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We calculate low-temperature dc transport properties of a quasi-one-dimensional electron sys-
tem as occurring, for example, in ultranarrow inversion layers. Density of states and conductivity
are theoretically calculated in realistic structures as a function of the chemical potential. As the
chemical potential sweeps through quantized one-dimensional subband states, well-defined oscilla-
tory structure is seen in the density of states and in the conductivity, provided the level broaden-
ing and temperature are low. Detailed numerical results and a qualitative comparison with exist-
ing experimental data are given.

Much attention has recently been focused on quasi-
one-dimensional (1D) electronic states in very narrow
semiconductor microstructures where electronic motion is
quantum-mechanically confined in two directions (while
being free in the third dimension along which 1D trans-
port can occur). Advances in lithographic and molec-
ular-beam epitaxy techniques make it likely that the study
of quasi-one-dimensional electron systems will grow rap-
idly in the near future. Most of the recent experimental'
and theoretical work has concentrated on strong and
weak localization properties of these ultranarrow struc-
tures. In particular, lack of ensemble averaging in a sin-
gle small 1D chain leads to significant resistance Auctua-
tions in the strong localization limit. Such strong Auc-
tuations (as a function of the chemical potential) make it
impossible to observe quantum-mechanical 1D confine-
ment effects on transport properties of a single 1D system.
However, Warren etal. have recently argued (and we
have explicitly verified this contention via direct numeri-
cal simulation as shown in Fig. 4 of this paper) that
ensemble-averaged 1D transport behavior can be ob-
served by having a large number (—250 in the actual ex-
periment of Ref. 4) of parallel and identical 1D channels
(which do not interact with each other, i.e., lateral elec-
tronic hopping is not allowed), so that the net conductance
is obtained by summing the conductances of these lines.

In this Rapid Communication we calculate Drude
transport properties of quasi-1D electron systems as
occurring in very narrow silicon inversion layer channels.
We ignore all aspects of localization and conductance
fluctuation physics uncritically in this paper (except for
what we show in Fig. 4). Our motivation is partly to carry
out a calculation which can be compared directly to the
published results of Warren et al. , and partly to establish
criteria under which 1D quantum confinement effects are
observable in transport properties of real systems. Our
calculation of conventional transport properties of these
1D systems take into account all the essential aspects of
the actual physical situation. We include in the theory 1D
quantization, intersubband scattering, realistic screening,
finite level broadening, and finite temperature effects.
There exists in the literature earlier work on the calcula-
tion of transport properties of 1D quantum wire structures

using simpler approximations. To the best of our
knowledge, transport in the multisubband 1D situation
treated in this paper has never before been dealt with,
even though there has been some effort in the corre-
sponding 2D systems.

Our theory is a perturbative theory in the leading-order
impurity density. The most important feature of the
theory is self-consistency in the sense that the electronic
Green's functions entering calculations are all dressed by
the impurity scattering diagrams and, hence, the diagrams
must be computed self-consistently. Similar self-
consistent calculations have also been successfully used in
other situations involving strong divergences in the bare
one-electron spectral properties, such as a two-dimen-
sional system in the presence of a strong external magnet-
ic field. Calculational details of our theory will be given
elsewhere.

Our model is that of electrons confined in two (y and z)
spatial dimensions described by single-particle wave func-
tions y(r) —e' "p„(y)g;(z), where k is the free 1D "wave
vector" in the x direction and p„(y ), g; (z ) are the
confining wave functions for the nth and the ith subbands,
respectively, for the quantized motion along y and z direc-
tions. This separation of variables turns out to be a fairly
good approximation for the electronic structure of the ac-
tual systems of interest to us. It also turns out that the
confinement in the y direction (parallel to the Si-Si02 in-
terface) is much weaker than the perpendicular confine-
ment in the z direction, so that it is not a bad approxima-
tion to take

~ go(z) ~
-b(z) —the actual experimental

situation is always such that only the ground (i =0) sub-
band of z motion is occupied by electrons. For lateral
confinement along the y direction we have chosen a
"particle-in-a-box-type" rectangular potential well con-
finement (from which we have the subband energy
E„~n ), and also a "harmonic-oscillator-like" parabolic
well confinement (from which we get E„~n). Detailed
self-consistent numerical work by Laux and Stern shows

that the actual confining potential is somewhat in be-
tween. In view of uncertainties in the experimental
geometry and in the various parameters entering the
theory, we feel that either one of these two model poten-
tials is a reasonable approximation to the real 1D system
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and, fortunately, our qualitative results are the same in
both models.

