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Electron states in n-type inversion layers with periodic microstructure
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The electron states of an inversion electron layer with a periodic density modulation are calculated
self-consistently in a mean-field approximation. It is shown that drastic changes in the electronic
properties occur as the modulation and the electron density are varied. In particular the electron-
electron interaction has strong effects on the localization of the inversion electrons. The transition
from localized to extended behavior is quite abrupt as a function of the electron density.

INTRODUCTION

The fabrication of metal-oxide-semiconductor (MOS)
systems with microstructured gates has recently become
possible. These systems allow the study of inversion elec-
tron layers which are closely bound to the oxide-
semiconductor interface and show a periodic density
modulation along one direction parallel to the oxide-
semiconductor interface. In such systems both transport
experiments' and spectroscopic experiments ' have been
reported. Since screening in a two-dimensional electron
gas is less effective than in three dimensions, considera-
tion of the electron-electron interaction is very important
for the interpretation of these experiments. At present,
theories are only available for systems with strong modu-
lation, where the system can be split into independent
electron channels with quasi-one-dimensional character.
However, experiments have also been carried out in the
opposite limit in which the microstructure only leads to a
weak modulation of the electron gas. In this paper we

give the results of self-consistent calculations of the elec-
tronic states over the entire modulation range.
Exchange-correlation effects are neglected.

for a sufficiently thick oxide [see Eqs. (4) below]. There-
fore we may write the boundary conditions at the gate as

V(x,z = D,„)= VG—+ icos(ICox ),

n (x,z)+ nd(x, z) =g[n„(z)+ nd „(z)]

)& exp( iq„x ), — (3a)

V(x,z) =g V„(z)exp( iq„x ), — (3b)

where D„and the x and the z directions are defined in
Fig. 1 and I( o is the wave vector of the microstructure.
VG is the constant potential at the gate which determines
the average number of electrons per unit area. VM is the
amplitude of the first Fourier component of the superim-
posed microstructure potential and characterizes the de-
gree of modulation. In addition the boundary conditions
at the gate and at the semiconductor interface determine
the image charges. Taking the Fourier transform of the
Poisson equation [Eq. (I)] and inserting

THE EFFECTIVE POTENTIAL
FOR AN INVERSION ELECTRON q, =rKO, r=0, +1,+2, . . . (3c)

The effective potential V for an inversion electron is
determined by the gate potential, the interaction with oth-
er inversion electrons, the depletion charge, and by the im-
age charges. In mean-field theory, the following equation
is to be solved:

we obtain for the indicated boundary conditions the fol-
lowing solution for r&0:

4~e
b. V= — (n+n„),

K

where K is the static dielectric constant of the solid. n and
nd are the inversion electron and depletion charge densi-
ties, respectively. The actual gate structure leads to com-
plicated periodic boundary conditions at the gate. A
Fourier transformation of the effective potential in the
direction of the modulation shows, however, that the
behavior of the inversion electrons is mainly effected by
the lowest harmonic. Higher harmonics are strongly
weakened within the oxide and will be assumed negligible
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FICx. 1. Schematic geometry of the microstructured MOS
system.
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V„~p(z &0)=
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@cosh( q„ ID,„)+sinh( q„D,„) 2
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2me 2 sinh(
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Do )+ecosh(
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Do )
(4a)

with

exp( —Iq„I Iz' —z
I

)
G„~p(z', z) = (4b)

1 8 1 +2ik —k
2m, Qz~ 2m Qx ~ 9x

I,~p ——
oo

exp( —
I q„ I

z')n„(z')dz',q„p (4c)
with

+ [ V(x,z) Ek—, ] uk J (x,z) =0, (7a)

4vre
V, =p(z) 0}=

Ksc

&s z
Edep] + z +

2 2

where ~„and ~„are the static dielectric constants of the
oxide and the semiconductor and e=~„/~„. The first
term on the right-hand side of Eq. (4a) is the external gate
potential, which rapidly becomes small with increasing q, .
The second term gives the mutual interaction of the inver-
sion electrons. This term does not contain the effect of
the discontinuity in the dielectric constants, which is ex-
plicitly exhibited in the third term as an effective image
potential. The depletion charge only enters in the q, =0
part of the effective potential since the acceptors in the
depletion zone are totally ionized and give thus a homo-
geneous potential. A modulation of the depletion charge
only occurs at the transition to the bulk and therefore
contributes little to the higher potential harmonics for the
same reasons as given above. Thus we obtain for r=0,
according to Ref. 4,

4m.e
b, V= — (n+nd),

K

dkn(x z)= QNk&J I
uk J(x z)

Iocc 27T J,V

(7b)

Nk,
&
—— [2m@(EF Ek ~ J

—)]' (7c)

v J' +ky /2my & EF (7d)

The computations were performed by expanding all func-
tions with respect to a basis system of normalized prod-
ucts of free waves in the x direction and shifted Airy
functions in the z direction (see Ref. 4).

