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The electronic and dynamic properties of the solid phases of HF, HC1, and HBr under pressure
are studied theoretically. A simple model is constructed so that the pressure-dependent properties of
these systems and possibly other hydrogen-bonded systems can be studied in terms of a few parame-
ters. The model predicts quite simply the pressure dependence of the stretching-mode frequency
and the nature of the phase transition from the molecular hydrogen-bonded phase to a new symme-
trical hydrogen-bonded (nonmolecular) phase. Quantum effects due to the light hydrogen atom are
taken into account within a many-body Hartree approximation. New experimental data on the pres-
sure dependence of the symmetric-stretching-mode frequency in HF is presented. The possibility of
soliton formation is discussed and it is shown how pressure may act as a unique tuner to adjust the
energetics of these nonlinear excitations. In addition, we report the results of our ab initio calcula-
tions of the total energy of ringlike structures of HF and the first ab initio pseudopotential calcula-
tion of the band structure and total energy of solid HBr. The calculations for HF are within the
Hartree-Fock approximation, while those of solid HBr are within the local-density approximation
and have been simplified by considering a linear instead of a zigzag geometry. The use of the local-
density approximation for hydrogen is also discussed.

I. INTRODUCTION

Hydrogen bonding is one of the five fundamental bond-
ing mechanisms in solids. Although the line distinguish-
ing one form of bonding from another is in some cases
ambiguous (e.g. , II-VI compounds being partly covalent
and partly ionic), it is generally not so for the hydrogen
bond since it gives rise to unusual and diverse structures.
For example, the prototype hydrogen-bonded solid, H20
ice, forms a complicated three-dimensional solid structure
with many phases occurring under pressure.

Much of the recent interest in hydrogen-bonded solids
under pressure has been generated because of the expected
transition to other bonding mechanisms. In HzO, a tran-
sition is expected from a molecular hydrogen-bonded
phase to a phase X with symmetrical hydrogen bonds.
Theoretical studies' of the transition to this symmetric
phase predict a strongly first-order transition. Recent
Raman- (Ref. 2) and Brillouin- (Ref. 3) scattering studies
give evidence for this phase X of ice at 42 GPa. This
work on ice has prompted us to study even simpler
hydrogen-bonded solids. In the present study we focus on
the simplest, predominantly one-dimensional, hydrogen-
bonded solids which are the hydrogen halides HF, HC1,
and HBr.

Low-temperature solid hydrogen halides HF, HC1, and
HBr have been studied experimentally for many years.
X-ray data and neutron diffraction studies have revealed
that these compounds form a molecular base-centered-
orthorhombic crystal with hydrogen halide molecular
pairs arranged in parallel "kinked" chains along one
direction of the crystal. NMR studies have also been
used to obtain information on the position of the hydro-
gen atoms within these chains. Spring constants extracted
from vibrational frequencies associated with the hydrogen
atom have also been obtained using Raman scattering
and infrared absorption. "' The anisotropy of the elas-
tic and photoelastic properties of HF have recently been
studied under pressure by Brillouin scattering by Lee
et al. '

up to —120 kbar. Studies have been reported by
Hanson and co-workers ' and Holzapfel and co-
workers' on the Raman modes in HC1 and HBr under
pressure. Johannsen et al. ' show evidence for the transi-
tion to the symmetric phase of HBr. The related
hydrogen-halide HI forms a different, more complicated
geometry, ' and will not be dealt with specifically here.

We will show that the light mass of the hydrogen atom
and the nature of the hydrogen bond are expected to give
the hydrogen-halide crystals many peculiar and interest-
ing properties. These crystals are ideal to study because
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they form very simple hydrogen bonded structures. At
low pressure, solid hydrogen-halide crystals form molecu-
lar chains in which the hydrogen atom is covalently bond-
ed to one or the other of the adjacent halide atoms in the
chain. Under pressure, we expect this molecular structure
to change and the system to be driven to a symmetric
phase where the hydrogen is bonded equally to both of its
nearest-neighboring halide atoms in the chain. Before this
phase transition occurs, it is expected that the light mass
of hydrogen will allow quantum tunneling of the hydro-
gen from one halide to the adjacent halide.

To understand the nature of these systems a number of
sophisticated theoretical computations have been carried
out. Most of these calculations have focused on HF
(Refs. 16—23) and have used mainly various Hartree-Fock
all electron methods. In many cases these calculations
have used one-dimensional linear-chain models. These
studies have predicted equilibrium geometries, electronic
band structures, and force constants of HF for both
straight- and kinked-chain models. The halide F was used
in these calculations because HF has only eight electrons
per molecule and is therefore of manageable size in a
Hartree-Fock or other all-electron, ab initio calculation.

In this paper we begin a theoretical investigation of the
properties of solid hydrogen halides under pressure. Our
major interest is the nature of the phase transition from
the molecular hydrogen-bonded phase to a new symmetric
hydrogen-bonded phase. Our approach is to blend simple
models with the results of state-of-the-art ab initio calcu-
lations. In Sec. II we describe a simple model to under-
stand qualitatively and physically the behavior of solid
hydrogen halides under pressure. The construction of a
simple model allows us to incorporate in an approximate
manner, the quantum and many-body effects associated
with the phase transition. The simple model also predicts
the formation of solitons in these systems and demon-
strates how pressure can be used as a "tuning knob" for
their properties. In Sec. III we describe our ab initio
pseudopotential calculations for a three-dimensional crys-
tal of linear HBr chains. To our knowledge these are the
first such calculations of solid HBr. We have computed
the band structure and total energy of the crystal as a
function of the chain lattice parameter and hydrogen posi-
tion. The calculations were performed using the local-
density approximation and a pseudopotential is used for
the Br valence electrons. In Sec. IV we describe the re-
sults of our ab initio total energy Hartree-Fock calcula-
tion of the phase transition to the symmetric phase using
a H6F6 ring. Finally, in Sec. V we give our conclusions.

centered-orthorhombic crystals consisting of parallel po-
larized zigzag chains of hydrogen bonded molecules with
two HX (X=F, Cl, or Br) molecules per unit cell (see Fig.
1). The interchain atoms are held together by weak van
der Waals and dipolar forces. Since the major bonding ef-
fects are between the hydrogen halide molecules along the
chain, we consider, as a model system, a single infinite
chain of hydrogen-halide molecules. Due to the relatively
heavy mass of the halogen atom, the lattice of the X
atoms is considered static, and we focus on the hydrogen
motion between two neighboring X's in only one dimen-
sion.

