( kp )
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compound BAs (Fig. 14), which at P =0 has the ionicity
value close to O.

We may try to relate the pressure-induced B3-B1 tran-
sitions to the "compositional" structure change, i.e., the
B3~B1 transition observed in the Phillips —van Vechten
theory at the critical ionicity f; =0.786. We do this by
calculating, for each compound, the pressure P, of the
83~81 transition and to study the trends in P, (f;*) or
P, ( f; ). In Fig. 15 we have plotted the theoretical transi-
tion pressures for ten compounds versus Phillips ionicity.

600 ) ( 1 i I ( i ( ) I & ) ( ) I

2.1 2.2 2.3 2.4 2.5 2.6
Atomic-sphere radius s (a.u. )

FIG. 13. Structural energy difterence, hE =E(B1)—E(B3),
calculated for AIP by means of the frozen-potential method [Eq.
(52)]. The two most important contributions, 6 g, c,; and

AE s
ad &U g are also shown. The abscissa value indicated by s,q

gives the atomic-sphere radius corresponding to the equilibrium

volume of the zinc-blende structure (83).
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FICr. 15. Calculated pressure P, for the transition from the
sphalerite (B 3) to the rocksalt structure (B1) vs the spectroscop-
ic (Phillips) ionicity.

It follows that P, goes to zero for f, =0.8, i.e, in agree-
ment with the critical ionicity value f; =0.786 found from
the zero-pressure analysis in terms of the Phillips —van
Vechten theory. Also our ionicity values f,* exhibit a
similar limiting behavior when related to P, . This follows
from Fig. 16. In this case, however, the results seem to
separate two groups of data as tentatively indicated by the
two straight lines, both, however, with the same P, =0
limit (-0.8). Among the compounds included here, the
group in Fig. 16 with the higher P, values appear to be
these where one of the constituent atoms (Be or C) have
no p states in the core. Those with p-like core states in
both atoms (GaP, A1P, ZnTe, ZnSe, CdTe) all lie very
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FICr. 14. As Fig. 13, but for BAs. The dashed parts of the
curves are guessed extrapolations.

FIG. 16. Theoretical transition pressure versus theoretical
ionicity f;*.
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FIG. 17. Structural difterence 66(0) between the minimum
(i.e., P =0 values) of the total energies in the 81 and 83 struc-
tures vs f;*.

First-principles electronic structure calculations and
total-energy calculations have been performed for a large
number of A B binary compounds. The band-
structure scheme (LMTO) which was used applied basis
sets designed for the purpose of calculation of the specific
properties. The bond orders (sp bonding and antibond-
ing parts) were evaluated by using the orthogonal basis,
whereas the charge densities were calculated in a scheme
using the most localized basis functions. The charge-
density calculations agree in the bonding regions very well

close to the lower line in Fig. 16.
Finally we show, in Fig. 17, dependence on ionicity of

the structural difference in free energy at zero pressure,
bG(0). [This is not the same as obtained directly from

Eq. (52) which is the difFerence at a given volume. ] This
again suggests the existence of an upper value of f;* above
which AG (0) would be negative.

In the preceding section we demonstrated that the ioni-
city in almost all compounds decrease with pressure, and
explained the pressure-induced B3~B1 transition in
terms of the more rapidly decreasing critical ionicity.
This picture is clear in view of the calculations presented
in this chapter. The negative slope of the dashed line in
Fig. 15 alone is evidence for a reduction of the critical
ionicity when the lattices are compressed, but the frozen-
potential-method calculations show this fact more clearly.
The Madelung term derives the B3~B1 transition, and
even if we neglect changes in the charge distribution upon
compression, then this term increases in magnitude sim-

ply due to the reduction of the interatomic distances. The
ionicity of the compound would in such a case decrease
since it in a sense represents a dipole moment. Thus, for
the compressed lattice an ionicity smaller than at equilib-
rium volume may correspond to a b,EM,dd„„s [Eq. (52)]
that is large enough in magnitude to drive the structure
into B1, i.e., the critical ionicity is smaller for compressed
crystals.

V. SUMMARY AND CONCLUSION

with the most recent pseudopotential calculations. The
present method of calculation has no region in space
where it is not valid, i.e., the core regions are also treated
correctly.

