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The dispersion relation of magnetic excitons in a semiconductor superlattice is derived in the
strong-magnetic-field limit. The Coulomb energy e /elo is assumed to be smaller than the cyclotron
energy Rcu„and many-body correlation effects are treated exactly to lowest order in ( e /elo)/Ace, .

During the past decade, there have been many studies
of the elementary excitations, transport, and optical prop-
erties of semiconductor superlattices. ' Because of the
quantization of the electronic motion along the superlat-
tice axis, a type-I superlattice such as GaAs/Al Ga&, As
can, for many purposes, be regarded as a periodic array of
quasi-two-dimensional electron-gas layers. Many experi-
mental techniques like far-infrared spectroscopy, cyclo-
tron resonance, and inelastic light scattering, which have
been used to investigate surface inversion layers, have
proved to be powerful tools for studying superlattices as
well. The collective charge-density excitations of su-
perlattices are particularly interesting in view of the ab-
sence of Landau damping of these modes. Experiments
have verified' the quantitative prediction of theory for
the dispersion of these plasma modes. In the presence of
a dc magnetic field, the excitation spectrum is expected to
change significantly. One recent example of such a modi-
fication is the magnetic field dependence of collective
charge-density modes of the lateral surface of a superlat-
tice."

In this paper we investigate the properties of collective
charge-density excitations of a superlattice in the presence
of a strong dc magnetic field oriented parallel to the su-
perlattice axis. Magnetoplasma modes of three-
dimensional materials have been studied for many years.
Some of the magnetoplasma modes are well described by a
simple Drude-like local theory, while others depend upon
nonlocal effects for their existence. Some excitations are
strongly influenced by exchange-correlation effects, and
the primary motivation for their experimental study has
been to learn about these many-body effects. In strictly
two-dimensional electron-gas systems the magnetoplasma
modes' and their effect on optical properties was first in-
vestigated within the framework of the random-phase ap-
proximation (RPA). Recently a number of authors, '3

in particular Kallin and Halperin, have gone beyond the
RPA for the case in which all Landau levels are either
completely filled or completely empty. In this situation
the Coulomb energy e lelo, where lo=(A'cleB)'~ is the
magnetic length, and e is the background dielectric con-
stant, can be small compared to the magnetic energy Ace„
and their ratio is a small dimensionless parameter which
can be used to generate a valid peturbation expansion.
Very recently MacDonald et al. ' have investigated the
effects of correlation on the magnetoplasma modes of a
two-dimensional electron gas with a partially filled Lan-
dau level, where the simple perturbation expansion is not
valid.

For superlattices intrasubband magnetoplasma modes
have been studied in the RPA, ' and with the inclusion of
exchange-correlation effects via a local-energy-functional
approach. ' The RPA result yields the expected two-
dimensional or three-dimensional behavior when the prod-
uct qa of the wave vector along the layer and the layer
spacing approaches the appropriate limiting value. The
object of the present paper is to investigate the magneto-
plasma modes of a periodic array of two-dimensional
electron-gas layers beyond the RPA for the case when all
Landau levels are either completely filled or completely
empty. For large values of the layer separation (qa ~ oo )

the results are expected to reduce to the cyclotron modes
studied by Kallin and Halperin. For smaller values of qa
we expect to obtain a band of cyclotron modes. These
modes are important for studying magnetic exciton spec-
tra in semiconductor superlattices.

We consider an infinite superlattice consisting of two-
dimensional electron-gas (2DEG) layers located at z=la,
I =0, + 1, . . . , + op . Electrons in each plane have an
equilibrium density n, and mass m. In the presence of a
magnetic field along the superlattice axis, the many-body
Hamiltonian including the Coulumb interaction between
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electrons in the Landau gauge is

H =Hp+ V. . .
HO g EnCnlkCnlk

n, l, k
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l, , l2 n&, n2, n3, n4 kl, k'

&& exp[iq„lo(k —k'+q )]C„„(q)C«(—q) .

The notations in the above equation' follow from the
usual definition; we can write the density correlation func-
tion as

X(q, co;z,z') = g 5(z —Ia)6(z' —I'a )XI~ (q, co) .
1, 1'

(2)

where Vz(z)= Vq exp( —q ~

z
~

), and Vz ——2vre /eq is the
Fourier-transformed 2D Coulomb interaction. The

One can introduce 7 as the irreducible part of 7; be-

cause of the translational invariance of the system,
X~~ ——X(1—I'). The following RPA equation gives the re-

lation between these two quantities:

X(1—I') =X (I —I')+ g X'(I —I ( ) Vq(l )
—12)X(lp —I'),

dependence on q and co is suppressed for simplicity.
By solving the Bethe-Salpeter equation for the vertex

function shown in Fig. 1, the irreducible part of 7 can be
calculated to be 711 ——7 611 where g is the irreducible part
of the density correlation function of a single 2DEG.
This result is obvious in the RPA approximation, but it is
also true when all direct interactions between the
electron-hole part are included, since the scattering of
electrons (holes) between different layers are not allowed
in our model. This fact can be seen schematically from
the diagram of the irreducible vertex function in Fig. 1(b),
where both ends of a continuous electron line should al-
ways carry the same layer index.

The above equations were solved by introducing the
discrete Fourier transform

X(q, )= g e ' X(1) .

(o3
~, k+y 2, k+g

The magnetic exciton dispersion is determined from the
singularity of X(q, ), i.e., from the equation

1 —V~S(q, q, )X (q, ~)=0, (4)

(b)

where S(q, q, )= sinh(qa)/[cosh(qa) —cos(q, a)] is a
structure factor. This relation is formally identical to the
expression for the bulk superlattice plasmon in the ab-
sence of a magnetic field. All effects due to the magnetic
field are contained in g .

%'e restrict our attention to the case where each layer
has an integral value of the filling factor for the Landau
levels. To lowest order in (e /elo)/fico„X (q, co) can be
evaluated by including successive direct interactions be-

tween the electron and the hole (ladder diagrams). The
excitation energy of the state with a particle in level n'

and a hole in level n is then solved from Eq. (4):

E„„(q,q, ) =(n' —n )n, + g —g —V„„(q,q, ),
n' n

l, k
FICs. 1. {a) Diagrammatic representation of the Bethe-

Salpeter equation for the vertex function. {b) The irreducible
vertex function including the direct and exchange interactions
between the members of the electron-hole pair. The Landau lev-

el indices of the electron {hole) states are omitted without caus-

ing confusion.

where g„ is the Hartree-Fock energy of an electron in

level n and V„„(q,q, ) is the irreducible scattering ampli-
tude consisting of contributions from the direct and ex-

change interactions between the members of the excited
electron-hole pair. ' ' The direct term arises from sum-

ming over the ladder diagrams in g and thus is the same
as that of a single 2DEG. The exchange term is modified
by the superlattice structure factor in Eq. (4). We obtain
for V„„
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veals the equivalence of the system with a three-
dimensional (3D) uniform electron gas with the same
mean density. Note that v=vo ——2 implies n, =2/2~lo.
Our result is

Ep, (q =O, tl, =0)=fico, +2e /alp ——co, +A~I2co,

with 0& ——4nn, e /mfa being the well-known 3D plasma

frequency. This simply is an approximate expression of
E=(co, +Slz)'r to the accuracy of our many-body calcu-
lation.
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