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We report the results of precision numerical calculations of three-dimensional resonant tunneling.
Simple fitting formulas are given which parametrize the dependence of the peak differential conduc-
tance G and the resonance broadening ' on the tunnel barrier parameters. The maximum value

attained by G, is universally equal to e?/h.

Resonant tunneling is an important mechanism of con-
duction in materials containing localized states. It is re-
- sponsible for the sharp structure in the differential con-
ductance of metal-insulator-metal junctions,’ quantum
wells,? and metal-oxide-semiconductor field-effect transis-
tors (MOSFET’s) (Ref. 3) at low temperatures. In these
experiments, one tunes the Fermi level of the metallic
electrodes by changing the dc bias across the junction and
measures the conductance. When the Fermi energy of
electrons in the metal matches the energy of an intermedi-
ate quantum state localized inside the barrier, tunneling
probability increases sharply, producing a peak in the dif-
ferential conductance G =dI /dV as a function of dc bias.
For localized states close to the center of the barrier, the
peak value of resonant conductance can exceed the non-
resonant contribution due to direct quantum tunneling by
many orders of magnitude.

The problem of resonant tunneling via three-
dimensional localized states is only partially solved. Ac-
curate calculations of the differential conductance have
not been performed up to now, in part because of the
complicated structure of eigenstates of the resonant tunnel
barrier in three dimensions. The best existing results are
those of Knauer, Richter, and Seidel* who obtained varia-
tional expressions for the resonance width I" and the tun-
neling current density for a given incident electron
momentum, which were used by Halbritter>® to estimate
the resonant conductance. Accurate results exist for one-
dimensional models,”~® but their applicability to three di-
mensions is not clear.

We have performed a precision calculation of the.
resonant differential conductance G and the resonance
width I' in three dimensions (3D). The results are
described very well by simple fitting formulas which yield
G and T directly as functions of tunnel barrier parame-
ters. In particular, we find that the maximum value of
the differential conductance on resonance is the same for
all tunnel barriers and, for spinless electrons, is equal to
e?/h.

The calculation was carried out for noninteracting elec-
trons at 7 =0, tunneling through a model potential shown
in Fig. 1. The barrier has height ¥V, and is bounded by
two planar interfaces at z=zy3 and z=zy—d. The local-
ized state is represented by a bound state of an attractive
3D square well of depth ¥V, and radius R, centered at the
origin. R and V¥V, are chosen to yield the necessary
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bound-state energy E,. If the localizing potential is nar-
row on the scale of its bound-state wave function, the only
relevant physical parameter is the binding energy
E b =E 0o— Vo.

To obtain the differential conductance, we invert the
Hamiltonian

H=p?/2m+V(r) (1)
in the manner
Y(E)=(E—H+in)™", )

where 7—0+, to form the single-electron Green’s func-
tion. The matrix element of the Green’s function between
coordinate basis states satisfies

{E—[—(#/2m)V* 4+ V(D) +in}{r| F(E)|r')
=8(r—r). )

For points r and r’ in (3) on opposite sides of the barrier,
ie., for z<zp—d and z’' >z, (r| F(E)|r') describes an
electron at energy E tunneling across the barrier from r to

’

r'. In terms of the Fourier transform of (r| ¥(E)|r') in

zo-d Zo z

.

FIG. 1. Potential energy diagram of the resonant tunnel bar-
rier. The origin of coordinates is at the center of the 3D spheri-
cal well of radius R.
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the xy plane
(ky,z | (E) | k|,z")

foffdxdydx'dy'e‘”“l|“+k\'rr’)
X(r| G (E)|1'), @

where k;=(k,,k,,0) and k;=(k,,k,,0) are the com-
ponents of the incident and transmitted electron momenta
parallel to the barrier interface, the differential conduc-
tance is given by

G(E)=2m~* [ [dkdkik k|
X | (kyz | G(E)|K,2')|?, (5)

where k, =[E—(2m/#)k}]'? and ki=[E—Q2m/
ﬁz)k;,z]l/z. G does not depend on z or z’ as long as r and
r’ in (3) are on the opposite sides of the barrier.