A major aim of the work is to demonstrate how the
first-principles calculations can be related to more simple
and semiempirical models. The exact transformation to a
tight-binding (TB) scheme is well known. We have here
transformed to a crude TB scheme with an 8 X 8 Hamil-
tonian. In this way the parameters entering Harrison's
scheme were derived from the first-principles calcula-
tions, and in that way we were able to study the theoreti-
cally predicted chemical trends in the bonding characteris-
tics entering the phenomenological models. For example,
we have found that the sp bond order gives a good
description of the degree of covalency of the bond. It
gives a quantitative classification of the bond strength
which is only semiquantitatively obtained from the charge
distribution calculations. As examples of the usefulness
of the bond-order parameter (b) we have presented the re-
lations between b and the elastic properties (deformation
potentials and internal-strain parameters).

It might be argued that several parameters, metallicity
(a ), polarity (u~), or ionicity (f;), for example, have
been introduced previously, and that it therefore is un-
necessary to introduce yet another parameter, the bond
order. We do feel, however, that it is a natural physical
quantity to calculate when the strength of the sp bond is
discussed. As opposed to a~ or f;, it has the advantage of
specifying the sp character directly, and it also distin-
guishes between the bonding in different homopolar serni-
conductors.

The connection to the Phillips —van Vechten theory is
also established. The ionicities have been calculated using
the same definition in terms of the average gap parame-
ters, E& and C, as used in the spectroscopic theory. The
agreement between the present theoretical values and the
empirical ionicity values is in general very good. There
are, however, cases where rather large differences are
found. In the case of SiC we find the ionicity to be sub-
stantially larger. Apparently this larger value is con-
sistent with experiments, and we explain it as being due to
the lack of p states in the C core.

The calculated criteria for structural stability clearly
show that the ionicity of the bond is essential in separat-
ing the fourfold-coordinated structures from those with
N, =6. In agreement with the analysis in Ref. 1 based on
the spectroscopic model, our calculations show that a crit-
ical ionicity value (f; =0.8) exists, above which the co-
valent bonding is not sufticiently strong to stabilize the
tetrahedrally bonded crystal structure. The identification
of the ionic interaction as the "driving mechanism" in the
pressure-induced B3~B1 transition has been illustrated
by means of the frozen-potential calculations. The ionic
interaction energy increases in magnitude when the lattice
is compressed, but for most compounds (SiC is an excep-
tion) decreases the ionicity. Roughly speaking, this im-
plies that the critical ionicity decreases with pressure.
The analysis established the similarity between the
pressure-induced and the compositional B3~B 1 transi-
tion.



1050 N. E. CHRISTENSEN, S. SATPATHY, AND Z. PAWLOWSKA 36

Permanent address: Institute for Low Temperature and Struc-
ture Research, Polish Academy of Sciences, P. O. Box 937,
PL-50-950 Wrocraw, Poland.

J. C. Phillips, Bonds and Bands in Semiconductors (Academic,
New York, 1973)~

~W. A. Harrison, Electronic Structure and the Properties of
Solids (Freeman, San Francisco, 1980).

3J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556
(1976).

4C. S. Wang and B. M. Klein, Phys. Rev. B 24, 3393 (1981).
50. K. Andersen, Z. Pawlowska, and O. Jepsen, Phys. Rev. B

34, 5253 (1986).
Z. Pawlowska, N. E. Christensen, S. Satpathy, and O. Jepsen

Phys. Rev. B 34, 5977 (1986).
7N. E. Christensen and O. B. Christensen, Phys. Rev. B 33, 4739

(1986).
sO. K. Andersen and N. E. Christensen (unpublished) [see also

N. E. Christensen, Phys. Rev. B 32, 207 (1985)]. The
"frozen-potential" approach is reminiscent of Andersen's
"force theorem" [A. R. Mackintosh and O. K. Andersen, in

Electrons at the Fermi Surface, edited by M. Springford (Cam-
bridge University Press, Cambridge, England, 1979].

9The total-energy calculations are carried out within the local
approximation (LDA) to the density-functional theory. We

apply the LDA parametrization of U. von Barth and L.
Hedin, J. Phys. C 5, 1629 (1972).
J. R. Chelikowsky and J. K. Burdett, Phys. Rev. Lett. 56, 961
(1986).

We have no way in which we can derive physically meaningful
values of "charge transfers. " There is no systematic way in
which we can divide space in an AB compound into 3 and B
regimes, respectively. Thus we cannot from our charge-density
calculations directly obtain mapping on the Phillips scale.
G. B. Bachelet and N. E. Christensen, Phys. Rev. B 31, 879
(1985); N. E. Christensen and G. B. Bachelet, Proceedings of
the International Conference on the Physics of Semiconductors,
San Francisco, l984, edited by J. D. Chadi and W. A. Har-
rison (Springer, Berlin, 1985), p. 1009.

