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Effective mass of image-potential states
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Effective masses m * are determined for the E(k~~) dispersion of the n = 1 image-potential state
with use of two-photon photoemission. We obtain m */m = 1.3+0.15 for Ag(111),
rn*/m =1.15+0.1 for Ag(100) and rn /m =0.9+0.1 for Cu(100). The results are explained by a
phase-shift analysis which predicts an effective mass larger than unity if the image state is located
near the top of the bulk band gap and smaller than unity near the bottom of the gap.

INTRODUCTION

The observation of image-potential states with inverse
photoemission' and two-photon photoemission ' has
stimulated interest in the fundamental character of these
states. Despite intense work on calculating binding ener-
gies and wave functions, ' ' ' ' there remains a prob-
lem, i.e., to explain the observation of effective masses sig-
nificantly different from unity, with deviations as large as
70%. Several attempts have been made relying on a
variety of possible mechanisms. The influence of surface
corrugation has been used to calculate effective masses of
about 1.2. It requires unreasonably large corrugation po-
tentials after an error of a factor of 4 in the original work
is taken into account. This calculation also predicts a
correlation between effective mass and binding energy
that contradicts the observations. Coupling with
electron-hole pairs and surface plasmons' ' has been
considered, but was found to increase the effective mass
by at most a few percent.

We offer an alternative (and more rudimentary) ex-
planation of the effective masses based on multiple-
reflection theory. There exists a "crystal-induced" modi-
fication of the effective mass which arises through the in-
timate relation between the image-state binding energy
and the reflection properties of the bulk band gap. We
show that numerical estimates of the effective masses can
be obtained from simple "back-of-the-envelope" calcula-
tions. These masses are in reasonable agreement with
two-photon-photoemission measurements.
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define the onset. We find a work function of 4.56 eV for
Ag(111), 4.42 eV for Ag(100), and 4.63 eV for Cu(100).

Angle-dependent two-photon-photoemission data are
shown in Fig. 1. They are taken in a photon-energy re-
gime where a nonresonant process dominates. (For a dis-

TWO-PHOTON-PHOTOEMISSION EXPERIMENTS

The experiments were performed with a frequency-
doubled tunable dye laser as described previously. ' The
light was p-polarized. The vacuum level, which is the
reference energy for image states, was determined as the
turning point of the steplike low-energy cutoff of the
(one-photon) photoelectron spectrum taken at hv=11.83
eV. The two-phonon photoelectron spectra exhibit a
sharp peak at the vacuum level which makes it difficult to
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FIG. 1. Angle-dependent two-photon-photoemission spectra
showing the dispersion of the n=1 image-potential state with

kii.
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is the band gap, and 5 is a
wave-function phase which varies from 0 at the bottom to
~/2 at the top of the gap; p and q are the real and imagi-
nary parts of the electron wave vector within the gap and
are given by standard expressions. "' With these approx-
imations the image-state energies and their dispersions are
given by

Lu (100) ~"/'m=0. 9 0.1
-0.2-

E(k(()=E„—e„+Pi k)(/2m,

e„=(1 Ry) /16(n +a), n = 1,2, 3, . . . (4)
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FIG. 2. F. vs k~j dispersion for the n=1 image-potential state
on various surfaces as measured with two-photon photoemis-
sion. The data points are fitted by parabolas (lines).

The mass m in the kinetic-energy term of Eq. (4) is the
free-electron mass, but an effective mass
m */m =A /(d E/dk

~~
~) different from unity results

when the phase 4~ and, consequently, e„depends on kII.
Note that the projected gaps considered here are large

at k~~
——0 and decrease with increasing kI~. Thus, the

1ower edge of the gap disperses faster than free-electron-

cussion of various two-photon-photoemission processes,
see Refs. 8 and 9). Thereby, electrons are excited from the
continuum of bulk states into the image-potential state
with the first photon and become ionized by the second
photon. This process is characterized by a kinetic energy
of the photoelectrons that increases like Ek;„——hv —Ez
with the photon energy hv, whereby Ez is the binding en-

ergy of the image-potential state below the vacuum level.
From the angle dependence of the peak positions, we easi-
ly obtain the E(k~~) band dispersions shown in Fig. 2.
The momentum parallel to the surface is given by
k~~

——h '&2mE sinH with 9 measured from the sample
normal. The intensity of the emission decreases with in-
creasing 9 for Ag(111) but remains constant for the (100)
surfaces.
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PHASE-SHIFT MODEL EF=O

The binding energy of image-potential states can be
described in a transparent way by a phase shift
model ' ' in which the electron is reflected back and
forth between the crystal and the image-potential barrier.
In order to obtain a standing wave, the round-trip phase
accumulation must be a multip1e of 2m. . The phase shift
Nz at the image-potential barrier is conveniently given by
the WKB interpolation formula'
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and depends on the energy of the image state relative to
the vacuum level E„. The phase shift +& on reflection at
the crystal-band-gap barrier can be approximated'

