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Time-dependent theory of hot electrons using the discrete Boltzmann equation
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The discrete Boltzmann equation may be applied to the time evolution of the electron distribution
for spatially homogeneous systems in which optical-phonon scattering is dominant. We describe the
time-dependent solution for both pulsed and steady excitation (e.g. , via photoexcitationj. The results
for the latter case may be compared with experimental hot-electron luminescence spectra under
steady photoexcitation. The agreement is generally good, but sensitive in detail to the method used
to calculate recombination rates.

I. INTRODUCTION

Excitation of semiconductors by light of energy
Ace,„)E~, where Eg is the band gap of the material, re-
sults in a nonequilibrium population of photoexcited car-
riers, which then relax towards equilibrium via various
scattering mechanisms. ' The study of such systems un-
der photoexcitation is of considerable interest for the in-
formation which may be gained concerning the scattering
mechanisms and dynamics of nonequilibrium carriers in
semiconductors. In polar semiconductors, under certain,
commonly met conditions, the scattering of electrons in
the conduction band is dominated by polar optical-
phonon scattering. These conditions are that c., (the elec-
tron energy relative to the bottom of the band) is greater
than %coop, the phonon energy (assumed constant), but
less than that energy which is sufficient for intervalley
transitions; and that carrier densities, either from doping
or from photoexcitation, are low, so that carrier-carrier
scattering is not important.

The influence of optical-phonon scattering appears in
various forms, all of which involve periodic oscillations in
spectra: oscillatory photoconductivity, oscillations in
photoluminescence intensity versus energy of photoexcita-
tion, ' and oscillations in luminescence intensity versus
luminescence energy. ' The last-mentioned
phenomenon is observed only for low carrier densi-
ties. " If the carrier density is too large, then carrier-
carrier scattering, in which energy exchange occurs in ar-
bitrary amounts, tends to wash out the discrete line struc-
ture of photoluminescence spectra; in the high-density
limit, the spectra may be analyzed as arising from a
Maxwellian distribution at a temperature above the lattice
temperature. ' The various scattering processes which
affect the hot-carrier distribution, and their interpretation
in terms of observed photoluminescence spectra, have
been discussed in several review articles. ' ''

The present calculation applies to the low-carrier-
density limit. The system most commonly studied is
lightly doped p-type gallium arsenide. ' Steady pho-
toexcitation yields a photoluminescence spectrum consist-
ing of a series of broadened lines, beginning below the ex-

citation energy Ace,„, and spaced by the optical-phonon
energy %coop. These lines have been shown' to arise from
recombination of electrons in the conduction band with
neutral acceptors, i.e., from the (e, A ) transition. Since
the acceptor level is essentially k independent, one obtains
almost direct information on the hot-electron distribution
in the steady state; that is

I(E) ~ n (e) W, q (E),
where I is the luminescence intensity, n the electron dis-
tribution, and W, z the transition rate from conduction
band to acceptor level. Hence one must assume a model
for the (e, A ) transition, based on a model for the accep-
tor wave function, in order to obtain n (E) from I(E). The
commonly employed model' ' ' uses hydrogenic wave
functions for the acceptor level and incorporates an
effective acceptor mass m&. ' ' Within the limitations of
a model for W, z, then, one obtains information on the
electron distribution from luminescence spectra.

In this paper we show that an analytical solution to the
Boltzmann equation due to Mahan' may be applied to
the dynamics of photoexcited carriers in semiconductors.
Mahan's solution applies to systems with no time depen-
dence, and one-dimensional spatial dependence, in which
optical-phonon scattering is dominant. Since the optical-
phonon energy is treated as a constant, only discrete ener-
gy levels need be considered; hence the term "discrete
Boltzmann equation" (DBE). In the following we show
that the DBE applies equally well to systems which are
isotropic (no spatial dependence), but time dependent, as
long as optical phonons remain the dominant scattering
mechanism. Using the DBE we will obtain the time-
dependent electron distribution for both pulsed and steady
photoexcitation.

