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Helicon-wave propagation (rf Hall effect) in a model superlattice with a two-dimensional electron
gas under quantum-Hall-effect conditions is studied in the framework of a Kronig-Penney-like
dispersion relation. Numerical evidence for the occurrence of flat plateaus in the helicon resonance
at low frequencies is presented. As the cyclotron frequency is approached, the plateaus are des-
troyed by the polarization and the displacement currents.

A well-established technique of magnetotransport mea-
surements in the microwave and far-infrared (FIR) fre-
quency domain is the observation of the helicon-wave res-
onance. The helicon wave is a circularly polarized elec-
tromagnetic wave with a quadratic dispersion.!® It arises
from the suppression of the currents along the electric
field of the wave as a result of a strong external magnetic
field. The transverse currents generate a time-dependent
magnetic field, which is sufficient to maintain self-
sustaining oscillations. The helicon wave, therefore, can
be thought of essentially as a rf Hall effect.

Recently, Maan et al.? observed the helicon resonance
in a highly doped InAs-GaSb superlattice with a two-
dimensional electron gas 2DEG). Tselis et al.’ studied in
detail elementary excitations in semiconductor superlat-
tices and mention the idea that plateaus in the frequency
of the helicon resonance should occur whenever there are
quantum-Hall-effect (QHE) plateaus in the spectrum of
the 2DEG of the superlattice, since at low frequencies the
helicon dispersion simply depends on the Hall conductivi-
ty. The QHE in a superlattice with weak interlayer tun-
neling was predicted by Azbel* and observed experimen-
tally by Stormer et al.’

The high precision of the QHE data, when kgT is
much smaller than the energy gaps in the spectrum of the
magnetized 2DEG caused by Landau quantization, is lim-
ited basically by the precision of the dc resistivity mea-
surements. A high-frequency (in the GHz region) con-
tactless method was used®’ to measure oy, via Faraday
rotation of microwaves propagating in a GaAs/
Al,Ga;_,As multi-quantum-well structure.  Time-
varying magnetic fields were used to study the response of
the 2DEG in silicon inversion layers® and in the stage-2
Br,-graphite intercalation compound.’

The theoretical work on the ac QHE!? uses the concept
of long quasiclassical electronic orbits in the 2DEG,"!
with potential fluctuations that are smooth on the scale of
the Larmor radius. Because of the very long period of
these quasiclassical orbits, they can exchange energy with
an external field even at low frequencies (i.e., in the MHz
range). Depinning of fractionally charged vortices'*!? by
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time-varying fields may yield an enhancement of the frac-
tional quantum Hall effect.'*

Experimentally, in the GaAs/Al,Ga,_,As heterostruc-
ture in magnetic fields of about 8 T, at a temperature of
1.23 K, the upper limit on the electron scattering time is
estimated in Ref. 15 as 1.5% 107 sec. This means that
the high-frequency (w7 > 1) regime, which in conventional
semiconductors starts only in the FIR regime, may start
at kiloherz frequencies in the QHE systems. In this re-
gime, if we superimpose a fixed magnetic field H and a
perpendicular time-dependent electric field E(z), electrons
will have a drift component also in the direction of E, in
addition to the more familiar drift in the direction
E < H.!S This additional drift, customarily called the po-
larization drift, leads to an imaginary contribution to the
diagonal conductivity that is proportional to the frequen-
cy of E(t). This contribution is present even at the pla-
teaus, where the real part of o, vanishes. At frequencies
approaching the cyclotron frequency this contribution will
be as large as the Hall conductivity. 16—18

The central point of our study is the existence of a non-
vanishing (in the plateau regime) frequency-dependent
imaginary contribution to the diagonal component of the
resistivity tensor in a homogeneous 2DEG, and its influ-
ence on the helicon resonance in a superlattice under QHE
conditions.

In what follows we consider the wave propagation in a
model superlattice with QHE conditions in the 2DEG
layers, which are separated by dielectric layers. We use a
standard method'® to reduce the Maxwell equations in a
layered conductor with a perpendicular magnetic field to
a Kronig-Penney-like problem. A numerical solution of
the resulting dispersion equation exhibits flat plateaus in
the magnetic field dependence of the low-frequency mode.
This is the mode that is governed by the Hall currents in
the 2DEG layers. At higher frequencies the in-plane po-
larization drift current as well as the displacement current
in the conducting and insulating layers lead to strong de-
viations from the flat plateau structure.

We start with the wave equation for a monochromatic
complex electric field E of frequency o propagating in a
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conducting medium:

VXVXE+(w/c)€E=0, (1)

where €;; =€00;; — (47 /iw)o;j(k,w) is the electric suscepti-
bility tensor and o;; is the conductivity tensor. This equa-
tion is solved for the case of a plane electromagnetic wave
incident along the superlattice periodicity axis
k=(0,0,k,), with a constant magnetic field H, also lying
in the same direction. We assume zero conductance in
that direction, o, =0, =0,, =0, =0, =0, and isotropy
in the other two directions, o, =0,,, and use the Onsager
relations'™ o, (H,k,0)=0;(—H,—k,w) to obtain
Oyy = —0py. Hence, for this simple geometry, we are left
with only two independent components of the conductivi-
ty tensor: oy, and axx The wave equation can be re-
duced now to the form!®

E" +(w/c)*€_E, =0, ()

where E | =E, +iE, and € =€, —I€,,.