A unique feature of such a system is that it has a dou-
bly degenerate ground state. The hydrogen atom (at zero
pressure) bonds covalently to just one halide atom forming
a HX molecule. These molecular units then bind together
forming chains because of the hydrogen bond. The dou-
ble degeneracy occurs because the stronger covalent bond
can be made with either the "left" or "right" halide atom.
We refer to these two ground states as the left and the
right ground state, and they are shown in Fig. 2. In the
left ground state the hydrogen is covalently bonded to the
neighboring halide on its left, while it is bonded to the
halide on its right in the right ground state.

We now imagine moving all the hydrogen atoms in un-
ison. The potential function must have two distinct mini-
ma (to reflect the degeneracy), separated by a barrier. To
fourth order in the proton position x, this potential func-
tion can be analytically expressed by the simple double-
well, single-particle "bond" potential for the proton,

V(x)=As(x b) Ib—
where x is the proton position measured from the mid-
point between its two neighboring halide atoms. Here Nz
is the barrier separating the left and right ground states,
and equivalent minima occur at the two asymmetric dis-
placements, x =+b. This potential is sketched in Fig. 3.
The potential of Eq. (1) is of course nonlinear (anharmon-
ic) as it must be to produce a degenerate ground state. Al-
lowing each hydrogen atom to move individually (not
necessarily in unison) introduces a hydrogen-hydrogen
pair potential. To avoid the geometric complexities intro-
duced by the kinks in the zigzag chains, we imagine

II. MODEL CALCULATIONS

We first develop a simple model for the pressure depen-
dence of the hydrogen bond in these crystals. Such a
model can serve as a basis for a physical understanding of
(i) the general behavior of these systems, (ii) the nonlinear-
ities, and (iii) the quantum effects due to the light hydro-
gen atom. We also use this model to parametrize the re-
sults of our ab initio calculations discussed in Secs. III
and IV.

At low temperatures these compounds form base-

FIG. 1. Crystal structure of HF, HCl, and HBr in their low-
temperature base-centered-orthorhombic asymmetric hydrogen
phase. The HX molecules are arranged in parallel zigzag
chains.
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(a) Left ground state

(b) Right ground state

FIG. 2. Diagram showing the two equivalent ground-state
positions for hydrogen. In the left (right) ground state, all hy-

drogen atoms bond covalently with the halide X on their left
(right).

FIG. 4. Simplified base-centered-tetragonal geometry of the
hydrogen halide used. The distance between two halide atoms
along a chain is d.

U(xi, xI+))= -,' K(x(+( —xi ) (2)

Combining Eq. (1) with Eq. (2) we obtain the total many-
particle potential function

V„,(x)= g [V(x()+U(x(, 1+x))+U(x(,xi, )] . (3)
I

stretching the chains so that they are straight and linear
(see Fig. 4). Since the major bonding is between H—X
and not H—H or X—X, this approximation is not expect-
ed to be severe. This reduces the unit ce11 from four
atoms to just two: one hydrogen and one X atom. We
take the H-H potential to be a harmonic nearest-neighbor
potential with coupling constant K. Thus, the interaction
between the hydrogen atom in cell I and those in cells l+1
1s

A. Pressure dependence

As pressure increases, the halide-halide distance de-
creases and, at some critical pressure P*, the hydrogen
equilibrium position is expected to be located at the mid-
point between two halide atoms. This implies that the
curvature of V(x) near x=0 has changed from being con-
cave downward for P & P* (two equivalent minima
separated by a barrier), to being concave upward for
P ~ P*. At the critical pressure P*, the potential V(x) is
neither concave downward or upward. Let us regard the
hydrogen-halide potential function V(x) of Eq. (1) in the
more general form of a fourth-order polynomial in x,

V(x)=C Ax +Dx— (4)

We expect the fourth-order coefficient D to increase as
the pressure increases reflecting the stiffening of the lat-
tice, but this increase is not expected to be important in
describing the qualitative behavior of the system. The
pressure dependence of coefficient C is unimportant in
our present discussion since it simply shifts the zero of en-

ergy.
Of prime importance is the coefficient 3 of the quadra-

tic term. This term determines whether the potential is
concave upward or downward. Hence, 3 changes sign as
a function of pressure as P passes through P*. In the
spirit of a Landau-type theory, we simply take a linear
dependence on pressure of this parameter,

A (P)=A (0)(1 P/P*) . —

Comparing the coefficients of equal powers of the
fourth-order expansion in Eq. (4) with the model analytic
expression of Eq. (1) and assuming only the pressure
dependence given by Eq. (5), we immediately obtain the
pressure dependence of the physically relevant barrier
height @z and asymmetric displacement b. The barrier
height Wz is found to be strongly influenced by pressure
and rapidly goes to zero as the pressure approaches the
critical value P*,

@g(P)=d&g(0)(1 P/P*)— (6)
FIG. 3. Sketch of the double-well potential of Eq. (1). The

two minima correspond to the left and right ground states where

hydrogen is displaced to +b from the midpoint between two
halides. The barrier separating the two minima is N~.

The asymmetric displacement, which is a measure of the
position of the hydrogen atom between the two halides, is
not as severely dependent on pressure, going to zero at the
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K (P) =K (0)( 1+gP/P*), (8)

where g is a constant. The exact value of g is not impor-
tant for our purposes here, since the qualitative and most
of the quantitative physics of the phase transition is in-
sensitive to reasonable variations of its value. Data on the
mode frequencies of HBr indicate a value of g near —,,and
we have adopted this value for all materials. Once the
functional dependence on pressure of the various parame-
ters appearing in the potential have been established, we
proceed to evaluate the single-particle total energy and
optic-mode vibrational frequencies.

B. Harmonic approximation

phase transition as

6 (P) =b (0)[(1 P—/P ')]'~

When b is zero, the hydrogen atom is located at the mid-
point between two halides. This simple model predicts a
critical exponent of —,

' at the phase transition for the order
parameter b. The bonding has changed from a
hydrogen-bonded molecular solid, to a new symmetric hy-
drogen bonded form where the molecular identity is lost.

The hydrogen-hydrogen coupling constant K is expect-
ed to increase with pressure, so we approximate it as

barrier height and asymmetric displacement in the partic-
ular combination (4s/b )'~ as in Eq. (10). The pressure
dependence of this mode from Eqs. (10) and (12) is

co,(P) =co,(0)[(1 P/P—*)]' (13)

Note that the frequency is predicted to go down with in-
creasing pressure, and is a soft mode going to zero at the
phase transition pressure P . This is unlike molecular
solids such as N2 in which the "vibron" frequency in-
creases with pressure. The limit of zero frequency is an
artifact of the harmonic approximation, as we show in
Sec. IIIC. For small pressure, the symmetric stretching
frequency has the expansion,

co, (P)=co,(0)(1—, P/P—*) . (14)

This has the interesting consequence that the slope of co,
acts as a "pointer" to the phase transition pressure P*.
The slope is ——, if the pressure is measured in P units.
This simple scheme can be used to predict P' from low-
pressure data alone.