Since the LO-phonon scattering time ~op 100 fs,
direct time-resolved photoluminescence spectra from pho-
toexcited carriers have not been obtained on a time scale
which enables the observation of phonon-dominated tran-
sients. Carrier dynamics have been studied on nano- and
picosecond time scales. ' Photoexcited phonon pop-
ulations have been studied on the subpicosecond time
scale by Kash et al. and Collins and Yu. Erskine,
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Taylor, and Tang measured carrier lifetimes, due to pho-
non and intervalley scattering, on the order of tens of
femtoseconds, using a pulse correlation technique. Fi-
nally, we mention the experiment of Qudar et a/. , who
measured subpicosecond relaxation phenomena for pho-
toexcited carriers at energies c, & %coop.

Theoretical treatment of photoexcited carriers has been
confined primarily to numerical solutions. ' ' Levinson
and Levinsky have shown that, where the phonon popula-
tion is small (low T, and small nonequilibrium densities),

tion number equal to [ exp(G) —1] ', and G =ficoop/&g T
Next we make the reasonable approximation ' that

~1 ——const=~; then, normalizing time so that ~=1, we get

f= —Mf

where M is an infinite, tridiagonal matrix identical to that
of Eq. (7) in Ref. 19. Hence one knows immediately,
from Ref. 19, that

f (t) C —Gl+ —Gl/2 f ~ C(0)e —iL(elr

(rop(En )~ En & e
n (E„)- '

(2)
where

X cos(10+$),

where c.„ is the discrete carrier energy equal to
c' —nAcuop, and E' is the energy of the photoexcited elec-
trons. Equation (2) is valid only for the steady-state
solution under steady illumination. It describes a rec-
tangular distribution (if rop is independent of c), which, to
the level of approximation assumed, shows agreement
with experimental results, ' " and with our calculation
(see below). Our solution neglects the nonequilibrium
phonons generated by the excited electrons, but incorpo-
rates scattering from thermal phonons at large T. '

The theoretical treatment of Collins and Yu is most
similar to ours. They find an analytical solution to the
Boltzmann equation for a discrete electron distribution
(i.e., scattering only by LO phonons), which is linearized
in the distribution function. Their work differs from ours
in the following respects. (1) They consider only spon-
taneous emission of phonons, which restricts the applica-
bility of the result to low T. (2) Their solution is only val-
id for a pulsed excitation 6(t) (3) Th.ey extended their
formulation to incorporate intervalley scattering and non-
parabolic band structures, and solved the resulting equa-
tions numerically. (4) They also derived and solved the
linearized Boltzmann equation for the phonon distribu-
tion, and compared the results with experimental
Raman-scattering data.

Our method, as noted above, is not restricted to low
temperatures. Further, it may be applied to excitations of
arbitrary time dependence, although in the following we
treat only pulsed and steady excitations.

A,(0)= e +1—2e cosO
eG —1

and

e G"—cosOtang=
sinO

f(t)=Cpfp+ I Cge 'fe,~dO
(7)

where fo, f& are eigenvectors corresponding to X=O,
X=A,(0), respectively, then we find that

fofo ——1,
fofg ——0,
fifo ——0,

(8a}

(8b)

(8c)

fife ———6(0—0'),
2

(8d)

fp=(1 —e )(1 1 1 . .
) (9a)

using the spectrum of eigenvalues and eigenfunctions of
M. The eigenvalues of M consist of a discrete value X=O,
and a continuous spectrum of values A, =k(0). The con-
stants Cp and C(0) then need to be determined by initial
conditions.

If we rewrite (6) as

II. PULSED EXCITATION

In the case that the distribution depends only upon
time, the Boltzmann equation is

and

( fe)~ ——e ' cos(l0+P), (9b)

i.e., these are the left eigenvectors of M. Then, evaluating
(7) at t =0 and multiplying on the left by fe, we get

df
dt

df
dt scatt

Discretizing the above, we get'

f, = — [% +(N + l)—6(l —1)]
dI;

(3)
Ce=2fef(0)=2 g e ' cos(10+/)f~(0) .

