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Acoustic radiation-induced static strains in solids
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The controversy surrounding the magnitude of the radiation-induced static strain accompanying
acoustic wave propagation in solids is resolved by a consideration of the associated Boussinesq radi-
ation stress. Experimental verification of the results is presented for waves propagating along the
pure mode directions of crystalline silicon.

The radiation stress associated with finite amplitude
acoustic waves propagating in a nonlinear medium has
been a subject of considerable controversy for a large part
of the present century. As pointed out by Beyer, ' "It
might be said that (acoustic) radiation pressure is a
phenomenon that the observer thinks he understands —for
short intervals, and only every now and then. " No less
controversial are the static strains resulting from such ra-
diation stresses. Although Brillouin found the acoustic
radiation stress in solids and "laterally confined" fluids to
be nonzero, his theory leads to a zero value of the
radiation-induced static strain. Gol'dberg argued that
the radiation stress in "laterally unconfined" fluids is zero
and, inferentially, so is the static strain. Thurston and
Shapiro predicted the existence of a nonzero static strain
from a method-of-characteristics solution to the govern-
ing nonlinear differential equation in material coordinates,
but their solution differs from that of Thompson and
Tiersten who used an iterative approximation approach
in solving the same equation. Chu and Apfel identified
an "acoustic straining" associated with the radiation pres-
sure in laterally confined fluids and calculated a resulting
"coefficient of acoustic expansion. " Yost and Cantrell
showed the existence of a radiation stress and an associat-
ed radiation-induced static strain in crystalline solids cor-
responding to each propagation mode of the crystal. The
purpose of this paper is to show that the difference be-
tween the magnitude of the static strains predicted by
Thurston and Shapiro, and that predicted by Thompson
and Tiersten, can be resolved by a consideration of the
Boussinesq radiation stresses derived by Cantrell. We
conclude with experimental verification of the results by
measuring the acoustic static strains generated along the
pure mode propagation directions of single-crystal silicon.

We consider the propagation of an elastic wave in a
lossless semi-infinite solid of arbitrary crystalline symme-
try. The nonlinear equations of motion along a given
propagation direction may be transformed into the form

ways along the direction of wave propagation, t is time,
P, is the particle displacement for mode e, P, is the corre-
sponding modal nonlinearity parameter of the solid, and
C, is the "linear" wave speed. Thompson and Tiersten
use an asymptotic iteration procedure to solve Eq. (1) sub-
ject to the boundary condition

P, =gcoscot at a =0 (2)

They obtain as part of their solution in the first iterate
(Pp P3 in notation of Ref. 5)

a aw

Ba Ba
——P~g =0, (3)

Ba 4 2p,
= —P~g= — E, (4)

where E = —,
' p~ g is the average density of the propaga-

ting wave and p, =poC, (po is the mass density of the un-
perturbed medium).

Equation (4) differs from the results of Thurston and
Shapiro, who solve Eq. (1) using the method of charac-
teristics. Their solution subject to the boundary and ini-
tial conditions

P, (t, a) =const=gcoscoto, t & to,

P, (t, 0) =/cosset, t & to

1s

aW 1P,
Ba 4 P~

(6)

where ~=co/C, and BA/Ba is the radiation-induced static
strain. They point out that the expression in parentheses
in Eq. (3) is proportional to the (static) acoustic radiation
stress in the solid and integrate Eq. (3) under the assump-
tion that the static stress, which is proportional to the
constant of integration, is zero. They thus predict a static
strain in the solid given by

where e =j,N is a mode index representing a wave of po-
larization j =1,2, 3 and direction of propagation N, "Q" is
the Lagrangian coordinate transformed such that it is al-

Equations (4) and (6) differ by a factor of 2. According
to Thompson and Tiersten, this difference is explained by
considering Eq. (6) to be a solution to the initial value
problem without loss while Eq. (4) is the steady-state solu-
tion without regard to initial conditions. They argue that
their steady-state solution is justified by the existence of a
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TABLE I. Comparison of nonlinearity parameters f3, mea-
sured in crystalline silicon using acoustic radiation-induced stat-
ic strains (present work), harmonic generation, and stress deriva-
tive techniques.