Here my is the effective electron mass in the y direction,
EF is the Fermi energy, and g is taking into account a
possible valley degeneracy. Nk ~

results from the k»
summation over all occupied states with

——,
' f n„p(z') Iz —z'I dz', (5)

where Nd, p&
and N, are the depletion and inversion

charges per unit area averaged over one period. z is de-
fined by

z = zn„ p(z)dz .
0

SELF-CONSISTENT EQUATIONS

The calculation is carried out in effective-mass approxi-
mation with a diagonal mass tensor at T=0. Because of
the translational invariance along the channel, and the
periodicity in the x direction, we may write for the wave
function

Pk, ,j,k exp(~'k&y )exp(~'kx )uk, ,j(x z)

Here the index j relates to the subband splitting due to the
triangular inversion potential and denotes the number of
nodes perpendicular to the interface. uk J is the periodic
part of a Bloch function in the x direction. Using the ef-
fective potential of Eqs. (4) and (5) and neglecting ex-
change and correlation effects one obtains the well-known
self-consistent equations (6=1) for uk

RESULTS

In studying microstructured systems one has to distin-
guish between two limiting cases with respect to the rela-
tion between the triangular inversion potential and the mi-
crostructure potential. While the former is responsible for
the subband splitting, the latter gives rise to the formation
of Bloch bands in the x direction. If both potentials are
of comparable size, both of these splittings mix and thus
give a very complicated energy spectrum. Since we are
mainly interested in the influence of the microstructure,
we have chosen a fairly steep inversion potential in order
to keep the subbands well apart. For numerical computa-
tions we use the parameters of a SiOz-Si MOS structure
with Si in (100) orientation (Ir„=11.5, a,„=3.9, g=2,
m, =0.916mp, and m„=m~ =0.19mp). The inversion
electron density is taken to be small enough so that only
the lowest valley is occupied. The oxide thickness and the
reciprocal periodicity are chosen to be D,„=26 nm and
Kp ——2m/200 nm =3.14X 10 cm ', respectively.

Figure 2 shows the position of the bottoms
Eb =Ek 0 & J of the first three subbands in dependence
on N, . Here the external potential [see first terms in Eqs.
(4a) and (5)] is fixed at V~ =20 mV and

Xdep[ + —,X, =3.5 X 10" cm . The dashed line gives in
comparison the values of a corresponding homogeneous
system. The zero of energy is taken at the lowest band; in
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ed by 6 (see text) vs N, . The parameters correspond to the case
of the solid line for j=0 in Fig. 2.
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FIG. 2. Energy of subband bottoms vs electron density. The
external potential is determined by Nd, p] + —,N, =3.5 && 10"
crn, V~ ——20 rnV (solid line) and Nd, p]+ ~ N, =3.5&(10"
cm, V~ ——0 mV (dashed line).

illustrates the width of the Bloch bands and the gaps be-
longing to the lowest subband of Fig. 2. Here the quanti-
ty b, = 8'l(,Es + 8') is shown, where W is the Bloch band
width and Eg is the gap above the corresponding band. It
is seen that 6 approaches a constant close to I for v=3,
indicating that these electrons are nearly free. In contrast
the gap is preserved in the lower Bloch bands through the
entire range shown, which demonstrates their bound char-
acter.

The system s behavior exhibited in Fig. 2 may be ex-
plained by the fact that the microstructure potential is ef-
fectively screened at high densities. Thus in this case the
influence of the microstructure potential on Eb nearly
vanishes. It is evident that the electrons in the lowest lev-

the latter case at N, =0.
The results show that at high densities the values of Eb

are nearly the same in homogeneous and microstructured
systems. This occurs in spite of a considerable density
modulation as can be seen from Fig. 3. For low densities,
Eb is distinctly smaller in the microstructured system and
very sensitive to changes of the electron density. Figure 4
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FIG. 3, Normalized modulation of the electron density in the
x direction. The z value is taken at the maximum. With N,
and Nd, p] in units of 10" cm and VM in mV the following pa-
rarneters were used: (a) N, =0.1, Nd, „]——3.45, VM ——20; (b)
Ns =0.25, Ndep] =3 375, VM =20; (c) Ns —1.0, Ndep]:3
VM ——20, (d) Ns ——1.0, Ndep] =3.0, V~ = 100.
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FIG. 5. Energy of the subband bottoms vs the amplitude of
the microstructure potential with N, = 10" cm and

Ndep] = 3 Q 10 cm
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els contribute most of the screening of the microstructure
potential. Once these "valence" levels are occupied the
higher bands show practically free-electron behavior.
This is exhibited in Fig. 4 for the three lowest Bloch
bands. While all of them are practically localized for
small densities, the screening effect leads to a delocaliza-
tion of the third band at v= 3 at high densities.

Turning to the influence of the amplitude of the mi-
crostructure potential, Fig. 5 shows the subband bottoms
Eb for fixed 1V, = 10" cm which corresponds to the
right edge of Fig. 2. It is evident that the number of elec-
trons necessary for screening the potential depends on the

amplitude of the microstructure. This is clearly exhibited
in Fig. 5 where the levels do change at first very little
when the microstructure potential is increased. Around
VM ——70 mV the screening breaks down and the energy

levels start to react to a further increase of VM. That the
lowest band is affected most strongly is due to the fact
that these states lie closest to the surface in a region where
the decay of the microstructure potential is weak.
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