In Fig. 5 we plot the pressure-dependent frequency of
Eq. (13) along with the experimental data. The theoretical
frequency of Eq. (13) has two parameters, co, (0) and P'.
The parameter co, (0) is simply fit to the experimental

We now consider the dynamics of the hydrogen atoms
in the harmonic approximation. This limit is appropriate
for small displacements from equilibrium and at low pres-
sures where the barrier is large so that little tunneling
occurs. We expand the hydrogen-halide potential, given
by Eq. (1), about either of the classical equilibrium posi-
tion x =+b (P)+6 which gives

3500

3000

V(6,P) = —,
' k (P)5 (9)

2500
The pressure-dependent spring constant k (P) is given by

k(P) =8@a(P)/b (P) =k(0)(1 P/P*), — (10)

where the pressure dependence follows from Eqs. (6) and
(7). The total harmonic potential energy is then
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The eigenmodes of this Hamiltonian can be solved quan-
tum mechanically by a Bogoliubov transformation or
classically and leads to the dispersion relation

1 090

co(q) = [Ao+Q&[1—cos(qd)]/2I '~ (12) 500

where d is the distance between two neighboring halide
atoms (see Fig. 4), and q is the wave vector. The frequen-
cies Qo and Q~ are Qo ——v'k(P)/M and 0& ——v'4K(P)!M,
where M is the H-X reduced mass.

At zone center ( q =0) this mode is the symmetric
stretching mode (A&), co, =Qo, where all hydrogen atoms
move in phase. Since each H atom moves in unison, only
the hydrogen halide potential V affects this motion. This
optic-mode frequency has been measured under pressure
experimentally by Hanson and co-workers and Johannsen
et al. ' These measurements are essentially a probe of the

0.0
0.0 10.0 20.0 30.0

Pressure (GPa)
40.0

I(
50.0

FKx. 5. Experimental Raman scattering A I-mode frequen-
cies [triangles (Ref. 10) and squares (Refs. 9 and 14)] for HF,
HCl, and HBr, compared with the pressure-dependent classical
frequencies co, of Eq. (13) (solid line). The predicted critical
pressure P*, extrapolated from the low-pressure slope, is shown
for HF and HCl.
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zero-pressure frequency. For HBr Johannsen et al. '

have reported an experimental observation of the phase
transition, so we use their experimental value of P*=32
GPa. Comparing the theoretical and experimental curve
for HBr we notice that agreement at low pressures is ex-
cellent while deviations occur at higher pressure. This is
precisely as expected. At low pressure the barrier is high,
and tunneling and other nonlinear behavior are expected
to be absent. The linear approximations made in this sec-
tion ought to be valid here, and indeed the ——, slope rule
is very well obeyed in this region.

For HF and HCl the phase transition to the symmetric
hydrogen phase has not yet been seen. Here we use the
pressure derivative of the 2& stretching mode frequency
as determined by Raman scattering to predict P*. In Fig.
5 we show the data of Johannsen et al. ' and Hanson and
co-workers for HBr and HC1. We also present new ex-

perimental data for the symmetric stretching mode of HF.
The data on HF is presently incomplete because of the
very weak Raman scattering of this material coupled with
interference effects in the diamonds. Our theoretical pre-
dictions for P* in HF (P*=25 GPa) and HC1 (P*=48
GPa) are also shown in Fig. 5. To our knowledge, no ex-

periments to check these predictions have been performed
on these materials. Promising experiments on HF and
DF are currently in progress and will be published
separately. '

The zone boundary q =~/d mode gets zone folded into
a zone-center mode for the zigzag chain (4 atoms/cell).
This asymmetric stretching (B2) mode has frequency
co„=[(Go+Bi)]' and involves both the hydrogen-
halide potential V and the hydrogen-hydrogen spring con-
stant K. This makes the precise pressure dependence of
this mode more difficult to interpret since Oo decreases
with pressure and 0& increases with pressure. In any case,
this mode is not predicted to go to zero, although it also
will soften with pressure.

C. Quantum Hartree approximation

with the many-body Hamiltonian H,

H = g Pi /2m + g ( Ns /b )(xi b)—
I I

+ —,
' QK(xi+, x,)'—

I

(16)

discussed previously. The ground-state total energy e„,of
Eq. (15) can be evaluated approximately with a Hartree-
type expansion of the many-proton wave function

~
it ) in

We now study the nonlinear and quantum effects
within this simp1e model on the phase transition and
stretching phonon frequency using a many-body
quantum-mechanical approach. Our aim is to resolve the
discrepancies between the linear (harmonic) theory of Sec.
II 8 and the experimental optic-mode frequencies at high
pressure, and to determine whether the conclusion from
the classical model that the phase transition is second or-
der is valid. We begin formally by considering the total
energy per unit cell of the system,

(15)

terms of single-particle wave functions
~
Po):

I
W«i xz ) &

= Q ~
Po(xi —ld) & .

I

(17)

)
1 /4( A e mao( x ——b ) /2R +Be me@I x +—b l /2R

)

=A it/+(x)+BP (x) . (19)

with co, 3, and B as variational parameters. The frequen-
cy co is a mean-field or self-consistent phonon frequency.
Substituting Eq. (19) into Eq. (15) yields the expression
for the total energy,

e„,=(1/2m)(iri a/2 2ABSfi b a—)

+(@s/b )[3/4a +(A +B )b (3/a+b )]
2@g

k — [1/(2a)+(A '+B')b']
Q2

IC(A B)b—+4ii, — (20)

where 0.=—m co/A and S is the overlap integral,
S=(P+

~ P ) =e . Equation (20) is then minimized
with respect to cu, A, and B subject to the normalization
condition

1 —g 2+B2+2gBe —mb'~~ (21)

We first consider the case of zero pressure. As expected,
the minimum total energy obtained from Eq. (20) yields
the degenerate pair of solutions, 3=1 and B=O, or 2=0
and B=1, indicating the hydrogen eigenfunction is com-
posed only of f+ or P . This situation is shown in Fig.
6(a) for the case of HBr. Here the hydrogen atom is local-
ized in one of the wells, indicating a well-defined
asymmetrically bonded structure.