1=0

If we multiply by fo we get

Cp=ff(0)=(1 —e ) g ft(0) .
1=0

(10)

[Ãp6(l —1)]+ (Xp+ 1), (4)

where 6(x } is the step function, Xp is the phonon occupa-

Now we can imagine an initial distribution f(0) injected
into an empty band by a short pulse of light, where the
pulse time is small compared to ~. For monochromatic
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light we have that

(12)

Co ——a (1 —e ). Equation (10) becomes

Cg =2e "/ cos(n I9+P)

i.e., the light populates only the nth level. Clearly, so that

—Gl/2 Gn/2 ~ d~ ~Offl(t)=Coe '+e '/ e "/ 2e cos(l8+p) cos(n8+p) .
Q 7T

(13)

Equation (13) is the complete solution for the initial con-
dition (12).

Ao ——(1 —e ) g M'e
l=Q

(18)

III. STEADY EXCITATION X6)——0 . (19)

f+Mf=k, (14a)

where k is a constant vector representing the steady injec-
tion of carriers by photoexcitation; for monochromatic il-
lumination k has only one nonzero entry.

Equation (14a) has no steady-state solution, since we
are exciting a system possessing a X=O eigenvalue with
the frequency co=0. More physically, we have not pro-
vided a mechanism for carriers to leave the band; without
one, the population grows indefinitely. Hence we must
add a term representing radiative recombination; however,
we will neglect other possibilities (e.g. , intervalley transi-
tions). So (14a) becomes

In the case of continuous illumination, which is more
typical of experiments, carriers are injected into the con-
duction band at a steady rate. Hence we rewrite (5) as

( f~ ) ~ M~ —Gm/2 —Gl/2
Q ~= ~ mme e

m=Q

~ d 6 2 cos(l8+ P) cos(m 8+P)X
Q

Q 7T kg

while

(20a)

Since' i(.g=1, while XO=10, we see that Eq. (17) con-
sists of a part which evolves slowly, at the rate A, Q, and a
fast part which is basically driven by phonon scattering.
Physically, the occurrence of the two very different time
scales reAects the fact that the phonon scattering is very
much faster (by —10 ) than recombination.

I

As a first approximation, then, we set fz ——f&——0, i.e.,
we assume no perturbation to the phonon dynamics. The
perturbation on fQ is found to be

f+ (M'+M'} f=k, (14b) (fo)t=(I — )g '(fo)l . (20b)

where M is the matrix of Sec. II [Eq. (7) Ref. 19] and M'
is a diagonal matrix representing recombination. We
write (14b) in a form suggesting a perturbative treatment,
since radiative transitions are very slow relative to phonon
scattering (i.e., MiI «Mll ).

Thus we let

As noted above, A,&- 1; the approximation improves
with decreasing temperature. If we remove A. from
(20a), the remaining integral is known analytically, ' and
we get

(fi ) M g
—Gl+g —Gl g M g

—Gm

m=Q

XQ —XQ+ XQ —A Q

A.g
——kg+ A, 9

(15) =( M,', +X,')e ——G' (21)

and

fo ——fo+ fo,

fg ——fg+ fg,
(16)

which is parallel to fo; hence,

to=f0 ——(1 —e )(1 1 1 ) . (22)

Equations (17)—(19), (21), and (22) thus constitute an ap-
proximate solution for steady excitation.

and similarly for left eigenvectors. If we assume that (8)
holds for the perturbed system, and the band is assumed
empty at t =0, then it is easily shown that the solution to
Eq. (14b) is

—Ape

f(t) = ( fok)
Q

fQ

—A. gE

+ J (2fgk}
Q 7T A g

which, given the perturbed eigensystem, is a complete
solution.