' 10 A. Goldmann, J. Tejeda, N. J. Shevckik, and M. Cardona,
Phys. Rev. B, 4388 (1974); A. Blacha, M. Cardona, N. E.
Christensen, S. Ves, and H. Overhof, Solid State Commun.
43, 183 (1982); A. Blacha, N. E. Christensen, and M. Cardo-
na, Phys. Rev. B 33, 2413 (1986).
D. R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. Lett.
43, 1494 (1979); G. B. Bachelet, D. R. Hamann, and M.
Schluter, Phys. Rev. B 26, 4199 (1982).

~5This calculation for GaAs was performed by G. B. Bachelet
and E. Molinari.
N. Churcher, K. Kunc, and V. Heine, Solid State Commun.
56, 177 (1985).
J. R. Chelikowsky and J. C. Phillips, Phys. Rev. B 17, 556
(1976)~

'8O. K. Andersen, Phys. Rev. B 12, 3060 (1975).
O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571

(1984).
zoO. K. Andersen, O. Jepsen, and D. CJlotzel, in Highlights of

Condensed Matter Theory (Soc. Italiana di Fisica, Bologna,
Italy, 1985), Corso LXXXIX, p. 59.

'W. R. L. Lambrecht and O. K. Andersen, Phys. Rev. 8 34,
2439 (1986).
H. L. Skriver, The LMTO Method (Springer, Berlin, 1984).
P. Vogl, H. P. Hjalmarson, and J. D. Dow, J. Phys. Chem.
Solids 44, 365 (1983).

24The down folding described in Ref. 21 was applied to the near-
ly orthogonal representation (a =y ). The method is
equivalent to Lowdin's block perturbation theory, P. O.
Lowdin, J. Chem. Phys. 19, 1396 (1951).

~~D. Glotzel, B. Segall, and O. K. Andersen, Solid State Com-
mun. 36, 403 (1980).
S. Satpathy and Z. Pawlowska (unpublished).
W. Potz and P. Vogl, Phys. Rev. B 24, 2025 (1981).

2~The inhuence of the relativistic effects on the bonding proper-
ties in lead is examined in more detail in N. E. Christensen, S.
Satpathy, and Z. Pawloska, Phys. Rev. B 34, 5977 (1986).
L. Kleinmann, Phys. Rev. 128, 2614 (1962).
G. L. Bir and G. E. Pikus, Fiz. Tverd. Tela (Leningrad) 3,
3050 (1961), [Sov. Phys. —Solid State 2, 2039 (1961)].
A. Blacha, H. Presting, and M. Cardona, Phys. Status Solidi.
B 126, 11 (1984).

3zPhysics of Group IV Elements and II VCompound-s, Vol. 17,
Teil a of Landolt-Bornstein (Springer-Verlag, Heidelberg,
1982).

N. E. Christensen, Solid State Commun. 50, 117 (1984); Phys.
Status Solidi B 123, 281 (1984); Phys. Rev. B 30, 5753 (1984).
O. H. Nielsen and R. M. Martin, Phys. Rev. Lett. 50, 697
(1983); Phys. Rev. B 32, 3792 (1985); O. H. Nielsen, ibid. 34,
5808 (1986).

3~P. N. Keating, Phys. Rev. 145, 637 (1966).
R. M. Martin, Phys. Rev. B 1, 4005 (1970).
These potentials introduce artificial Darwin shifts of the s
states. A more detailed account is given in N. E. Christensen,
Phys. Rev. B 30, 5753 (1984).
O. H. Nielsen, Phys. Rev. B 34, 5808 (1986).
The FPM expression (52) assumes that the band structure is
calculated (within the density-functional formalism) self-

consistently for one structure (I). The potentials generated are
then moved to the new atomic positions, structure II. Then
one, single-band calculation is performed. The charges qzll,
from this calculation are used in AEPt, d,~„„,and 6 g e; is the

difference in the sum of one electron energies from the last
(non-self-consistent) calculation and that from the first (self-
consistent) calculation. We have here (and in Ref. 1) iterated
to self-consistency in the B3 structure. In the present calcula-
tions we use the crudest approximation, the ASA (atomic
spheres approximation) to the total energy difference Eq. (52).
The so-called "combined correction term" (Ref. 18) is includ-
ed in the calculation of the one-electron energy sum.


