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Exciton in a slab of polar crystal
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In this paper, a weak-coupling exciton-phonon system in a polar-crystal slab is studied. A unitary
transformation to the Hamiltonian is carried out, the effective Hamiltonian of the exciton-phonon
system is obtained by variational technique. The variation of the self-energy and the induced poten-
tial with the thickness of the slab is calculated. Eventually, the ground-state and the first-excited-
state energy of the exciton in the slab for different thicknesses of the slab are calculated by the vari-
ational method.

I. INTRODUCTION

Because of the practical interest in the technological
development of heterostructures and superlattices, there
has been great interest in recent years in the electronic
properties in a slab. ' Many properties of a crystal slab
relate to the behavior of the exciton in the slab; so it is
very important and very interesting to study the behavior
of the exciton in a polar-crystal slab. The exciton in a
polar-crystal slab is different from that in a three-
dimensional polar crystal, and their behavior is very dif-
ferent. That is because, on the one hand, the homogeneity
along the direction normal to the slab plane is destroyed,
and on the other hand, in the polar slab the interaction of
the electron (hole) with the surface-optical phonons must
be considered. In their study of the exciton in a slab, Lee
and Lin restricted the crystal to nonpolar crystal, and did
not consider the interaction of the exciton with phonons.
In fact, in the polar-crystal slab, this part of the interac-
tion has a great influence on the behavior of the exciton.
In this paper we investigate, for the first time, the
exciton-phonon system in the polar-crystal slab, taking ac-
count of the interaction of the electron (hole) with the
phonons which include the bulk longitudinal-optical pho-
nons and the surface-optical phonons.

Licari and Evrard have developed the Frolich Hamil-
tonian for the interaction of the electron with phonons in
a polar-crystal slab. The Hamiltonian includes the in-
teraction of the electron with the bulk longitudinal-optical
(LO) phonons and the interaction of the electron with the
surface-optical (SO) phonons. However, in his study of
the polaron in a polar slab, Licari only took account of
the interaction of the electron with the bulk LO phonons.
Taking account of both the interaction of the electron
with the bulk LO phonons and the interaction of the elec-
tron with the SO phonons, Liang and Gu et aI. have fur-
ther studied the polaron in the polar slab. In this paper,
both the interaction of the electron with the bulk LO pho-
nons and the interaction of the electron with the SO pho-
nons are being considered, the behavior of the exciton-
phonon system in the polar-crystal slab is investigated. In
Sec. II, after the Hamiltonian of the polaron in the polar
slab has been extended, the Hamiltonian of the exciton-

phonon system in the polar slab is obtained. In Sec. III,
after a unitary transformation is carried out, the Hamil-
tonian is divided into an unperturbed part and perturbing
part, and the unperturbed part of the Hamiltonian is
solved. In Sec. IV, extending the perturbative method
which was used by Liang et al. , and using the
perturbative-variational method, ' we obtain the effective
Hamiltonian of the exciton in the slab. The effective
Hamiltonian includes the self-energy and the induced po-
tential, which are produced by the interaction of the elec-
tron (hole) with the phonons. In Sec. V, using as an ex-
ample the II-VI compound GaAs, in which the coupling
of the electron with the phonons is weak, we perform the
numerical evaluation. Furthermore, with the variational
method, the ground-state and the first-excited-state ener-
gies of the exciton in the slab for different thicknesses of
the polar-crystal slab are obtained. In the last section, the
results are analyzed and discussed.

II. THE HAMILTONIAN

Consider a slab of polar crystal with thickness 2d. As
shown in Fig. I, the slab occupies the space for

~

z
~
(d,

and when
~

z
~

& d, the space is a vacuum.
Now we will give the Hamiltonian of the Wannier

exciton-phonon system in the polar-crystal slab. For sim-
plicity, suppose the electron in the Wannier exciton is in
the parabolic monoconduction band, and the hole is in the
parabolic monovalence band. In the effective-mass ap-
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FIG. 1. Geometry of the polar-crystal slab.
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where m, and m~ are the band mass of the electron and
the hole, respectively; mp the mass of the electron in the
vacuum; Vp and Vp the depth of the potential well;
P„, P„P~„and P~ the momentum of the electron and
the hole in the z direction and the x-y plane, respectively.

The interaction between the electron and the hole is"

proximation, the electron (hole) can be considered as a
free particle moving in a square potential well. A zero
point of energy being chosen properly, the Hamiltonian of
the moving electron and hole in the polar-crystal slab can
be written as'

of the electron (hole) with the bulk longitudinal-optical
(LO) phonons and the coupling of the electron (hole) with
the surface-optical (SO) phonons, but we need not consid-
er the coupling of the electron (hole) with the bulk
transverse-optical (TO) phonons. ' For the exciton being
studied, the Hamiltonian of the phonon field can be writ-
ten as

Hph HLQ +HsQ

LQ ~ k, m, p k, m, p LO ~

k, m, p

Hso ——g bq ~bq pfuoso,

(5b)

(Sc)

where k and q are the two-dimensional wave vectors of
LO and SO phonons, respectively, m is the quantum
number of the z component of the wave vector of the bulk
LO mode, m =1,2, 3, . . . , N/2. p =+ is the parity (+ is
even or —is odd). m is an even number when p = —,
and m is an odd number when p =+. aq z (a~ ~) and
b q ~ ( bz ~ ) are creation (annihilation) operators for the
LO and SO phonons, respectively. coLQ is the frequency
of the LO phonons, cosQ the frequency of the SO phonons,
coso is determined by the equation

H, p
——— 2

(3)
(eo+ 1)+(eo —1)e

(e„+1)+(e„—1)e
(6a)

where e is the optical dielectric constant of the polar
crystal.