As pressure is increased the central barrier is reduced
rapidly and the wave function spreads out, peaking nearer
x equal to zero, the bond midpoint. For nonzero pressure,
we use the values of P* in Eqs. (6), (7), and (8) determined
by Fig. 5. At high enough pressure, the hydrogen tunnels
into the other well thus altering the symmetry of the

Equation (17) is a product of identical single-particle wave
functions, which is appropriate for the ground state. This
form of the many-particle wave function and the Hamil-
tonian of Eq. (16) leads to the Hartree self-consistent
single-particle equation for otto,

[p /2m+%ii(x b—) /b

+If((x ) —2x(x )+x )] I Po) =e
l
Po) (18)

where the mean and mean-square values of the position of
the hydrogen atom are calculated between the same
ground-state single-particle wave function

~

t(io).
The self-consistent solution to Eq. (18) could in princi-

ple be obtained by a numerical iteration process. Howev-
er, since the single-particle equation [Eq. (18)] depends on
the two double-well parameters, Nz and b, and on the H-
H spring coupling constant K, the functiona1 dependence
of the solution on these parameters would remain unclear.
Instead we employ a variational principle approach to
determine the total energy and use combinations of har-
rnonic oscillator functions localized at the two minima
x =+6,
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(x )q (——B A—)b (0)[(1 P—/P')]'~ (22)

The classical hydrogen position, (x)„ is obtained by
placing the atom at its minimum potential energy posi-
tion;

(x ), =b (0)[(1 P/—P*)]' (23)

0.32'

The quantum and classical results agree in HBr for P & 23
GPa (see Fig. 8) but deviate at higher pressures due to
quantum tunneling.

The quantum nature of these crystals is also evident in
the Raman scattering measurements of the 3 I and B2 vi-
brational mode frequencies as a function of pressure. In
Fig. 9 we compare the classical and quantum theoretical
3

&
-mode optic-phonon energies with experiment for

HBr. ' A precise theoretical calculation of the optic-
mode energies requires a difference in total energy of the
excited and ground states. Since our Hartree wave func-
tion in Eq. (17) is appropriate only for the ground state,
we make the additional approximation that the energy
difference between excited and ground states is twice the
ground-state energy —an exact result for a truly harmonic
system. This possibly could be a severe approximation in
some cases. Our results involving the excited states
should therefore only be taken to be an indication of the
size of the quantum effects to be expected from a proper
treatment of the excited states. The zero pressure
quantum-mechanical energy was fit to experiment by a
slight adjustment of the barrier height +z from its classi-
cal value. The phonon energies derived from our quan-
tum model agree very well with the experimental data. In
particular, the discrepancy present in the classical result
at high pressure has been removed. The final increase in

energy, at P ~P„ is attributed to the increase of the ki-
netic energy of the hydrogen atom due to its increased
confinement.

Since the quantum behavior of these systems is mainly
a consequence of the light hydrogen atom, we expect a
significant isotope effect. We find that DBr is symmetri-
cally bonded at a higher pressure (P,=31 GPa) than HBr
(P, =30 GPa). The deuterium begins to tunnel through
the double-well potential barrier at the higher pressure
P=29 GPa (versus 23 GPa for HBr) so that the pressure
range in which the phase transition proceeds is consider-
ably narrower than that for HBr.

D. Solitons

In the previous sections we have seen how, in order to
describe properly the dynamic properties of these materi-
als, we were forced to abandon the harmonic model and to
make use of an anharmonic, double-well bond potential.
This led to a second-order phase transition under pressure
from an asymmetric bonded to a symmetrically bonded
crystal. Another possible excitation of these materials in-
volves the transformation of material in the right ground
state to the left ground state, i.e., a solitonic excita-
tion. This would involve moving some atoms over
the barrier Nz, an energy which is very pressure depen-
dent and tends to zero at high pressure.

A fully microscopic quantum-mechanical solution of
this problem is not possible, so we consider only the clas-
sical approximation. We consider the Hamiltonian of Eq.
(16), and work in the long-wavelength limit. This
amounts to replacing the discrete lattice, =0,+1, . . . , as
a continuum where now x (t) is replaced by x (z, t) and z is
continuous. The wave equation from Eq. (16) in this ap-
proximation is

T

82

aZ2

4+g
x = x(x b), —

c2 c}t2 Kd2$4
(24)

with d being the lattice constant separating two neighbor-
ing Br atoms along a linear chair and c =(Kd /m)'~ the
"speed of sound" derived from the H—H harmonic cou-
pling. The "speed of sound" c is not the true acoustic
mode speed of sound, but the speed c appearing in the
long-wavelength limit of Eq. (12), co =Qo+c q . Equa-
tion (24) has solutions of the form,

x (z, t) =x (z ut) = b tanh[—(z —u—t)/Wd] . (25)

0.16-I
LU

0.00
QO 8.0 16.0 24.0

PressUre (Qp~ j

FICx. 9. Comparison of experimental (triangles, Ref. 10), clas-
sical theory (dashed line), and quantum theory (solid line) sym-
metric stretch (3 & ) mode energies Acu. The quantum theory re-
moves the discrepency at higher pressures and predicts that the
energy will increase past the critical pressure P, .

The width 8 is given by

8' 1

y(u)
(26)

0a

where y(u)=(1 —u /c )

A schematic of this wave is shown in Fig. 10. The
solution, Eq. (25), represents a localized traveling wave or,
more precisely, a traveling "solitary" kink. It is an excita-
tion connecting material on the left in the left ground
state to material on the right in the right ground state.
The wave travels with velocity v which may be zero. In
fact v is arbitrary except v &c. Other shapes can be con-
structed by adding the partner solution which connects
the right ground state on the left to the left ground state
on the right. The hydrogen halides are an extremely im-
portant candidate for the study of solitons since (i) the
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FIG. 10. Schematic diagram of the kink soliton in a solid h-
drogen halide. The u

i on in a so i y-

li hth
upper diagram shows the position of th

'g ydrogen atom in their double well potential between two
e

heavy halides. The leftmost H atom is
'

th "l f"in e e t ground
state, an the rightmost H atom is in the " '

h "e rig t ground state.
e in soliton given by Eq. (25) is plotted at the bottom of the

diagram. It propagates through the crystal with velocity U, and
connects the two degenerate ground states.