The differential conductance given by (5) is defined by
aligning the chemical potentials on both sides of the tun-
nel junction at a common level i, and then raising the po-
tential of one electrode by a small amount du. Then
G =dI /du, where dI is the current carried by electronic
states in the energy range (u,u+du). Such a definition is
relevant to experimental situations where electron densi-
ties in the two electrodes are nearly equal and the Fermi
level shift across the junction is small compared to the
resonance width, as is the case in some recent experiments
on short MOSFET’s.?

The resonant part of the required Green’s function
(k),z | Y(E)|kj,z') was computed numerically using the

|

R*#*
1677'm2 ri=r,=R

(r| 9(E)|r')=

following algorithm. We define the bare Green’s function
& o(E) by an equation similar to (2) with H replaced by
H,, the Hamiltonian for a barrier without the attractive
spherical well. The bare Green’s-function matrix elements
(r| Yo(E)|1r') are easily computed* because translational
symmetry in the xy plane renders the problem one-
dimensional. We then calculate from this the full Green’s
function at the trapping site using the Koster-Slater
method.!® We make the size of the well sufficiently small
compared with the spread of its bound-state wave func-
tion, ({r2))!/2, that the zero-angular-momentum (s-wave)
channel dominates the scattering of electrons by the trap-
ping potential well. Having chosen R to be small, one
need calculate only the bare on-site Green’s-function ma-
trix element

g E)=am~! [ [ dedo(r|yE)[r), (©
r=r'=R

which propagates an electron in the state with zero angu-
lar momentum on the surface r =R to the same state.
The exact on-site Green’s-function matrix element in the
presence of the well is then given by

on site(E): ygn site(E)—l

2
— z:; [x cot(x)—xgcoth(xy)]

) (7

where  xo=R[2m(Vy—E)/#]'?, x=R[2m(E—V,
+V)/#*]'2, for 0 < E < V,. The tunneling Green’s func-
tion in coordinate space is

[ [ d9.d0y(r| Go(E) |1)){(r,| GE)| 1)

X [xgcoth(xg) —x cot(x)]F " Sit¢( E)[xocoth(xg) — 1 —gq] , (8)

where x, and x are defined above and

q)oz[ggn site(E)]—l
% |(a/4m3- [ [ dedo/(r| S yE)|r)
da r=r'=a a=R
9)

The Fourier transform of (8) with respect to (x,y) and
(x',y") is the resonant part of the tunneling Green’s func-
tion which appears in (5). The momentum integrals in (5)
are then evaluated numerically. This procedure is arbi-
trarily accurate in the limit R —0, and the conductance
converges to a well-defined value in this limit.

The differential conductance (5) exhibits a Lorentzian
resonance peak centered at E, ~FE:

G(E)=G,T*/[(E—E,)?+I?]. (10)

In Fig. 2 we have plotted the differential conductance on
resonance G, versus the reduced distance from the
center of the wall to an interface, zy/d. Note that the
quantity G, has been computed by two completely dif-
ferent methods: one based on Egs. (5)—(9) (solid curves),
the other numerically integrating the variational solution
of Ref. 4 (dashed curves). We observe that G, grows
roughly exponentially as the well gets farther away from
an interface. The increase in G, is faster for more deep-
ly bound states and for wider barriers. As the well ap-
proaches the midplane of the barrier (zo=d /2), the con-
ductance flattens out and reaches a maximum value of
~0.998 in units of e2/h. Qualitative arguments by Ricco,
Azbel, and Brodsky!! predict a maximum value of
(h/e*)G,s of order unity. Our calculations suggest
strongly that this maximum value is equal to 1 exactly
and universally for all tunnel barriers.

As a check on the accuracy of our calculations, we have
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FIG. 2. Peak differential conductance at resonance, G, as a
function of reduced distance of the well from an interface, z,/d,
for several binding energies and barrier widths. Energies are in
hartrees, 1 hartree=27.2 eV; lengths are in bohrs, 1 bohr=0.529
A. Barrier height is V,=0.2 and binding energies are measured
from the top of the barrier. Solid lines, numerical results (this
work); dashed lines, variational results (Ref. 4); fit to G, by
Egs. (12), (15), and (16) is within line thickness from numerical
curves.

plotted in Fig. 3 the resonance width I', defined by (10),
versus the same reduced distance z,/d as in Fig. 2. T is
proportional to the rate for an electron trapped in the well
to tunnel out of the barrier. Therefore, we expect I" to
reach a minimum at zo=d /2, i.e., when the trap is maxi-
mally distant from either interface. The close agreement
of the numerical (solid curves) and variational (dashed
curves) results over a broad range of barrier parameters'?
justifies our neglecting the / > 0 contributions to G and
I’ and demonstrates the accuracy of the numerical algo-
rithm.