With the interaction of the exciton with the phonons
not being considered, the Hamiltonian of the exciton in
the slab can be written as

H„=H, +Hh +H, h .

In the polar-crystal slab, we only consider the coupling

2 2
coLQ =coTo( Eo/E ) (6b)

coTQ is the frequency of the bulk transverse-optical pho-
nons, ep the static dielectric constant.

The Hamiltonian H, Lo of the electron —LO-phonon in-
teraction and Hamiltonian H, so of the electron-SO-
phonon interaction developed by Licari and Evrard can
be written as

He Lo= g B*e-
k m =1,3,

cos
mmz,

m~
2d

1/2 k, mp +
m =2,4,

sin
mnz,

mal

2d

1/2 ak, m, p +H. C. (7)

sinh(2qd )
e-so

q

1/2

e ~
I
C*e '[G+ (q z, )bz + + G (q z, )bz ]+Hc. I .

We can extend (7) and (8) easily, " and can get the hole-phonon interaction Hamiltonians Hh Lo and Hz so

Hh Lo = —g-
k m =1,3,

cos
m 7jzp,

2d

m7T

2d

2 1/2 km p+
m =2, 4,

sin
2d

m wz~

28

1/2 +k, m, p +H. c.

1/2
sinh(2qd)

h-so
q

e ~"IC*e "[G+(q,z~)hz++6 (q,z~)bz ]+H.c.I, (10)
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where

4&' 1B*=i AcuLo
V

1
1/2

6O

1/2

C"=i irip~To(ep —e ) (12)

G~(z, q) =

cosh( qz) /cosh( qd )

(e„+I ) —(e„—1)e

q
—q lz I / -qd

(e„+1)+(e„—1)e

(e„~1)—(e„—1)e
/z f&d

(ep+ 1)—(ep —1)e

(e„+1)—(e„—1)e

(ep+ 1)—(ep —1)e

(13)

G (q,z)="

sinh(qz)/cosh(qd)

(e„+1)~(e„—1)e

(e„+1)+(e„—1)e

(&p+ 1)+(ep —1)e
(14)

( e„~ I) ~ ( e —1 )e

(e„+1)+(e„—1)e q (ep ~ 1)~ (ep —1)e—2qd

p, (pi, ) is the projection of the electron (hole) position vector onto the x-y plane. A is the surface area of the slab and V
the volume of the slab.

Summarizing the above, we can obtain the Hamiltonian H of the exciton-phonon system very naturally,

He +Hh +He-h +Hph +He-LO+He-SO+Hh-LO+ h-SO

In the x-y plane, we introduce the center-of-mass coordinate:

p +~2ph p=p ph s1=m /M s2=mh/M M=m +mh p m mh

Hence (15) can be rewritten as

Pez Phz PH=
2me 2mh 2M 2p

2

2 leap
+ + ak, m, yak, m,p~LO+ g q p q,p ~SO

e„[p ~(z, —z„) ]

k, m

1/2

+ sinh(2ad)
e q"[6*[V& +(z„zi, ,p)bq + + Vq (z„zi, ,'p)bq ]e 'q' +H. c.I,

+ g [B*[Wkm +(z„zi„'p)ak m ++ Wk m (z„zi, ',p)ak m ]e '"' +H. c. I

(16)

where

Wk ~(z„zp, ,p) =
cos

m 7TZe

2d —rs2k p
2 1/2 ~

cos
m ~zh

2d ts&k p
1/2 +

& m 1 ~3y e e e

m7T

2d
k2+ m~

2d

Wk (z„zh ',p) =
sin

m&
2d

—is2k.p
-2-1/2 ~

sin
m 7Tzh

2d lslk p. 2'-1/2 e, m =2,4, . . .
mw

2d

(18)

and

V, +(z„zh.,p)=G+(q, z, )e ' —G+(q, zh)e (19)

III. UNITARY TRANSFORMATION

It is easy to prove that the projection of the total momentum of the exciton-phonon system onto the x-y plane, AKll,

Pll+ X ak, uak fiK+- g b b fiq, (20)
k, m, p
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commutes with the Hamiltonian H, hence AK~I is a constant of the motion. Therefore we can introduce the following
unitary transformation in order to eliminate R, the coordinate of the exciton center of mass in the x-y plane

U= exp iK~~.R—i g ak pa„pk R . i —gb qpbqpq. R (21)
k, m, p Q~P

After some algebraic manipulations, we find the transformed Hamiltonian

~= U 'HU=A o+A ) .
2 2 2 2 2 2

~0 +~2D+ + + g ak, ,pak, ,p(k ++I )+ g
bqpbqp(e'+iso�)

(22a)

(22b)