Thus 8' and V d
~ ~

8'~ oo

epend critically on pressure w thwi
~oo, and V0~0 at the phase tran t' Esi ion. stimates

in Sec. III
or and P(0) based on our calculations f HB'

ns o r given
in ec. III and those of HF give W(0)=0.Sde = . and

Q( )=1—3 eV. The energy associated with soliton for-
mation at low pressures is relativel hi h d h
on y e created with high energy probes. However, at

ig pressure the formation energy decreases dramatically
and they may be created thermally. As the phase transi-
tion is approached, the formation of solitons may be the
driving mechanism in the fluctuations of the h dro en

Solitons can form in this model at anany pressure. How-
ever, as pressure increases, the interaction between chains

e nee s to e extended.becomes stronger, and the model d b
For instance, the solitonic states may need to be soliton-
antisoliton pairs to keep the energy finite when interchain

t ne' have c
interactions are strong. Theoretical t d's u ies on polyace-
ty ene ' have considered chain-chain interactions and
have predicted the formation of soliton superstructures. '

The simple single soliton discussed here is, in any case, a
building block for a more complete theory.

III. AB INITIO ELECTRONIC STRUCTURE
CALCULATION FOR HBr

(27a)

and the potential energy is

V= 1 d2 4b 2P~

3d'

1/2

=VQ+O(u /c ) . (27b)

materials form a relatively simple lattice and (ii as we

Let us see how t e
now s ow, the nonlinearities are easil t d b

'
y une y pressure.

et us see how the energy of the soliton is expected to
vary with pressure. The kinetic energy is

4 b Za
y u —, =TQ(1+0 (u'/c') )

In this section we describe our ab initio local-density
approximation (LDA) calculation of the electronic states
and total energy for one particular hydrogen halide, HBr.
These calculations are able to predict entirely from first
principles the optic-mode frequency and the transition to

assumptions made to construct the simple model of Sec.
II. In Sec. IV. IV we discuss similar calculations for H6F6
rings using the Hartree-Fock approximation.

an justi y our use ofWe first briefly review the LDA d
' f

t is approximation for the case of HBr dr an in particular
or ydrogen. Next we describe the construction of the

pseudopotentials for Br used in our calculation. Finally,
we iscuss our results for the total energies and electronic
states of a linear form of HBr in both th e symmetric and
asymmetric phases.

The approximate form of these equations is for small ve-
locities. At zero velocit hy, the minimum energy to create a

~ ~

soliton is VQ
———

( 'Kb ~~)'—0 3 Q %f/ g I . The pressure dependence
of the width 8 and minimum energy of formation are

W(P) = W(0)(1+ 2
P/P')' (1 P/P*)—

and

VQ(P) = VQ(0)(1+ 2
P/P*)' (1 P/P*)—

A. Local-density approximation

Hohenberg and Kohn and Kohn and Sham showed
an in omogeneous elec-that the ground-state energy of h

tron gas in the potential of the ions V ( )
's; „r is a unique

unctional of the electron densit ( ) A
~ ~ ~

i y n r . ssuming that
n (r) 1s sufficiently slowly varying, Kohn and Sham34 de-
rive the local-density approximation (LDA) of the tota
electronic energy,

'
n o t etotal

~LDA
2

E, (n)=T[n]+ f V;,„(r)n(r)d r+E — „„r r &, d rd r'+ n(r)s„,(n(r))d r .

Here T[n] is the kinetic energ and E (n)
'

gy an E„&n & is the exchange-correlation ener functiona
1 ti 1 obit 1 Q;, d i i

' ' E (28) ith tto
tll i 1 1

(28)
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2 t

+ V;,„(r)+e 1 d r', +p„,(n (r)) g;(r) =E;g;(r) . (29)

The terms are the kinetic energy, electron-ion interaction, electron-electron Hartree repulsion, and the exchange-
correlation potential,

p„,(n)= [nc„,(n)] .
d

dn

9
4m.

0.916 Ry
r, /ap

3e
4

(30)E„(n)=—

The exchange-correlation energy is broken up into an exchange term and a correlation term, e„,(n)=E„(n)+s,(n). The
exchange potential of the free-electron gas is

1/3

where n =( ', nr, )
' —and. ao is the Bohr radius. In the high-density limit (r, ~0), Gell-Mann and Brueckner find the

correlation energy

E, =(e m/2R )[(2/m )(1—ln2)ln(r, /ao) —0.096+0(r, )] .

In HBr the average density r, is =2.4ap. A number of interpolation formulas for c, exists in the literature for large and
intermediate r, . We use the Monte Carlo results of Ceperley and co-workers ' as parametrized by Perdew and
Zunger,

0.2846
Ry, r, /ap & 1

. 1+1 059[(.r, /ao)]'~ +0.3334(r, /ao)

[0.0622 ln(r, /ao) —0.0960+0.0040(r, /ao)ln(r, /ao) —0.0232(r, /ao)] Ry, r, /ao & 1 . (31)

(32)

where a is —, for the exchange only. Typically a is chosen
between —, and 1 which includes correlation effects in an
average way. The total electronic energy using Eq. (28) is,

Et t XT+XU;,„+X U„+X U„,

=NB /2ma Ne la+ ,'6N e l—a—
—N ~ (0.319ae /a)

=N[fi l2ma Z'(N)e la], — (33)

where the four terms are the kinetic, electron-ion,
electron-electron, and exchange-correlation energies. The

We now briefly discuss the use of the LDA for hydro-
gen. Since hydrogen has only one electron in a relatively
compact orbital, it might be expected that the local densi-
ty approximation fails for this atom. In the LDA, the
single electron is allowed to interact with itself via its own
Coulomb field, and to correlate with itself. However, as
shown by Gunnarson et al. , the errors due to the LDA
for hydrogen are no larger than for other atoms if the fact
that the spin is unpaired and the exchange-correlation en-

ergy for a spin polarized electron gas is used.
To see the origin of the difficulties, and their resolution,

consider a trial wave function for the hydrogen ground
state of the form g=e "~'/(era )', which is the same as
the exact wave function except that a is considered as a
variational parameter. The expectation value of the ener-

gy can then be evaluated analytically in the LDA if we re-
place the exchange-correlation energy given by Eqs. (30)
and (31) by the simpler Slater form

E„,(n(r)) = —(a9e /8n. )[3~ n(r)]'~

quantity N is the occupation number of the orbital which
is 0, 1, or 2 for H+, H, and H, respectively. The quan-
tity Z*(N) [=1——,6N+N' (0.319)a] acts as an effec-
tive charge for the hydrogen atom.