Since at low temperatures ( ( 10 K) charged impurity
scattering is known to be the most important resistive
mechanism in silicon inversion layers, we neglect all other
scattering mechanisms. Also, the actual random impurity
distribution is not well known, and so we choose the ran-
dom impurity distribution to be uniform in the channel,
with an average impurity density N;.

We start by calculating the density of states D(E) of
our model 1D system by first obtaining the impurity-
induced level broadening. The level broadening I „ is cal-
culated by solving numerically the self-consistent Born ap-
proximation for electron-impurity self-energy which
should be adequate for low-iinpurity concentration. The
calculation of the self-energy is simplified by noting that
the calculated screened Coulomb interaction is only weak-

ly dependent on the 1D wave vector in view of the strong
screening in the system. The level broadening is found to
be approximately

I = 28.4a (N;/NI) meV,
where N;, and NI are the effective 1D impurity and elec-
tron densities measured in cm ', and a sets the scale of
the typical electron-impurity interaction and is of order
0.1. Thus, for N;/Ni 0. 1 one gets I =0.4 meV which
should be compared with 2 meV as the energy separation
between the ground and the first excited subbands for an
infinite rectangular potential well with width 8'=500 A
in the y direction. This corresponds roughly to a mobility
of 10000 cm2/V sec. Our realistic self-consistent Born ap-
proximation calculation of level broadening shows that the
broadening I „ for our model system depends only weakly
on the 1D subband index n (for the low-lying subbands)
and, therefore, in Fig. 1 we show our calculated 1D densi-
ty of states for several diAerent values of the broadening I
assumed to be a constant for the system. We choose pa-
rameters to correspond to the actual experimental system

of Ref. 4. In Fig. 1 we show the calculated density of
states D(EF) as a function of the Fermi energy for three
values of the broadening I =0.15, 0.38, and 1.52 meV
which correspond approximately to mobility values

p 20000, 8000, and 2000 cm /Vsec, respectively. The
system width is taken to be 500 A. which for our model
infinite square-well potential gives E„=0.79n meV, so
that E2 Ei =—2 meV. Our results [see Figs. 4(b) and
4(c)] are very similar for a parabolic well confinement. In
Fig. 2, we show our calculated conductivity o. „as a func-
tion of the chemical potential for different values of
broadening (corresponding to Fig. 1) and two diA'erent
temperatures (T =1.2 and 10 K). We use Kubo formula
and diagrammatic perturbation theory to calculate o.

The message from Figs. 1 and 2 is that at low temperature
( —1.2 K) and low broadening (p-20000 cm /Vsec)
one may be able to see conductivity oscillations in the
current-voltage characteristics associated with structure
arising from 1D confinement. However, even at
moderately low temperature (—10 K) these structures
are washed out for a 500-A-wide channel. Our empirical
finding is that I +ka T should be less than AE/2 for 1D
confinement effects to be observable. These results agree
with the reported findings in Ref. 4, and support the view
that the structure observed there is associated with 1D
confinement effects.

Above results based on a short-range intrasubband im-
purity scattering model (which we have explicitly verified
to be fairly well valid by doing realistic calculations with
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FIG. 1. Impurity-broadened density of states D(EF) in a
model ID system (infinite square-well confinement with width

500 A) for three different values of the level broadening
I 0.15 (solid line), 0.38 (dash-dotted line), 1.52 (dashed line)
meV. The Fermi energy is measured in the units of the ground
subband bottom E~ =0.79 meV.