This behavior of resonant conductance can be under-
stood in the following way. Consider a set of energy lev-
els E; connected to an intermediate level E, by tunneling
matrix elements 7T, but not connected to each other. The
states with j <0 form the continuum on the left-hand side
of the barrier; those with j >0 form the one on the right-
]

1
Groo=(4e2/h) S Im|————||74%|m
jEO)k(>O) [E’_Ej+ln l !
=(4e2/n)TETR(rE4TR) 2,

for spinless electrons. When the resonant state is in the
midplane of the barrier, I’*=TX, and G, reaches its
universal maximum value of e?/h. This argument does
not depend on the shape of the trapping potential which
creates the intermediate state or on the details of the tun-
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FIG. 3. Resonance width I' as a function of reduced location
of the well, zo/d. Parameters used are the same as in Fig. 2.

hand side. The on-site Green’s-function matrix element is

—1

S(E)= |[E—Eoq— 3 |T;|*/(E—E;+in) (11)

Jj (£0)

The real part of the sum in (11) shifts the resonant energy
E slightly to its renormalized value E, while the imagi-
nary part gives the resonance width

r=rt4+rk, (12)
where
MeR=—_Im |3 | T;|*/(E,—E;+in) | . (13)

L,R

The sum in (13) is over j <0 for I'Y and over j > 0 for TX,
The tunneling rate from level E; on the left to level E; on

the right is governed by the transition matrix element
yjk=Tka/(Ej—E,+iF). (14)

The differential conductance on resonance is given in
terms of .7 by

1
Er_Ek +”7

(15)

r

neling process. The only critical assumption is the ex-
istence of two sets of electronic states on either side of the
tunnel barrier and a localized state in the middle. There-
fore, even in three dimensions, the resonant behavior of
the tunneling current can be understood in terms of a nar-
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row quasi-one-dimensional channel of conduction.

The quantitative differences between one- and three-
dimensional resonant tunneling systems arise from dif-
ferent dependences of the widths I'™® on the tunnel-
barrier parameters. Using a stripped-down version of the
variational expression* for ', we identify I'“® in 3D as
follows:

2 2
FL’RZ“_ka LZLR e_KZL’R . (16)
Vozr,r K
Here zp=z,, z;=d—zy, k=QE)? «k=[2(V,

—E)]Y?, f(x)=1—exp(—3x/2), and we have set
#i=m,=1. The difference between the solid (dashed)
lines in Fig. 2 (3) and the fits to ' and G, defined by
Egs. (12), (15), and (16) is less than the line thickness. The
quality of the fit is limited only by extreme broadening of
the resonance and deviations of its shape from Lorentzian
at very small z, and E,, and is better than 6% for d > 40,
0.1d <29 <0.9d. In fact, Figs. 2 and 3 show that, for
most values of tunnel-barrier parameters, G, and T as
given by (12), (15), and (16), are indistinguishable from
their “exact” values.

Any real tunnel barrier will probably contain many lo-
calized states, so even at zero temperature tunneling via
several intermediate states is not excluded. However, if
the density of localized states is low compared with
1/Td?, where d is the barrier width, then interference be-

tween tunneling channels involving different intermediate
states can be ignored. The result is a simple (incoherent)
superposition of conductance peaks, one for each resonant
energy.

Our results put a fundamental upper limit on the
single-channel resonant tunneling conductance, which, for
real electrons with spin, is 2¢2/h. This limit should be
observable as the maximum height of conductance peaks
in MOSFET’s and narrow metal-insulator-metal junctions
provided the temperature is below the crossover from the
Mott hopping conductivity to resonant tunneling.’ Tem-
peratures reached in the recent experiments on short
MOSFET’s (Ref. 3) are already within the resonant tun-
neling regime, as indicated by the temperature-
independent behavior of conductance. So far, the max-
imum peak conductance reported® is 0.le?/h. This is
consistent with our upper bound, the rather small value
being related to the exponential dependence of G, on the
position of the localized state which, in most cases, is off
the center of the barrier.
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