The total energy in Eq. (33) has two errors; the electron
interacts with itself and exchanges with itself. Perdew
and Zunger have proposed corrections to these self-
interactions, which in this case amount to the removal of
these two terms. Without their removal, however, one
sees that these two terms tend to cancel. Minimizing the
total energy in Eq. (33) with respect to a yields
E„,= —NZ' Ry. For the present we consider the one
electron hydrogen atom, X =1. The value of Z* is then
1.01 and 0.90 for a equal to 1 and —,', respectively. The
total energy is then —1.01 Ry and —0.81 Ry, respective-
ly. These analytic results bracket from above and below
the numerical result of —0.89 Ry obtained by integrating
the radial equation using the exchange-correlation energy
of Eqs. (30) and (31).

The 11% error in the total energy for the numerical
solution of the hydrogen atom in LDA can be reduced to
2% when polarization effects are taken into account. For
a He atom, where the spins are compensated, the error for
the total energy in the LDA using the exchange-
correlation energy of Eqs. (30) and (31) is found to be
2.3%. For the hydrogen halides, which are wide-band-
gap insulators, the spins are paired and we expect the er-
rors due to hydrogen to be no worse than for other atoms.

One remaining difficulty of the LDA which applies not
only to H, but also to the halides F, Cl, and Br as well, is
that the negative ions H, F, Cl, and Br are all ex-
perimentally stable, while the LDA finds that they are
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not ' ' (see Fig. 11). Our calculations of solid HBr
described in Sec. III show, however, that hydrogen, and
therefore Br, are roughly neutral atoms. Thus the insta-
bility of the negative ions is not an important considera-
tion in our work, at least in HBr.

B. Br pseudopotential

V„„(r)= Z„/r —g c;erf[(a' ")'~ r]
i =1,2

(34)

where Z, denotes the valence charge and c; and a,""are
fitting parameters, and a short range angular momentum
dependent potential VI(r)

The Br pseudopotentials were constructed following the
method of Hamann, Schluter, and Chiang. The
pseudo —wave functions fit the true (full core) wave func-
tions outside a radius r,„,(l). The full core and pseudo-
atomic wave functions for the s and p orbitals of Br in the
s p configuration are shown in Fig. 12. The values of
r,„,(l) chosen were r,„,(l)/r~„„(l)=1.3, 1.3, and 1.5, for
s, p, and d wave functions respectively, where r~„z(I) is
the radius of the outermost peak in the full core wave
function. We found this cutoff was accurate, yet soft
enough to be useful in a calculation which uses a finite
plane-wave basis. The s- and p-ionic pseudopotentials for
Br [Fig. 12(c)] were produced from the ground state s~p~

configuration. The d pseudopotential was produced from
the s 'p d configuration which keeps the d wave
function somewhat confined.

The ionic pseudopotentials were then fit to analytic
functions for computational convenience. Cfood fits were
obtained using the functional form of Bachelet et al.
The pseudopotentials (in atomic units) are split into a
long-range, angular momentum independent core poten-
tial V„„(r),

—a (1)]r2VI(r)= g [A;(I)+r A;+3(l)]e
i =1,3

(35)

V„„(0)= —(Z, /r,'„', )Q,
and (iii)

lim —Z, c1
r —+0

erf[(a &'"') ' ~ r ] (Z„/r,'„",)—P,

where r,'"„,= —,
' [r,„,(s)+r,„,(p)+r,„,(d)]. Condition (i) is

imposed to guarantee that the potential must be nearly
equal to —Z„/r for r greater than r,'„",. Condition (ii)
simply enables one to adjust the potential at the origin to
a reasonable value; a factor of Q (=2—3) times that at
r,'"„,. The last condition, (iii), ensures by adequate choice
of P that the core pseudopotential is smooth. This pro-
cedure leads to a transcendental equation which is easily
solved numerically. Solutions were found when Q and P
satisfied Q & P and Q & 1, and were chosen to be 2 and 4,
respectively.

The remaining potential VI(r) was fit by a least-squares
procedure for several choices of exponential factors a;(I).
The six A;(I) parameters for each choice of a;(I) are
determined through the inversion of a 6)&6 matrix. All
of the fitting parameters are listed in Table I.

C. Ab initio calculation for HBr

where l is the angular momentum s, p, or d. The core pa-
rameters c& and c2 satisfy the condition c1+c2——1.

Since V„„(r) is not uniquely defined, a simple pro-
cedure involving only small exponents, was used to obtain
the remaining three core parameters. In this method the
three core parameters c&, e&"', and az'" are uniquely
determined by the simple boundary conditions, (i)

V„„(r',"„,) = —Z„/r,'„", ,

0.0

We have computed the electronic states and total ener-

gy of HBr in the LDA using a linear chain form of solid
HBr. The geometry of this linear form is simplified from
the base-centered-orthorhombic "kinked-chain" structure

W —0.6

TABLE I. Coefficients and decay constants for the core [Eq.
(34)] and angular-momentum-dependent [Eq. (35)] pseudopoten-
tials for Br. We use atomic units.

, ,L
0.0

I I I

0.2 0.4 0.6 0.8
EXCESS CHARGE rn

1.0

FIG. 11. Plot of the energy eigenvalue E; for the outermost
valence electron for the negatively charge ions H™,Br™,
Cl™,and F™.The exchange correlation used is given in Eqs.
(30) and (31). The appearance of positive eigenvalues indicates
an unbound system.

core
l
core
I

a;(s)
A;(s)
A;+3(s)
a;(p)
A;(p)
A;+3(p)
a;(d)
A;(d)
A;+3(d)

1.69
2.270
1.73

—16 830.8403
1219.0349

1.82
4047.0411

—458.3421
2.04

921.5252
—209.6522

1.35
—1.270

1.91
16 712.4864

1952.9406
2.09

—4004.3060
—675.2193

2.77
—524.7374
—763.9507

3.53
128.0605
71.7046

4.07
—35.6983
—25.8234

4.03
—390.0447
—181.2859
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of Fig. 1, to the base-centered-tetragonal "straight-chain"
structure shown in Fig. 4. This simplification is motivat-
ed by the fact that the hydrogen and covalent bonds along
the chain are more important (at least as far as the hydro-
gen atom is concerned) than interchain bonding. The im-
portant practical simplification of the linear structure is
that it has reduced the number of geometric parameters to
three compared with five in the zigzag chain. Variations
of five geometric parameters to find the minimum energy
configuration was judged to be impractical, and would
add little physical insight into the problem. Furthermore,
the linear chain has increased the number of available
group operators, an additional simplification. The three
geometrical parameters (see Fig. 4) are the chain-chain

lattice constant a, the Br-Br intrachain distance d, and
the fractional hydrogen position r [=dH B„/(d/2)]. ~e
have fixed the lattice parameter a to the value a =5.78 A,
which is the average of the two different interchain lattice
constants ( a and b) of the original base-centered-
orthorhombic crystal.