[p'+(, — )']' '
g2

2M

'2
2a km, pa, k m pk —g a k m p a km, p~

k, m, p k, m, p

+ gbqpbqpq —gbqpbqp9 — g ak m pakm pk K!!— gbq pbqpq K~~~~

q*p qp k, m, p

(22c)

where

+ g a k, mp, ak, m, ,p bq, p bqp bqp kq+~e, h-LO+ ~e, h-so
k, q, &f,p

H2D ——

2p

, h Lo ——g IB*[Wh +(z„zh,p)ak + + Wh (z„zh,p)a~ ]+H.c. I,
k, m

(22d)

(22e)

1/2
sinh( 2qd )

e, h-SO
q

e q [C*[Vq +(z zh'P)bq + + Vq (z zh'P)bq ]+H.c j (22f)

and

fi ug = flCOLO,
A uso2 2

2M
=&~so- (22g)

Equation (22d) is the Hamiltonian of a two-dimensional hydrogenlike atom system, where k is a variational parameter
which can be determined with the perturbative-variational method. '

Under conditions of the weak electron- (hole-) phonon coupling in the thin slab, we can consider A 0 as the unper-

turbed Harniltonian, and ~& as the perturbing Hamiltonian. '

For simplicity, and without losing generality, we discuss the slow exciton. For a slow exciton, the first term in W
the translational energy of the exciton in the x-y plane, can be neglected. Then, the unperturbed Hamiltonian 4 0 (22b)

can be divided into three parts,

MO ——H20+ Hq +H
~
~, (23)

where the first term is the internal motion energy of the exciton on the x-y plane. It has the form of the two-

dimensional hydrogenlike atom system. The second term is the Hamiltonian of the electron (hole) moving along the z

direction. The third term is the Harniltonian of the phonon field. We will give their eigenfunctions and eigenenergies

separately.
We first give the solution of the two-dimensional hydrogen atom system; the eigenenergy and eigenfunction are'

F. (n)= —e A, le 2a0(n + —, ) (24)

P„((p,k) = —e''PR„((2p/(n + —,
' )a0)

1 2„(n + ~1
~

)! (2n +1) (" + Y~)

V'2 '
( —

~& ~)! 2

—1/2

2p —p/(Pl +—)00

(n + —, )a0

2p

(n + —, )ao

(25)

where Lp(p) is the Laguerre polynomial; Aa0 ——a0=e A' /pe; the principal quantum number n =0, 1,2, . . . ; for a given

n, the angular momentum quantum number 1 =0, + 1, +2, . . . , +n.
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Now consider the eigenfunctions and eigenenergies of the exciton moving in the z direction:

Hg ——.

2 2

iz, i, izhi &d
2m 2m'

2 2
~ez ~~z+ +Vo+Vo

2mp 2mp

(26)

For simplicity, in (26) suppose Vo and Vo~ac, i.e., suppose the electron (hole) are moving in a one-dimensional
infinite-depth square potential well. The eigenfunctions and eigenenergies' are

I)~ 12~—sin (z, +d) sin (zh+d),
~
z, ~, ~

zh
~

(d
(27)

2g2I 2 ~2g2I 2

El l ——
z + z (ll, lg ——1,2, 3, . . . , N) .

8m mh
(2g)

In the following, we give the eigenfunctions and eigenen-
ergies of the phonon field,

2 2g &k, m, p k, m, p( + l )
2M „

2

+ g qp qp(q +uso)
q,p

(29)

and its relevant eigenfunction is'

I'P((&=
I (nkmpl tnqpl& (31)

where nk p and nq p are the LO Phonon number and SO
phonon number, respectively, n k p

——0, 1,2, . . . ,
nqp

——0, 1,2, . . . ; [nk p) and [nqp) are the abbreviations
Of [. . . ,nkmp, nk m p, . . . J and [.. . ,nqp, nq p, . . . J,
respectively.

Summarizing the above, we can write the. eigenfunc-
tions and eigenenergies of A p as

I'P&= Ik., l(p ~)& Ill, (z. )dl, «h)& I ink, -,p) (nqpJ & (3»

E=E(n)+El, l, +E~~

2g2I 2 2g2I 2

eA, /2e„ao(—n+ —, ) + ~ +
8m, d 8m~ d

fi g (k +ul )nk p+ g(q +uso)nq p,
k, m, p qp

If the zero energy is neglected, the eigenenergy of the pho-
non field can be written as'

+ul )nk, ,p+ g (q +uso)n, ,
f2 fi

2M kmp 2M

(30)

IV. THE EFFECTIVE HAMILTONIAN

In this paper, we only study the behavior of the exciton
at a low-temperature limit (at zero temperature). From
the discussion in the last section, when no phonons are ex-
cited, the wave function of the A p system can be written
as

I
'4& =

I k(p ~) &
I Wl, ( .)4l, ( h ) & 10 0 & (34)

where
~
P(p, A, ) ) is the normalized quasi-two-dimensional

exciton internal wave function, and
~ pl (z, )pl (zh ) ) is the

eigenfunction of the electron and the hole moving in the z
direction.