FIG. 2. Calculated conductivity in the 10 system correspond-
ing to Fig. 1 as a function of EF/E~ for different values of level

broadening (I ) and temperature (T): (a) I =0.15 meV and
T 1.2 K, (b) I =1.52 meV and T=1.2 K, (c) I =0.15 meV
and T =10 K. Only intrasubband scattering (due to short-range
scatterers) is included. Same absolute units are used in (a)- (c).
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screened9 Coulomb potential as explained earlier) bring
out most of the essential physics of 1D transport, except
for the very important issue of intersubband scattering
which we consider next. The increase in the conductivity
seen in Fig. 2 as each 1D subband starts getting populated
is due to the peak in the density of states associated with
the bottom of each 1D subband. However, in the presence
of intersubband scattering there will be substantial reduc-
tion in mobility as each new 1D subband is populated due
to enhanced scattering between subbands. In fact, the
broadening I (EF) due to intersubband scattering diverges
at EF -E„ in the ideal non-self-consistent situation due to
the singular 1D density of states at the band bottoms.
Thus the transport calculation involving intersubband
scattering must necessarily be self-consistent, which com-
plicates the theory considerably. We have carried out
such a self-consistent transport calculation using the Kubo
formula. Our calculated results for the conductivity in-
cluding intersubband scattering eH'ects are shown in Fig.
3. In Fig. 3(a) we show results of a multisubband trans-
port calculation at T 0, using the Kubo formula with
and without any self-consistency. In the non-self-
consistent case, conductivity vanishes at the bottom of
each subband because of enhanced intersubband scatter-
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ing. In Fig. 3(b) we show the self-consistent finite
temperature Kubo formula results. Self-consistency gives
rise to finite density of states at the band bottom so that
the conductivity does not drop to zero at the bottom of
each 10 subband. These conductivity results are obtained
by assuming the screened impurity scattering to be short
ranged with its strength calculated from the averaged
screened Coulomb potential. This approximation is very
good for our system in view of strong screening in 1D.
We have also carried out a multisubband Boltzmann
equation ' calculation of conductivity using realistic
screened Coulomb impurity potential. This calculation is
very tedious and completely justifies our Kubo formula re-
sults based on the short-range model shown in Fig. 3.

Before concluding we provide a justification of our
model (introduced originally in Ref. 4) by showing in Fig.
4 that conductance fluctuations' inherent in small
structures are indeed averaged out when a large number
of parallel inversion lines are used. One can see from Fig.
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FIG. 3. Calculated conductivity as a function of 1D electron
density for the system corresponding to Fig. 1 with N; 1 X10"
cm 2 (distributed uniformly in the channel) including intra-
and intersubband impurity scattering. (a) T 0 with non-self-
consistent (open squares) and self-consistent (open circles) cal-
culations; (b) self-consistent results for T 1.2 K (open circles),
4.2 K (open triangles), and 10 K (open squares). Same absolute
units are used in all the figures.

FIG. 4. (a) Calculated average fluctuating resistance &lnR)
in

aconite

1D chain as a function of the chemical potential for
various numbers of parallel inversion lines as noted (see Refs. 3
and 5), (b) calculated conductivity D for 250 parallel inversion
lines (for parabolic potential confinement) with width fluctua-
tions of 10%, and (c) of 20%. [I /E~ 0. 1 for (b) and (c).]
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4(a) that the resistance fluctuations are substantially
suppressed by having a number of parallel 1D channels—in particular, for 250 inversion lines (as used in Ref. 4)
fluctuation effects are negligible. On the other hand,
quantum confinement efl'ects are much more resilient, as
can be seen from Figs. 4(b) and 4(c), where we show the
averaged conductivity (using parabolic harmonic oscilla-
tor confinement in this case) for a system of 250 parallel
inversion lines with substantial width fluctuations. One
can see that even with width fluctuations as large as
10%-15%one can observe 1D confinement effects.

In conclusion, we have carried out density of states and
transport calculation in model (infinite square-well —and
parabolic —potential confinement) 1D systems including
thermal and collisional broadening effects. We obtain the
density of states in a self-consistent Born approximation
and the conductivity using the self-consistent Kubo for-

mula (and coupled Boltzmann equation approach). We
find the short-range scattering model to be a good approx-
imation due to strong screening in the system. %'e find
that unlike higher-dimensional systems, self-consistency
in the calculation of conductivity is absolutely essential in
1D systems in the presence of intersubband scattering.
Our calculated results are in qualitative agreement with
the data of Warren et aI. and show that structures due to
1D quantization may be observable in transport charac-
teristics of very narrow inversion layers, provided the tern-
perature and the impurity content of the system are low.
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