The total energy for a given geometric configuration
(r,d, a) is computed using the self-consistent pseudopo-
tential momentum space formalism of Ihm, Zunger, and
Cohen. The total energy is written as

E„,(r, d, a)=T(Ir, d, a I )+ g V(g; Ir, d, aj)
g

+ C( I r, d, a I ),

(a)

0. 5 -' 0. 5—

—0. 5

(c)

L 3

I

2 3

Fgo. l2. Comparison of the (a) pseudo-s wave functions and (b) p wave functions of Br with the full core wave functions. (c)
shows the s-, p-, and d-Br pseudopotentials. The pseudopotentials are norm conserving and the pseudo —wave functions are identical
to the full core wave functions in the tail region. Atomic units are used.
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where T is the kinetic energy, C is a lattice-dependent
quantity which is independent of the valence charge densi-
ty and V(g; [~,d, a ] ) depends on the valence charge densi-
ty and includes the Fourier transform for reciprocal lat-
tice vector g of the electron-ion and electron-e1ectron in-
teractions. We use four special k points to perform the
sum over the irreducible wedge of the Brillouin zone, and
use a plane-wave basis which includes plane waves with
kinetic energy up to 140 eV (=10 Ry). The pseudopoten-
tial described in Sec. III B was used for the seven valence
electrons of Br, while we use the full core potential (1/r)
and not a pseudopotential for hydrogen.

The band-structure energies E„k and wave functions
are determined from the Schrodinger-type single particle
Eq. (29). We show in Fig. 13 the band energies E„k for
the three cases: (a) Zero-pressure Br-Br distance d (3.91
A) with H symmetric (r= 1) between Br, (b) zero-pressure
Br-Br distance d (3.91 A) with H at its asymmetric
minimum energy configuration (v=0.75), and (c) H at the
symmetric position (&=1.0) with the Br-Br distance
d =3.21 A which is near the predicted phase transition.
The four lowest bands are occupied by electrons, and the
material is an insulator for all cases shown. The lowest
five bands, starting from lowest energy, correspond to
s(Br), a bonding band between sp (Br) and s(H), a pair of
bonding p (Br) bands, and an antibonding sp (Br) and
s(H) band. Here the p orbital is perpendicular to the
chain, and the p is along the chain. Notice that the p
and s(Br) are little affected by Br-Br distance d or H posi-
tion r. Large changes occur only in the sp (Br)—s(H)
bonding and antibonding bands. Note in particular at
zero pressure [d =3.91 A, Figs. 13(a) and 13(b)], the
bonding-antibonding gap more than doubles when H is
moved to its equilibrium off-center position. The

sp (Br)—s(H) bands also become narrower for asym-
metric H, since the bonding is mainly between the HBr
molecular units and is less cooperative. Also, for asym-
metric hydrogen the occupied bonding sp (Br)—s(H)
bond is lowered in energy overall leading to the asym-
metric configuration being the lower energy state.

At the phase transition [Fig. 13(c)], the bonding
sp (Br)—s(H) has "punched" through the p bands, so
that the direct gap at I has changed character. The
bonding-antibonding sp (Br)—s(H) gap has been reduced
from =7 eV at zero pressure to about half that at the
phase transition. However, the material is still an insula-
tor, and an insulator-metal phase transition has not yet
occurred.

The character of the bonding can be seen from the
charge-density contour plot shown in Fig. 14. In this fig-
ure we show the charge-density contours computed self-
consistently for d =3.91 A (zero pressure) with (a) H at
the symmetric position (r= 1.0) and (b) at the asymmetric
minimum energy position (r=0 75) A. s c. an be seen,
there is very little interchain interaction in either the sym-
metric or asymmetric phase, with the charge being used to
form bonds along the chains. Within the chains we see
that, as the hydrogen goes from the symmetric to the
asymmetric phase, an extra peak in the charge-density
forms corresponding to the formation of the HBr covalent
molecular bond. These "pear-like" charge densities in the
asymmetric phase have a slight overlap from one mole-
cule to its neighbor due to the hydrogen bond.

Moving the hydrogen to the symmetric position [Fig.
14(a)] causes the charge density to spread out more and
the covalent bonding peak is lost. Unlike an alkali atom
in the (symmetric) alkali halides, the hydrogen atom re-
fuses to give up its electron and form an ionic solid. The

10.0—

8.0

10.0

8.0

10 0

8.0

4.0 4.0 4.0

0.0—
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—12.0
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H

FIG. 13. Band structure for solid HBr from the ab initio LDA method described in Sec. III. The lowest five bands are the s(Br),
sp (Br)—s{H) bonding, two p (Br) bonding and sp (Br)—s(H) antibonding bands. (a) and (b) show symmetrically (a) and asymmetri-
cally (b) bonded hydrogen at zero pressure (or d =3.91 A) ~ In asymmetric phase (b) the energy is minimum and the atoms form H-Br
covalently bonded molecular pairs with very little interactions between the pairs so that the bands are relatively flat. In the symmetric
state, however, the hydrogen interacts equally with both of its neighboring halide atoms so that the dispersion in the bands is in-

0
creased from that of the asymmetric phase. Past the phase transition pressure (d =3.21 A) to the symmetric phase (c), we find the
band width has increased dramatically from its zero pressures values. Note in (c) that the sp (Br)—s(H) bonding band has "punched"
through the pressure insensitive p (Br) bonding bands giving the band structure a totally new character.
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ENT FIELD (SCF) CALCULATIONSIV. SELF-CONSISTE
LID HFON H6F6—A MOLECULAR MODEL FOR SO

e case of HF, a molecule was chosen that has local
geome ry yetr ver similar to t at in e

orrelation is small onn that the effect o e ectron corre aknown a
h d' ciation energies of the

45 o of o h
d ro erties such as issocia

oligomers of HF (Ref. 45 or o proce

HF HF+F . ' e areW then fairly sure of arriving
a ood re resentation of the energetics of displacingatag p

0 he other hand, to avoid basisatoms as at the SCF level. On t e o er
rs one needs a fairly large basis setset superposition errors one nee s a

one set of polarization functions. e
6-316* f. hi hemployed the widely used 6-316 e . w

of lattice constants, optic mode frequencies,TABLE II. Comparison between yn theor and experiment o at ice c
H is the symmetric stretchd dissociation energies at p . H iszero ressure. Here co, is

are the frequencies derive) ffrequency and co& is the yas rnmetric stretc 2 rno
d sing the "average tunnel p pps lit a roximationation with those denve using

was the same
using ethe harmonic approximatio

tial. To determine co~ ( ourt poweh er) we assumed co, —cu& wfor a single fourth power potentia . o e
as that found in the harmonic approximation.

d(H —F) (A)
d(F . F) (A)
cu, (harmonic)

(cm ')

co, (fourth power)
~, (cm-')
E(SCF) (hartrees)
AE (kJmol ')

'This work.
Reference 18.