~
0,0) expresses the unperturbed vacuum pho-

non state. Now the energy of the unperturbed exciton-
phonon system can be written as

Eo=&+o
I
~o

I
'Po& =&4(p ~) ~~ff

~
P(p ~) & (3&)

From Eq. (35), the effective Hamiltonian for the unper-
turbed exciton-phonon system is defined as

~ff &0 0
I

& 0'l, (ze )(t'I (zh )
i ~o

I el (ze )el (zh ) )

~2g2I 2 ~2g2I 2

2p Eoop meed m
(36)

In order to obtain the perturbation to A, ff', now we
analyze the contribution of ~& to the energy of the
exciton-phonon systems. First, we analyze the first-order
perturbation of A

&
to the exciton-phonon system energy

gE( )

N =2d/a,
a is the lattice constant. This is because of the limits of
the one-dimensional Brillouin zone.

(33) nE"'= &eo
~
~,

~
eo& . (37a)

where the range of the values for I &, I2, and m is

1 & I&, I2 &N

1 &m &N/2,

From (22c) and (34), we can show that the contribution of
all the terms in (22c), except the first one, to the energy of
the exciton-phonon system are zero, so (37a) can be writ-
ten as
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2

l~ e 12 h p~~ [p'+(, —")']'" WI, «. )PI, (zh)4(P ~) (37b)

When the slab is not very thick, especially when the thickness of the slab compares with the effective Bohr radius of
the exciton, the parameter A, in the equation can be obtained with the perturbative-variational method, ', i.e., let the
first-order contribution be zero,

It)I((z, )ItII2(zh )P(P, A, )
E p

1
QI, (z, )ItII, (zh )p(p, I(, ) =0 .

[ 2+( )2])/2
(38)

From Eq. (38), the relevant A, can be determined, and let it be expressed as A, ;„. Therefore the first-order contribution
hE'" of the perturbing Hamiltonian A

&
to the exciton-phonon system energy is zero.

In the following, we consider the second-order contribution AE' ' of A
&

to the exciton-phonon system:

aE")= (y(p, x,„)
I
W, '„)

I y(p, x,„)) . (39)

where AA, ff' is the second-order correction of A ) to A, ff.
Using the perturbative method, ' the second-order correction A&ff of A ) to A, ff can easily be divided into four

parts,

b,W"=DE'+'+b.E' '+b,E' '+b,E'"
where

(40a)

~E'"=—

I'[, 12,k, m

1 ), l~, k, m

2
(I, I 00)(l'I'k 0) I

1 )12k 1) 120

2
I (~»(l(I200)(l')I2k 0) I

m = 1,3, 5, . . . , (1', —1) ), (12 —12)=0, +2, +4, . . .

m =2,4, 6, . . . , (1', —1) ), (12 —12)=+1,+3, . . .

(40b)

1),12,q

2
I
(~) '(I I 00)(l'I' 0) I

(1', —1, ), (12 —12) =0, +2, +4, . . . (40d)

1),12,q

2
) )(I I 00)(I'I'q 0) I

(1) —1) ), (12 —12)=+),+3, +5, . . . . (40e)

After a straightforward manipulation, we obtain

(&) 8Naul
AE+ = —o.kcuLo ~4

1'i, m

(1', —m) —1,
2 1 1

s~l
(1', +m) —1,

s ) m + I )
—1', —(Naul, /~)

s)m
ln

(1') ) —1) +(Naul, /fr)

(12 —m )' —12

2 1 1
s2l2

(12+m) —12

s2m +12 —(12) —(Naulh /~)

2

ln
S2m

(12 ) —12+ (NQQlh /Ir)

+akcuLO
8Naul 2l)l2

7T' 7T

2

(1) +m ) —1) (1)—m ) —1)2 2

1
X

(12+m ) —12

2kJo pk dk

(12 —m) —12 0 [k +(mm/Na) ](k +ul )
(41a)

where m = 1,3, 5, . . . , N/2, (1') —1) ), (12 —12 ) =0, +2, +4, . . . , and JO(pk ) is the zero-order Bessel function;
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(B) SNaul
AE = —akim)LO ~4

lim

(1'i —m ) —l i

1 1
s

(1'i +m) —l,
s, m -+l

&

—(l'& ) —(Naui, /~)

2

sim
ln

(l'& ) —l, + (Nau«/n. )

12,m

(l2 —m ) —l~

2 1 1
S2l

(12+m) —12

spm +lp —(l2) (Na—ug, /77)

2

$2m
1n

2
(lz ) —l2+(Nauihlm. )

(41b)

where m =2,4, 6, . . . , N/2, (l'1 —1&), (lq —l2) =+1, +3, +5, . . . ;

E+ = —&~L08Nauleo(S) 1/2 3/2

N m. /2

g j s i e "sinhx (tanhx /2)
x +~ (l', —l, )

2
dX

x +w (l', +1i )

X(Isix +(Nau„+) +~ [(12) —l&]I[(e +1)—(e„—1)e "] [(ep+1)—(ep —1)e "]' )

N n. /2
s 2e "sinhx ( tanhx /2)

x +n ( I 2
—12 ) x +m (12 + l2 )

2

X([s2x +(Nau, i, +) +.u [(lz) —l2]I[(e +1)—(e —1)e "]

X [(ep+1)—(&p —1)e "]' ')

+afuuLoSNauiep e e sinhx (tanhx /2) ——
~ z

1/2 3/2 —x 1 x
00 p x +sr (2li)