' by

FIG. 3. Band diagram for Ag(111) using a simple phase-shift
model. The n=1 image-state dispersion intersects the upper
edge of the bulk band gap and disperses less than the dashed
free-electron parabola. The crystal-induced rt=0 surface state,
on the other hand, intersects the lower edge of the bulk band
gap and disperses more strongly than the free electron.
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Ec—Ea
Ec —E (5)

where Ez is the energy at k~~
——0 determined by the local

value of 4c. For Ag(111), Ag(100), and Cu(100) one ob-
tains the values given in Table I ~ Note that the dispersion
is not strictly parabolic, so that the experimentally derived
m'/m will depend on the range of the fit. In particular,
m'/m~1 if the dispersion is pursued deep into the bulk
continuum, or if only the center of the Brillouin zone is
considered. '

like, whereas the upper edge is relatively flat. As pointed
out elsewhere, " these characteristics are imposed on the
surface-state dispersion relations depending on whether
the surface state resides in the lower or upper part of the
gap. ' For a gap centered about k~~ ——0 and the lowest
( n = 1) image state, we have binding energies ranging
from e&

——0.85 eV (C&c ——m. ) at the top of the gap, to
e

&

——0.38 eV (4c——0) at the bottom of the gap. Many im-
age states observed to date are located near the top of the
band gap and cross the upper band edge at finite k~~. In
such a case the binding energy e& increases from a value
smaller than 0.85 eV at k~~

——0 to exactly 0.85 eV at the
crossing point. Thus, the free-electron-like band disper-
sion is flattened by the counteracting e&(k~~) dispersion,
and the effective mass increases. For the intrinsic surface
states observed near the bottom of the gap on some sur-

faces, the situation is reversed: the eo(k~~ ) dispersion adds
to the free-electron dispersion and the effective mass de-

creases.
Numerical estimates for the effective mass can be made

by means of the simple geometrical construction shown in

Figs. 3 and 4. Outside the gap, the dispersion goes as

m /m=1 originating from point B. The crossover point
C can lie on the upper gap edge, as in Ag(111), or on the
lower gap edge, ' as in Cu(100). This gives rise to the two
opposite trends m */m & 1 or m */m & 1. For Ag(100) the
n= 1 state is so close to midgap (i.e., 40% up) that no
convincing case can be made either way. A more sophisti-
cated calculation with all Fourier components of the po-
tential is called for in order to properly describe the com-
plicated nature of the projected gap near the point where
it closes. Our simple model is expected to be most accu-
rate for Ag(111) since the crossover point C stays close to

k~~
——0, where a single Fourier component gives a reason-

able description of the band gap. From the total disper-
sion within the gap we may define an average effective
mass
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FIG. 4. Band diagram for Cu(100). The n=1 image state
lies near the middle of the bulk band gap, causing an effective
mass near unity (see Table I).

CONCLUDING REMARKS

From Figs. 3 and 4 and Table I one can see that the
agreement between the simple phase-shift model and ex-
periment is within the error bars for the effective masses.
The absolute binding energies are slightly off due to the
approximations made in determining the phase shifts.
Only a single Fourier component of the bulk potential was
used and the potential in the surface region is imagelike
and is embodied in the WKB expression for Nz. Also,
the position of the image plane needs to be refined. How-
ever, these simplifications affect the result on the effective
mass to a much smaller degree than the absolute binding
energy. We note that our approach for the effective mass
works even for the intrinsic (n=0, Fig. 3) surface state
observed near the bottom of the gap in Ag(111), although
our approximations are less reliable in this case. Cornbin-
ing inverse photoemission and photoemission results, *

the dispersion can be fitted with an effective mass of
0.4—0.5. The phase shift model gives m */m =0.44. The
large effective mass (m*/m=1. 7, Ref. 7) for the n= 1

image state on Ni(110) has been explained by a similar
'*back-of-the-envelope" construction. '

TABLE I. Binding energy E& and effective mass m of the n= 1 image-potential state. For the def-

inition of the energies E~ and Ec, see Figs. 3 and 4. All energies are in eV.

Phase model
E Ec m */m

Experiment
E~ m */m

Ag(111)
Ag(100)
Cu(100)

—0.75
—0.53
—0.50

—0.85
—0.38 ( —0.85)'
—0.38

—0.45 1.33
+ 2.3 (+2.4)' 0.95 (1.11)'
+ 2.7 0.96

—0.77+0.03 1.3 +0.15
—0.53+0.02 1.15+0.1
—0.57+0.02 0.9 +0.1

'Marginal due to uncertainties in the crossover point (see text). The numbers in parentheses are for a

crossover at the top of the gap.
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In summary, we have observed a deviation of the effec-
tive mass of image-potential states from unity using two-
photon-photoemission and have explained the results
semi- quantitatively by a simple phase-shift model. The

underlying mechanism is a k
~ ~

-dependent phase shift for
reflection at the crystal and does not need to invoke the
extreme surface corrugation or many-electron effects dis-
cussed previously.
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