'References 4 and 5.
Reference 8.

H6F6'

0.901
2.546

3947
4192
3377
3622

—100.0256
36.5

(HF) „
0.918

3967
4169

27.2

Solid HF (expt)

0.97'
2.50'

3045
3386
3045
3386
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tree and A units. Th
TABLE III. Parameters of the fourth power potential [Eq. (4)] and total energies per HF unit for the H F I Iuni or e 6 6 moecu ar ring in har-

n units. The barrier height /t~ (in eV) and asymmetric displacement b (in A) [Eq. (1)] derived from 2 and D as a function of
F . . F istance are also listed.

d(F F)
(A)

2.700
2.546
2.400
2.200
2.150

2.100
2.000

100+C,
(hartrees)

0.024 69
0.005 00

—0.009 53
—0.016 72
—0.014 87

—0.01099
0.004 38

(hartrees/A )

—0.5460
—0.5033
—0.4217
—0.1849
—0.0919

0.0201
0.3159

D
(hartrees/A )

1.4929
2.0601
2.9018
4.8278
5.5297

6.3547
8.4734

/t/~ = A '/4D
(eV)

1.36
0.84
0.42
0.05
0.01

b=V A /2D
(A)

0.428
0.350
0.270
0.138
0.091

d(H-F)
(A)

0.916
0.921
0.930
0.963
0.984

1.050
1.000

100+E
(hartrees)

—0.025 01
—0.025 59
—0.024 70
—0.018 46
—0.015 25

—0.01099
0.004 38

core function represented by six Gaussians and a split
valence function represented by three and one Gaussians,
respectively. There are in addition d-like polarization
functions on F and p polarization functions on H. With
this basis set for HF one finds for the bond length in HF,
d(H—F)=0.901 A (observed 0.917 A); for the harmonic
frequency, co, =4491 cm ' (observed tu, =4139 cm ');
and for the SCF energy —100.0117 hartrees.

The molecule chosen to model the crystal is H6F6 with
6/m (C6„) symmetry and with the H atoms placed along
the F . F line. This resembles the geometry found
within experimental error in the crystal. The
F - . F . F angle of 120 is also very close to that ob-
served in the crystal. The geometry was optimized subject
to the constraint that the H atom lay on the F . . - F line.
We compare in Table II our calculated values with the re-
sults of Beyer and Karpfen' who performed SCF calcula-
tions for a bent one-dimensional crystal using a somewhat
larger basis set than ours, and with experimental results
for solid HF. In Table II E is the energy per HF unit and
b,E is the energy to break a H bond, i.e., the energy of dis-
sociation to monomer. The symmetric and asymmetric
zone center H—F stretching frequencies were calculated
in the harmonic approximation in good agreement with
the results of Beyer and Karpfen (&K).

The energy as a function of the displacement of H was
also found to be accurately given by a fourth power poten-
tial as shown in Fig. 18. We also calculated the frequency
of the symmetric mode using the "average tunnel split ap-
proximation" of Sec. II C and derived the frequency of the
asymmetric mode by assuming that the difference from
the symmetric frequency was the same as in the harmonic
case. The results are in excellent agreement with the fre-
quencies observed in the crystal suggesting that our mol-
ecule does indeed model the crystal rather well. The fact
that we get a higher energy for dissociation to monomer
than BK is indicative of basis set superposition error as
the value estimated from thermodynamic data is 27.5

—I 51kJ mol . However, as we are primarily concerned with
the energy as a function of hydrogen position in the mole-
cule, such errors appear to be relatively unimportant.

The parameters of the fourth power potential are listed
in Table III for energies in hartrees per unit HF and dis-
tances in A. Also listed is the minimum energy H—F
bond length and the energy E at that configuration.

We have considered theoretically the solid phases of the
hydrogen halides HF, HCl, and HBr under pressure, and

U

~ 0.9 ;

O.Q
—Q7 —Q4

x (R)
0.0 0.4

FICs. 18. Plot of the total energy for an H6F6 molecular ring
as a function of the displacement (x) of the H atom from the
midpoint between the F atoms along with the fit to the fourth
power potential [Eq. (4)].

From the parameters we can obtain the barrier height P~
and the asymmetric displacement b by comparing Eq. (4)
with Eq. (1). The results for Pz and b are shown in Table
III. As can be seen the barrier P~ is very sensitive to pres-
sure while the asymmetric displacement b varies more
slowly in agreement with the qualitative predictions of
Eqs. (6) and (7).

The nature of the phase transition may also be visual-
ized by Fig. 19(a) and by the contour of Fig. 19(b) which
plot the total energy for an H6F6 ring as a function of the
hydrogen displacement x from the symmetric position
and d(F . F). Figure 19(a) can be compared to the
similar Fig. 16 for HBr. These figures clearly demon-
strate the cooperative relationship which exists between
the hydrogen and the halide-halide displacement.

V. CONCLUSION
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have found them to be nearly model systems to study the
transition from a hydrogen-bonded molecular crystal to a
covalently bonded crystal. A simple model with very few
parameters was used to describe the hydrogen-halide sys-
tem, and, in particular, it was shown how pressure acts as
a simple tuner for the nonlinearities of the system. The
doubly degenerate ground state allows for the possibility
of soliton formation, and the light mass of the hydrogen
makes quantum effects important to consider for these
materials. We find as pressure is increased, the barrier
reduces rapidly, and the crystal undergoes a second-order
phase transition from the asymmetric to the symmetric
ground states. The inclusion of quantum effects did not
drastically change the nature of the phase transition, but
did change hydrogen symmetric stretch frequencies. Ab

'tio LDA calculations have been performed for HBr in a
linear chain form and for an H6F6 molecular ring mode
for solid HF. These calculations lend support to many of
the ideas of the simple model. It is found that at zero
pressure the barrier between left and right ground states is

large enough (0.8 eV and 0.6 eV for HF and HBr, respec-
tively) so that very little hydrogen tunneling is expected to
occur in the ground state. The hydrogen vibration fre-
quencies derived from these models are in excellent agree-
ment with experiment, as are the asymmetric displace-
ments. At higher pressure we find the ground state goes
to the symmetric bonded phase. This phase is found to
occur when d=3.25 A for HBr and at d=2. 15 A for HF
where d is the halide-halide displacement.
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