1 X
X —— Jp(px /Na )dxx'+ m'(2l, )'

X [[x +(Nau, +) ][(e +1)—(e —1)e "] i [(ep+1)—(ep —1)e "]'i
)

(41c)

where ( 1'& —l l ), ( l2 —l2 ) =0, +2, +4, . . . ; and

6E = —nh~r 08Naul ~o
(S) 1/2 3/2

Nn /2
X . g f sie "sinhx(coth/2)

x +sr (1I —l, )

2

2
dX

x +~ (lI+li)

X([s,x +(Nau„) +~ [(1', ) —l, ]I[(e„+1)+(e„—1)e ']'

X[(ep+1)+(ep—1)e "]' ')

Nn /2
+ g f s2e "sinhx(cothx /2)

x + vr (l', —l2 ) x +~ (12+ lp )

'2

X(Is2x +(Nau, h ) +~ [(12) —lq]I [(e +1)+(e —1)e "]

X [(ep+1)+(ep —l)e ]' ) (41d)
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2p

2A2l21 ~2A2l22

+ V&(p)+, +,+E, ,
P Sm d Sml, d

(42a)

Vf(p) =the last term of (41a)

+the last term of (41c),
gE(B)+gE(s)

bE' '= the first term of (41a) + bE'

(42b)

(42c)

(42d)

and

bE' '= the first term of(41c) + E' ' . (42e)

Vf(p) is the effective potential between the electron and
the hole. The potential is produced by the interaction of
the electron (hole) with the phonons, and it is called "in-
duced potential" for short. AE' ' and AE' ' are the self-
energies produced by the longitudinal-optical phonons and
the surface-optical phonons, respectively, and they make
up the self-energy E, of the exciton. From the effective
Hamiltonian (42a), the energy E of the exciton in the po-
lar crystal slab can be easily obtained.

~2g ) ) ~2g2I2

Sm, d 8m~ d
(43)

where E„'
~

' is the eigenenergy of the quasi-two-dimension
hydrogenlike atom Hamiltonian composed of the first
three terms in (42a).

where (1'~ —l~ ), (l2 —l2) =+1,+3+5, . . . .
In Eqs. (41a)—(41d), a=(Me /A' uf)(1/e —I/eo) is

the coupling constant of the exciton-phonon interaction:

g2 2
u Ie ups ugp—AQ7 LQ p

—Ac() LQ y
—Aco sQ

2m,
'

2mI, 2M
2 2 2 2

ugep I ups
sQ =~sQ

2m 2m'

where uf, is the wave number of an electron with a
translation energy which equals the energy of the bulk
longitudinal-optical phonon, and its reciprocal u~, is the
polaron radius. The physical meaning of other quantity
can be understood in the same way.

Eventually, the effective Hamiltonian of the exciton-
phonon system is obtained,

eff =jeff +b jeff

TABLE I. The data of CxaAs. Energy is in meV, length in A,
and mass in the mass of the electron in the vacuum.

Ep

me

mp

&e

12.83
10.9
36.7
0.0657
0.12
5.654
0.0422
0.0251
0.0339
0.1145
0.0681
0.092

Bohr radii of the exciton, the change of AE' ' is obvious.
When N is very large, AE' ' will decrease slowly to
—2akcoLQ, i.e., to the value of the exciton self-energy in
the three-dimensional polar crystal (see the Appendix).

Figure 3 shows the variation of the exciton self-energy
bE' ', produced by the interaction of the exciton with the
surface-optical (SO) phonons, with the thickness of the
slab. Increasing the thickness of the polar-crystal slab, we
find the self-energy AE' ' increases monotonically, and

~

bE' '
~, the self-trapping energy produced by the in-

teraction of the exciton with the surface-optical phonons,
decreases monotonically. As the thickness of the slab N
tends to ~, AE' ' will tend to zero.

Figure 4 shows the variation with p of the induced po-
tential Vf' '(p), produced by the interaction of the exciton
with the bulk LO phonons. Under conditions of different
thicknesses N of the slab, i.e., when N =10, 20, and 50,
the relevant induced potentials Vf' '(p) are shown in the
figure. It is shown that for the Wannier exciton (its effec-
tive Bohr radius is about 20 times that of the lattice con-
stant a), the thicker the slab, the larger the relevant in-
duced potential Vf' '(p).

Figure 5 shows the variation with p of the induced po-
tential Vf' '(p), produced by the interaction of the exciton
with the SO phonons. Under conditions of different
thicknesses N of the slab, i.e., when N =10, 20, and 50,
the relevant induced potentials Vf' '(p) are shown in the
figure. It is shown that for the Wannier exciton, the

V. THE BEHAVIOR OF THE
QUASI- TWO-DIMENSIONAL EXCITON

&00 6oo

In the following, taking the exciton in GaAs as an ex-
ample, we perform the numerical evaluation. In Table I,
the data for GaAs are given.

Figure 2 shows the variation of the exciton self-energy
AE' ', produced by the interaction of the exciton with the
bulk longitudinal-optical (LO) phonons, with the thick-
ness N of the slab. Increasing the thickness N, we find
the self-energy hE( ' decreases monotonically. When the
thickness of the slab is in the range of a few effective

C)

—(. 6,

XS

0

FICx. 2. Bulk LO self-energy vs slab thickness N (in the lat-
tice constant a).
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FIG. 3. SO self-energy vs slab thickness X (in the lattice con-
stant a).