First-order perturbation theory gives

IV. NUMERICAL RESULTS

First, we show a numerical example for the solution in
Sec. II to a pulsed initial state. The pulsed solution (13)
requires only the specification of G=( icirg)lokgTand an
initial density a. Figure 1 shows a solution for AcoQ ——.037
eV (GaAs), T =300 K, a = ll(1 —e ), and n (the
pulsed level) = 5. It should be emphasized that the dis-
tribution is actually a set of discrete points; the continu-
ous curves are added to aid the eye. The distribution re-
laxes smoothly towards the equilibrium distribution
(e '); however, note that it is still significantly difFerent
from equilibrium after ten scattering times.
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FIG. 1. Decay of electron distribution from an initial spike at
1=5, t =0; Acoo=0. 037 eV, T=300 K. The distribution is
discrete in energy; the smooth curves are a visual aid.

FIG. 2. The same condition as in Fig. 1, in the relaxation-
time approximation.

It should be noted that this solution, normalized to an
energy-independent scattering time ~op, is nevertheless not
equivalent to the relaxation-time approximation. Figure
2 shows the relaxation-time solution to the DBE, for the
same initial condition; it consists of a decaying spike and
a growing Maxwell-Boltzmann distribution. In the relax-
ation time approximation interactions between energy lev-
els are not modeled, unlike the present formalism; the re-
sult is a more rapid, but less physical, approach to equilib-
rium.

To our knowledge, experimental resolution of the car-
rier distribution on this time scale (rop-100 fs) has not
been achieved. We may compare our results with those
obtained by Lugli and Ferry, who have solved the same
problem using a Monte Carlo technique, both with and
without e-e scattering; their results without e-e scattering
are qualitatively similar to ours. Ulbrich has solved a
similar problem numerically, except that the initial spike
is at low energy (5 meV) and scattering is by acoustic pho-
nons. '

The second example we solve is the solution for steady
illumination (17). It requires a knowledge of the matrix
elements M~'I, i.e., the recombination rates. We choose to
model transitions from the conduction band to an accep-
tor impurity level, as this phenomenon is typical of experi-
ments. ' For these transition rates we used expressions
from Dumke, ' normalized to 7op=10 s.

In Figs. 3 and 4 we show time-dependent solutions for
an initially unoccupied band, into which carriers are in-
jected at a steady rate at the level I =8 (E=8fuuo), for

20

x )07

10

FIG. 3. Electron distribution vs time, for steady injection at
1=8; GaAs, T =77 K.
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FIG. 4. Same as Fig. 3 except T = 300 K.

FIG. 5. Steady-state distribution for excitation at I = 8, GaAs,
T =30 K, using various expressions for ~op (see text).
~=const; 6, IMpp =const; o, 1/~ = —2 Im( 2 ).

GaAs, at T =77 and 300 K, respectively. The distribu-
tion achieves a broad plateau, at either temperature, after
—10&Qp However at room temperature the plateau is
masked by a slow-growing quasithermal distribution
which appears after much longer times ( —10 rop). At 77
K this same distribution appears but falls more rapidly
with energy, so that the plateau persists; note the resem-
blance to the rectangular distribution mentioned in Sec. I.

The approximations used in the perturbation solution
are considered acceptable if the results converge to the
steady-state distribution. The latter may be obtained by
solving (14b) subject to f=0, i.e.,

M f=(M'+M') f=k . (23)

V, (e)
const

&1+51

const
(24)

In the results shown in Fig. 5 we used 61= —,
' so that

1/~o&0, and normalized to 1/'~8 ——1.
(iii) 1/rop ———2 Im(X) or

Equation (23) is soluble by matrix inversion, as the addi-
tion of M' makes the matrix nonsingular. For tempera-
tures below —50 K, we find that it is not a good approxi-
mation to use the unperturbed fg and fg eigenvectors in
the time-dependent solution [Eq. (17)]. We have analyti-
cal expressions for these vectors, to first order in M', but
have not implemented them numerically.