FIG. 1. Plot of the slope of the radiation-induced static dis-
placement pulse along the [110]direction in silicon as a function
of the energy density of the acoustic wave.

small but finite loss in a real solid which damps out the
transient terms contributing to the results of Eq. (6).
They point out that the manner in which the static strain
passes from its initial value to its steady-state value can
only be determined by solving the initial value problem
with loss. In order to avoid the difficulties of such a cal-
culation they assume that the outcome would be
equivalent to that of associating a vanishing radiation
stress with the steady-state solution. The assumption of a
vanishing radiation stress demands a zero value of the in-
tegration constant resulting from the integration of Eq. (3)
and leads directly to Eq. (4).

According to the derivation of Cantrell, however, the
acoustic radiation stress (r, & ) in a solid is nonzero and is
related to the average energy density of the propagating
wave as

Integrating Eq. (3) and setting the constant of integration
equal to p, '(r,

& ) now leads directly to Eq. (6) in agree-
ment with Thurston and Shapiro.

In associating a nonvanishing acoustic radiation stress
with the initial value problem without loss, Thompson
and Tiersten explain that "we cannot state whether the
time needed to establish (the steady-state condition with
vanishing radiation stress) is consistent with other experi-
mental constraints such as available sample length and at-
tenuation. Measurements of (the static strain) with suffi-
cient precision to detect the difference (between the two
theoretical results) appears to be a formidable experimen-
tal challenge. "

We now present experimental verification that Eq. (6)
is, indeed, correct by measuring the acoustic radiation-
induced static strains in single-crystal silicon. The present
experimental technique has both the precision and the ac-

curacy to measure the static strain well within the factor
of 2 that distinguishes the two theoretical predictions.
The experimental arrangement is identical to that
described in Ref. 7 except that in the present work a sig-
nal averager is used following amplification of the re-
ceived fundamental (driving wave) and static wave forms.
Use of the signal averager allows one to work at lower
acoustic-drive amplitudes where the theory is expected to
be more accurate. As pointed out in Ref. 7, our capacitive
receiving transducer provides a measurement of particle
displacements rather than strains in the solid. Hence, the
static wave form measured is that obtained by spatially in-
tegrating Eq. (6). The resulting wave form for an acoustic
tone burst propagating through the crystal is a static dis-
placement pulse having the shape of a right-angled trian-
gle whose slope is exactly that given by the static strain
Eq. (6).

Equation (6) predicts that the slope of the static dis-
placement pulse is a linear function of the average acous-
tic energy density E. This linear function itself has a
slope depending on (p, /4p, ). A typical plot of the mea-
sured slope of the static displacement pulse as a function
of the energy density E is shown in Fig. 1 for acoustic
compressional waves propagating along the [110] direc-
tion in crystalline silicon. We find a linear relationship as
predicted. Measurement of the slope of the curve in Fig.
1 together with a calculation of p, =poC, allows us to
determine the value of the nonlinearity parameter p, .

Values of p, obtained using this procedure for each of
the pure mode propagation directions in silicon are shown
in Table I together with independent measurements of P,
obtained from harmonic generation and stress derivative
techniques. We note that for each propagation-mode
agreement among the independent measurements is within
the stated experimental errors. We infer from these re-
sults the existence of modal acoustic radiation-induced
static strains in crystalline solids whose behavior is con-
sistent with the predictions of Eq. (6). We also infer from
the considerations of Ref. 5 that, at least for the samples
measured, the acoustic wave propagation distance and at-
tenuation are not sufficiently large that the "static stress
passes from its initial value. . . to its steady-state value. "
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