For a wide class of periodic €_(z), Eq. (2) can be treat-
ed using Bloch’s theorem (Mathiew or Hill equations).
Note, however, that all the quantities, E,., E,, €,,, and
€y, are usually complex. We assume a model superlattice
with 2DEG layers of width a, separated by insulating
layers of width b with a dielectric constant €,. A stan-
dard procedure!” then vyields the Kronig-Penney-like
dispersion relation

cos( k a)cos(k,b)
— (k] +k3)sin(ka)sin(k,b) /2k ky =cos(kd) ,  (3)
where d =a +b,
ki, =(w/c)eb? (3a)

and €?=¢, and €'!'=¢€% —zexy refer to the dielectric and
2DEG layers, respectively.

The conductivity tensor in the 2DEG under strong
magnetic fields® can be calculated from j(x,t)
=(e/2)Tr {f[vﬁ )+8(x x WD }—UE where the
free-electron densny matrix f f ot f | obeys the equa-
tion of motion: 3f/dt+ (i /#) [Hf]—O. Here fo
={1+exp[(AH—pu)/kT]} " is the free-electron equilibri-
um density matrix for the 2DEG under a strong magnet-
ic field and f, is a perturbation, linear with respect to the
vector gotential A. 2Thi Hamiltonian is H=HA 0 +H 1
where Ho=(1/2m)Vy, H,=(e/2c)(Vo-A;+ A-Vy) and
the velocity operator for an electron in an external field is
given by Vo=(p+eAy/c)/m.

Following Refs. 20 and 3, one gets

Reai}? ~ngec/H , (4a)
Imo,, ~0, (4b)
Reo,, =0, (4c)
Imo,, =0, (w/0.), (4d)

where w, =eH /mc is the cyclotron frequency, m* is the
effective mass, and ng is the areal density of the 2DEG.
In the frequency regime w <w. <w, we obtain, from Eq.
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(3a) and Eq. (4),
ki=(w/cHanald(1+o/w,) (5)

which lS the standard 3D helicon dispersion>>2! with
0,3‘},) ——U,,y D/d. Equation (5) corresponds to the dotted lines
in Fig. 1.

Using k, from Eq. (5) and k, from Eq. (3a) the disper-
sion equation, Eq. (3), can be reduced to a simple algebra-

ic equation in the long-wavelength limit kd << 1:

w’€y+4rac ol +o/w,)—c?k?=0 . (6)

Here a=a/d <1. At very low frequencies, the term
®/w, in parentheses can be neglected, and we get the fol-
lowing, heliconlike solution:

w=c2k2/41raaxy=czk2h /ange? . (7

The second equality assumes that we are in the QHE re-
gime, namely, that there are np completely filled Landau
levels and that the Fermi energy is in a magnetic energy
gap. This simplified approximate solution, which exhibits
completely flat plateaus, was already obtained in Ref. 3.
Note that it neglects the nonzero and frequency-dependent
value of o,, as exhibited in Eq. (4d) above, which is due
to the polarization drift.

In order to investigate the effect of this nonzero o,, we
solved the dispersion equation (3) numerically for layered
structures with various values of the total number of
layers N. The solutions are exhibited in Fig. 1, and they
show clearly that at higher frequencies the plateaus are
distorted. This is caused by the displacement currents
[the third term in Eq. (6)] and by the nonvanishing imagi-
nary part of diagonal conductivity, Eq. (4d) [the factor
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FIG. 1. Numerical evidence for the occurrence of plateaus in

the frequency of the helicon resonance in a GaAs/Al,Ga,_,As
superlattice with parameters: the electron concentration is
no=5x10"" cm~2, the GaAs layers are 100 A thick, the
Al,Ga,_,As barriers are 400 A thick. N is the number of
2DEG layers in a superlattice: (a) N =300; (b) N =500; (c)
N =1000.
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14w /w, in the linear term of Eq. (6)]. We note that for a
superlattice with a large number of periods N (e.g., low
frequencies) the behavior is adequately described by the
simplified dispersion equation (7).

The physical origin of Imo,,, Eq. (4d), can be under-
stood as follows. In crossed ac electric and dc magnetic
fields the charge carriers experience an acceleration along
the electric field which is proportional to the frequency:'®

dv/dt =—ioc(ExXH)/H? . (8)

The corresponding inertial force F;,=m dv/dt causes an
additional drift velocity v, =c (Fj, X H)/eH? and a corre-
sponding current j, =nev, =nmc *E/H? in the direction
of the time-varying electric field E (¢). This contributes to
the diagonal conductivity:

Oxx =ionmc?/H? 9)

which is our Eq. (4d). Note that o,, does not depend on
the relaxation time 7 and remains finite also in the plateau
regime, in contrast with the vanishing diagonal dc con-
ductivity.

To summarize, we studied the magnetic field depen-
dence of the frequency of a heliconlike wave in a superlat-
tice of 2DEG layers under QHE conditions, using a
Kronig-Penney-like dispersion relation. We find that at
sufficiently low frequencies the helicon resonance exhibits
flat plateaus simultaneously with the o,, plateaus of the
QHE. As the resonance frequency grows, the plateaus ac-
quire a finite slope which increases with frequency and
are eventually destroyed by the in-plane polarization
currents. It is clear, therefore, that experimental studies
of the helicon resonance in a superlatice of 2DEG layers
may shed new light on the frequency dependence of the
conductivity tensor in the QHE regime.
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