FIG. 5. SO-induced potential as a function of the relative po-
sition between the electron and the hole p.

thicker the slab, the smaller the relevant induced potential
VI '(p). This is because the surface-optical mode is a lo-
calized mode, and near the surface of the slab, the
electron- (hole-) SO phonon coupling is very strong.
Hence the smaller the thickness of the slab N, the larger
the induced potential Vq '(p).

Figure 6 shows the variation of the induced potential
VI(p), produced by the interaction of the exciton with the
phonons, with p. The phonons include bulk LO phonons
and SO phonons. Under conditions of different
thicknesses N of the slab, i.e., when N =10, 20, and 50,
the relevant induced potentials VI(p) are shown in the fig-
ure. After being fitted, the three curves in Fig. 6 can be
expressed approximately by the following analytic func-
tion:

where

p ~mine2 2

+ Vr(p»
2p 6oop

(45)

DakcoLo
Vi(p) = (I —e ~).

First we solve the ground-state problem of the exciton.
Choose the ground-state trial function as

exciton) are calculated with variational method.
Choosing properly a zero point of energy, and tem-

porarily not considering the self-energy of the exciton, we
obtain the Hamiltonian for the internal motion in the x-y
plane of the exciton by Eq. (42). It can be written as

DakcoLo
VI(p) = (I —e ~), (44)

1 4Z —2zp/a0

2' a p

(46)

where D and B can be determined by fitting, and are
given in the Table II. Equation (44) has the form of the
induced potential in the three-dimensional polar crystal
(see the Appendix).

In the following, the energy of the ground state and the
first excited state of the internal motion in the x-y plane
of the exciton in the polar slab (the quasi-two-dimensional

where ap ——ap/A, ,„, Z is a variational parameter.
From (30) the relevant A, ;„ in (45) or (22d) and (24) can

be determined. The relevant quantum number for the
ground state of the exciton is I&

——1, lz ——1, n =0, and
I =O. The parameter A. ;„can be written as A, » p p, and it
can be obtained from Eq. (47) with the "self-consistent
method" (its value is given in Table III):

0 C,
CD

3

Q

p/a
30

p/a

FIG. 4. Bulk LO-induced potential as a function of the rela-
tive position between the electron and the hole p.

FIG. 6. Total induced potential as a function of the relative
position between the electron and the hole p.
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—4p/a 0

f f f, sin (z, +d) sin (zI, +d) dz, dzh dp,—& [ 2+(, „)2]'i2 2d 2d
(47)

where ao ——ao/A, 1 1 p o.
The expectation value of the Hamiltonian (45) for the

trial function (46) is

A oo(Z) = (goo(Z p) I jeff
l
Coo(Z, p) ) . (48)

4 —2Zp/3a0
e

3a0
(49)

where ao ——ao/X;„, Z is variational parameter.

The first-excited-state energy E'1""' of the exciton can
also be obtained in the same way as in the ground-state
problem. The results are also listed in Table III.

VI. RESULT AND ANALYSIS

In the above, having carried out a unitary transforma-
tion on the Hamiltonian, with the perturbative-
variational' and the general perturbative method, we ob-
tain the effective Hamiltonian (42) of the exciton in the
polar-crystal slab. The effective Hamiltonian (42) can be
divided into three parts: the energy of the internal motion
in the x-y plane of the exciton composed of the first three
terms; the energy in the z direction composed of the
fourth and the fifth terms, which is what the energy of
the free-moving electron and hole in a one-dimensional in-
finite square-well potential would have', and the self-
energy comprised of the last term. The difference, be-
tween the effective Hamiltonian (42) of the exciton-
phonon system in the slab obtained above and that of the
exciton system in which the electron- (hole-) phonon cou-
pling is not considered, is very large. The main differ-
ence is that the self-energy and the induced potential exist
in the former but not in the latter. Having taken the
polar-crystal GaAs slab, the electron-phonon interaction

TABLE II. The value of D and 8 for different thicknesses N
of the slab.

10
20
50

D (A)

56.5
65. 1

66.5

B(A )

0.048
0.024
0.015

Let the derivative of the above equation with respect to Z
be set equal to zero. Solve for Z, and substitute it into
(48), then the energy Eg"' of the ground state of the
quasi-two-dimensional exciton is obtained. The relevant
results for different thicknesses of the slab are listed in
Table III.

Choose the first-excited-state trial function as
' 2 —1/2

2Z ~~ 3a0i |(Z,p) = —e +— 24
VZ~ 4

in the crystal is weak. As an example, we give a numeri-
cal evaluation. In Table IV we list, for the different
thicknesses (N =10, 20, and 50) of the slab, the slab exci-
ton internal x-y plane motion energy that is obtained by
not taking account of the electron (hole-) phonon interac-
tion, the slab exciton internal x-y plane motion energy
that is obtained by taking account of the electron (hole-)
phonon interaction, the self-energys of the exciton in the
slab, and the energy in the z direction.