Steady-state results are easily available at any tempera-
ture from (23). Also, it is possible to drop the assumption
that ~Qp is independent of energy, in the steady-state case.
Figure 5 shows the steady-state distribution for injection
at l =8, for T=30 K. Results are plotted for three cases:

(i) rop ——constant.
(ii) lMpp=const=v(e)'7(e), where 1 is the mean path

and v (E) is the group velocity.
This gives

(const) ( + I
)' +( + I

)'

el+1/2 (1+ 3 )'/ (1+ '
)

/2VOI„

(1—-')'"+(1+-')'"
2 2

I/2 i I /2(1+—,
'

) —(1—
—,
'

)

(25)

where Im(X) is the imaginary part of the electron self-

energy, obtained for single-photon scattering by Mahan,
and as in (ii), we used 51=—,

' and set rs = l.
Figure 6 shows the discrete luminescence spectra ob-

tained from the distributions of Fig. 5, using Eq. (1) and
the transition rates Ml~. The results resemble the spectra
in Ref. 13; however, the differences among models (i) —(iii)
for ~Qp are less obvious in these spectra than they are in
Fig. 5. There are other published spectra for which the
resemblance is weaker. In Ref. 12 the peaks are very
broad and not well resolved, while in Ref. 9 (Fig. 1) only
the first three peaks are not masked by luminescence from
electrons excited from the light-hole band. Figure 3 of
the same source, the luminescence spectrum of carriers
injected by intervalley transitions from the L valley, is not
similar to Fig. 6, being considerably Aatter.

Mirlin and co-workers used Eq. (1) and models for
W, ~ to obtain the distribution N(e) from their spectra. '"
Using an expression for W, & similar to ours, they ob-
tained a distribution (Fig. 4, Ref. 9) very much like that of
(iii) in Fig. 5; the agreement is not as good with a different
model. " Nevertheless both models used by them, and the
three reported here in the steady-state calculation, give
essentially indistinguishable results on the coarser scale of
Fig. 3, i.e. , a very Aat distribution above the "pileup" at
the bottom of the band.

We have not done time-dependent calculations for
T &77 K. The steady-state results merely approximate a
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V. CONCLUSIONS
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FIG. 6. Luminescence spectra for the distributions of Fig. 5,
obtained from Eq. (1) and M&& (see text).

rectangular electron distribution more and more closely as
T~O, showing no qualitative difFerence from the temper-
ature regime in which we have time-dependent results.
Further work on the low-temperature, time-dependent
solution may be warranted as experimental techniques ad-
vance to yield comparable information experimentally.
Similarly, more detailed comparison of steady-state results
requires better modeling of the conduction-band —acceptor
transition rates.

We have presented a theory for the time dependence of
the nonequilibrium electron distribution, which is valid
for the case of dilute carrier concentrations such that
carrier-carrier scattering is unimportant. Our solution is
analytical and thus avoids the computational burden of
numerical solutions. It is also more general than previous
analytical work in the following ways. Both the time-
dependent and the steady-state solution are readily ob-
tained in our approach, with the steady solution serving
as an independent check of the time-dependent calcula-
tion. Our DBE solution is not restricted to low tempera-
tures. We have solved both the case of steady excitation
and the delta-function case; and the approach may be ex-
tended to a time-dependent excitation of arbitrary form
(e.g. , a broadened pulse). Hence, although it will perhaps
always be necessary to resort to numerical solutions in or-
der to incorporate all possible scattering mechanisms, our
approach represents an attractive and Aexible solution for
systems in which optical-phonon scattering is dominant.

Such systems correspond to an important class of ex-
perimentally realizable cases which have been and remain
of considerable interest, both for their pertinence to the
understanding of practical devices involving hot electrons,
and for the improvement in understanding of basic physi-
cal processes which they oAer. Further steps toward the
merging of theoretical and experimental insight will re-
quire, on the theoretical side, refinements in models for
recombination rates, and on the experimental side, ad-
vances in femtosecond spectroscopy.
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