In Table IV, we find that the ground-state energy for
motion in x-y plane of the slab, Eo, obtained by not con-
sidering the electron-(hole-) phonon interaction relates to
the thickness of the slab. With the decrease of the thick-
ness of the slab, Eo decreases. This is because the Hamil-
tonian (24) of the quasi-two-dimensional exciton is direct-
ly proportional to the square of k. k increases with the
decrease of the thickness of the slab. As the thickness of
the slab tends to zero, A will tend to 1, i.e., the pure two-
dimensional system. By taking account of the electron-
(hole-) phonon coupling, the internal motion in the x-y
plane Harniltonian of the exciton in the slab has an in-
duced repulsion potential produced by the electron- (hole-)
phonon interaction beside the attractive Coulomb poten-
tial. Therefore E0"" ascends relative to Eo.
AE' "'=E'1 " —Eo" also relates to the thickness of the
slab. It increases with the decrease of the thickness of the
slab. This just reflects the regularity of increasing the in-
duced potential Vi(p) with the decrease of the thickness
of the slab in Fig. 6. The reason is that not only the
electron- (hole-) SO-phonon interaction is stronger than
the electron- (hole-) LO-phonon interaction, but also the
former changes faster than the latter.

In Table IV, we can also find that Eo ', E'1 ', 5E ~"',
and E, all relate to the thickness of the slab. They change
with the change of the thickness of the slab. The property
that the energy spectrum changes with the change of the
thickness of the slab should be especially noted. Utilizing
this property, controlling the thickness of the slab, and by
exciting the quasi-two-dimensional exciton system with
external field, we shall obtain the artificial optical wave-
length emitted from the system.

Figure 7 shows the ground- and the first-excited-state
energy of the exciton internal moving in the x-y plane,
i.e., Eo "' and E'i "' for different thicknesses of the slab.
It is shown that the ground-state energy Eo "' of the
quasi-two-dimensional exciton decreases with the decrease
of the thickness of the slab, as does the first-excited-state
energy E'1 "' of the exciton, but the change of the latter is
not as fast as the change of the former.

The energy of the exciton in the polar-crystal slab [see
(43)] includes the energy of the exciton moving in the z
direction (~ A l&/8m, d +sr fi lz/8mhd ), the internal
x-y plane motion (the mass center translational energy
having been neglected) energy of the quasi-two-
dimensional hydrogenlike exciton E„' I ', and the self-
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TABLE III. The ground-state energy Eo "' (or expressed as E»00) and the first-excited-state energy
E1 "' (or expressed as E»1+1) of the exciton in the polar-crystal slab.

10
20
50

0.980
0.942
0.797

Z»00

0.8431
0.8869
0.9000

E»00 (rneV)

—5.236
—5.053
—3.519

0.998
0.993
0.959

Z»1+1

0.6945
0.6515
0.6425

E111+1 (meV)

—0.521
—0.413
—0.351

energy E, produced by the electron- (hole-) phonon in-
teraction. Generally (see the value in Table IV), the ener-

gy and the energy difference between the energy levels of
the electron and the hole in the z direction are very large
when the slab is very thin, so to excite the z directional
motion of the electron and the hole is very difficult at
very low temperatures. The exciton in the slab can be
considered as a quasi-two-dimensional system.

In Fig. 8, we show the energy levels of the exciton in
the polar-crystal slab when N =50. If only the energy of
the electron and the hole moving in the z direction is con-
sidered, the energy E&& ——10.84 meV. The self-energy
E, = —8.512 meV induced by the electron- (hole-) phonon
interaction reduces the energy of the exciton further, so
the dotted line shown in Fig. 8 is the energy level

E&&+E,=2.328 meV. If the internal motion in the x-y
plane of the exciton is considered, the energy of the exci-
ton will decrease once again. The decrease in energy is
E„' I

'. If in the state n =0, l =0, i.e., in the ground state,
the decrease in energy is 3.519 meV. If in the state
n = 1, l =+1, i.e., in the first excited state, the decrease in

energy is 0.351 meV. Therefore E&&Do and Ei&&+& shown
in Fig. 8 express the energy levels of the exciton in the
polar-crystal slab in the state I& ——1, /2

——1, n =0, and
l =0, i.e., in the ground state and in the state
I& ——1, 12——1, n =1, and l =+1, i.e., in the first excited
state, respectively.

From the data listed in Table IV, we can further see
that the energy difference between the energy levels of the
electron and the hole in the z direction is much larger
than that between the x-y plane energy levels of the exci-
ton when the slab is thin, so the motion of the exciton in
the z direction is nearly isolated from the motion of the

exciton in the x -y plane and the energy resonance
transformation between the z direction motion and the
x-y plane motion cannot occur. When the slab is thick,
the energy difference between the z direction energy levels
(Ei2 Ei 1 ) eq—uals that between the x-y plane interval en-

ergy levels ( E l~+ I
—E~~" ' ), and the energy resonance

transformation can take place. Thus it can be seen that
under the generally discussed condition in which the
thickness of the slab can be compared with the effective
Bohr radius of the exciton, the energy transform. ation be-
tween the z direction and the x-y plane energy cannot
occur. Therefore the exciton in the polar-crystal slab can
be considered as a quasi-two-dimensional system.

With the energy spectrum of the exciton in the polar-
crystal slab obtained, many optical, electrical, and other
physical properties of the polar-crystal slab can be ob-
tained. The results found are very useful in the further
investigation of the transport and optical properties of the
superlat tice.

APPENDIX. THE WANNIER EXCITON IN THE
THREE-DIMENSIONAL POLAR CRYSTAL

In the following, the Wannier exciton in three-
dimensional polar crystal will be studied with the method
used in the main body of this paper. The Hamiltonian of
the exciton-phonon system in the three-dimensional polar

I2

20. 0-

O
E

LLJ

10. 0.
CD

E
LLI

E

IO 20 50
0. 0. I II+I

FICx. 7. The ground- and the first-excited-state energy levels
of the exciton-phonon system for different thicknesses of the
slab. - ~ ~ for the first-excited-state energy; for the
ground-state energy.

I I 00

FICs. 8. The energy levels of the exciton-phonon system (as
N =50).
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TABLE IV. The energy of the exciton (in meV). Ep, El, Ep
"', and E l

"' are the ground- and the first-excited-state energies for
the exciton moving in x-y plane of the slab that are obtained by not taking and taking account of the electron- (hole-j phonon interac-
tion, resPectively; E, is the self-energy; E~ ~ the energy of the exciton in the z direction; and DE=El —Ep, 4E'P"'=E'& ' —Ep "'

~

10
20
50

Ep

—8.768
—8.101
—5.799

E(ph)
p

—5.236
—5.053
—3.519

—1.010
—1.000
—0.933

E(Ph)
1

—0.521
—0.413
—0.351

7.758
7.101
4.866

gE(ph)

4.715
4.640
3.168

—14.26
—11.06
—8.512

276.4
69.10
10.84

El

570.5
142.6
22.80

crystal is

Vi — V
2p ) 2p2

2

+ yea„'a„
E 7 )

—7"2

~~=+[V a„(e ' —e ' )+H c.j

pa~„K w
$2

+ g [V a„(e ' —e ')+H. c.j, (A 1)

4ie Fh co

y 1 /2 g 2

1/2
1 1

E'0

where p&, p2, r~, and r2 are the band mass and the posi-
tion vectors of the electron and the hole, respectively. E

and Ep are the optical dielectric constant and static dielec-
tric constant, respectively; a (a ) is the creation (annihi-
lation) operator of the phonons, and cu is the optical fre-
quency of the phonons.

Introducing the center-of-mass coordinates of the exci-
ton:

g2

+2M „a a ww,
W+W

(A7)

AK p
ff 2M +

2p

e2
+b,E,

E r
(A8)

where A' u /2M=%co.
Only at the low-temperature limit (zero temperature),

i.e., in the nonphonon state of the system ~0 for the ef-
fective Hamiltonian of the exciton will be derived. In the
following, take A j as a perturbation. ' With the pertur-
bation method, the effective Hamiltonian of the exciton is

R=s]r]+S2r2, r=r) —r2, M =p/+p2,

p =p)p2/M, s j
——p)/M, s2 ——p2/M .

We rewrite (Al) as

(A2) (O
I
~,a.'10)

Q2
(u +w)

2M

2afico+ ( 1 ——e ""),Fe

f2 g2 e2
Vg — V'„— + g ficta~

2M 2p
"

E r

++[V a e' (e ' —e ' )+Hc j.

(A9)

where o.=Fe M/A u.
Thus we know that the self-energy of the exciton is

—2o.Aced, and the induced potential between the electron
and the hole is

Because the total momentum of the exciton-phonon
system AK,

A'K=P+ ga a Rw

2

V, (r) = (1 —e "") .
I'

(A10)

commutes with the Hamiltonian H, hence K is a constant
of the motion, we can introduce a unitary transformation
to eliminate the position vector R of the exciton mass
cen~er:"

U= exp iK.R—i g a a„w.R
W

Applying the unitary transformation to (A3), we get

In the above equation, only one unitary transformation
to H has been taken. The results are only suitable for
weak exciton-phonon coupling. One of the authors
(S.W.G.), ' in his study of the influence of the lattice vi-
bration on the motion of the exciton, applied a two-time
unitary transformation to H, and obtained the effective
Hamiltonian as

AV, S j+$2H= —,+a%co —2+2M* 2p* 2$ js2

A =U 'HU= A o+A j, (A5) e2 1 e
e "'+aRcoe

Eo f'
(A 1 1)

(A p-
2p E f'

AKga a„(u +w )+, (A6)
2M 2M where
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M* =M/(1 —a/6), p* =p
$)+$21+a/3
2$ ($p

The effective Hamiltonian (A9) is different from the
Hamiltonian (A 1 1). The main difference in the effective
Hamiltonian (Al 1) is the mass M and p are renormalized
as M* and p*, the self-energy increased by
(s ~ +s2)afire/(2ssq), and the induced potential increased
by ctficoe "". The Hamiltonian (Al 1) is better than the
Hamiltonian (A9), the former reveals more properties of
the exciton-phonon system than the latter. The amount of
calculation in the one-time unitary transformation to H is

much less than that in the two-time unitary transforma-
tion. The Hamiltonian of the exciton-phonon system in a
polar-crystal slab is very complex, so in this paper we only
apply the one-time unitary transformation to the Hamil-
tonian of the exciton-phonon system in a polar-crystal
slab.
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