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We present a method for calculating nonequilibrium current fluctuations (i.e., hot-electron noise)
in semiconductors based on the Green function to the time-dependent Boltzmann equation. The
method is valid for nondegenerate semiconductors for which the Boltzmann equation describes the
normal (i.e., time-independent) transport properties. We illustrate the method in uniform systems
within the relaxation-time approximation. We find that the noise can either increase or decrease
from its equilibrium value, depending on the band structure and the energy dependence of the relax-

ation time.

I. INTRODUCTION

Hot-electron noise (i.e., nonequilibrium current fluctua-
tions) in semiconductors is of great interest from both a
fundamental and applied point of view. From a funda-
mental viewpoint, nonequilibrium noise provides infor-
mation about a system that is not available from knowl-
edge of the conductivity. This is not true in equilibrium
where the “Callen-Welton-Kubo fluctuation-dissipation
theorem” requires that the noise be proportional to the
conductivity. From an applied viewpoint, many of the
devices being developed operate under high electric fields
and exploit nonequilibrium effects such as ballistic trans-
port. A knowledge of nonequilibrium (hot-electron) noise
is therefore essential to the design and performance of
these devices.

In view of these facts, a method for calculating the
nonequilibrium noise would be extremely useful. Present-
ly, the fluctuations are calculated either from Monte Car-
lo simulations! or, by assuming that the distribution func-
tion is a heated, displaced Maxwellian and applying a gen-
eralized Einstein relation, which relates the noise to the
electron temperature and the differential mobility.”? In
large electric fields, the distribution function can deviate
substantially from Maxwellian and therefore the general-
ized Einstein relation is not applicable.

In this paper, we formulate a method for calculating
the nonequilibrium noise based on the Green function for
the time-dependent Boltzmann equation. The paper is or-
ganized as follows. The correlation functions and power
spectra needed for describing the fluctuations are given in
Sec. IT and the method for calculating them is formulated
in Sec. III. In Sec. IV, we illustrate the method with
several examples, all within the relaxation-time approxi-
mation. The effect of a nonparabolic band structure is
considered in Sec. V. Our results show that the nonequili-
brium noise can either increase or decrease from its equili-
brium Nyquist value depending on the band structure and
the energy dependence of the scattering rate.

II. CORRELATION FUNCTIONS
AND POWER SPECTRA

The current across a dc-biased semiconductor device
fluctuates about its mean value (I). A measure of the
current fluctuations 8I(t)=I(t)—(I) is the current-
current correlation function

T(ty,t)=(8I(1,)8I(t;)) . (2.1)
We consider only ‘‘stationary” fluctuations, that is, the
correlation function depends only on the time difference
= t2 '—‘t] :

T(t)=(81(1)81(0)) . (2.2)

If we assume that each electron in the sample fluctuates
independently then the current-current correlation func-
tion (2.2), can be expressed in terms of the velocity-
velocity correlation function for a single electron,

Ne?
(2L)?

where N is the number of the electrons and 2L is the
length of the sample.

Typically measured in a noise experiment, the ‘“noise
power spectrum” S(w) is twice the cosine transform of
the correlation function,

I's)= (dv(1)dv(0)) , (2.3)

S(w)=2 [~ dt cos(wt)(1) . (2.4)

We will commonly refer to the noise power spectrum as
the “noise.”

The frequency dependence of the noise provides infor-
mation about the fluctuations. Figure 1 shows a plot of
three fluctuating signals and their corresponding power
spectra, “white,” 1/w?, and 1/w. In addition to the fre-
quency dependence the magnitude of the noise spectrum
also provides information about the fluctuations. In this
paper, the nonequilibrium spectra we calculate usually
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FIG. 1. Fluctuations and power spectra for three different
random processes. The first signal has fluctuations which are
completely uncorrelated in time and the resulting power spec-
trum is independent of frequency or “white” in analogy with
white light. The second signal is extremely correlated and its
power spectrum is 1/w? The last signal has fluctuations which
are not as uncorrelated as the first signal but less correlated than
the second. This last spectrum is the famous 1/f spectrum
(f =w/2m).

have a white power spectrum for frequencies below about
10'2 Hz, and so we will be concerned primarily with the
magnitude of the noise (below 10!2 Hz) as a function of
applied electric field and not the frequency dependence.
We will call the noise the “low-frequency noise” since the
frequency is low compared with the scattering rates but
this should not be confused with 1/f noise which is also
referred to as low-frequency noise and not considered in
this paper.

III. A METHOD FOR DETERMINING
NONEQUILIBRIUM CURRENT FLUCTUATIONS

Standard, time-independent transport properties in
semiconductors such as velocity-electric field curves and
thermopower are often calculated from the semiclassical
Boltzmann transport equation®~® The current correlation
function is a more complicated quantity since it involves
time dependence. Still, we shall see that if the Boltzmann
equation is valid for the time-independent quantities such
as the velocity-field curve, then the current correlation
function can be calculated by a Boltzmann-
equation—Green-function approach.

J

A. The Boltzmann equation

The Boltzmann equation in nondegenerate semiconduc-
tors is usually written as’®

d 0 eE 0
a:+”ax + n* 30 f(x,0,t)

D,f(x,v,t)=

=— 3 [W,,fxu,t)—W, ,flx,v,0], (3.1)

where f(x,v,t) is the distribution function for the number
of particles at (x,?) with velocity v. The left-hand side of
Eq. (3.1) is the total derivative of f with respect to time ¢.
Note that we use the convention that the electron has a
charge +e. The second line of Eq. (3.1) is the collision
integral. W, . is the transition rate for a collision from a
state with velocity v to a state with velocity v’. The col-
lision integral in Eq. (3.1) is valid for electron-phonon or
electron-impurity scattering in nondegenerate semicon-
ductors. For electron-electron scattering or degenerate
semiconductors, a more complicated collision integral
must be used.’

B. A method to determine the current fluctuations

The calculation reported here rests on the assumption
that the individual electrons fluctuate independently.
This assumption can break down in the presence of strong
electron-electron scattering which introduces correlations
between electrons.

Provided the above assumption holds, the current auto-
correlation function then depends on the joint probability
distribution for a single electron, P(x,,v5,t, Nx;,v1,0),
which gives the probability of finding an electron at
(x1, t; =0) with velocity v; and then having that electron
arrive at (x,,t,) with velocity v,. The joint probability
can always be written as R (x,,v5,%, | x1,01,0)P (x,v;,0).
Here R (x,,0;,t; | x1,v1,0) is the “conditional probability”
(or “response function”), i.e., the probability of finding an
electron at (x,,¢,) with velocity v, given that the electron
initially was at (x,, t; =0) with velocity v;. P(x,,v,,0)is
the “steady-state” probability of finding a particle at posi-
tion x; with velocity v, that is, P(x,v,) is nothing more
than the distribution function f(x,v,) (normalized to one
since it is for a single particle) obtained by solving the
time-independent Boltzmann equation (note that the
steady-state distribution function is not the same as the
equilibrium distribution).

The key point in calculating this conditional probability
is in realizing that it is the solution to the full time-
dependent Boltzmann equation subject to the initial condi-
tion

R (x2,l)2, IZZO | xl,vl,O)zs(x]—xz)S(vl —-Uz) . (3.2)

Once R (x,,04,t; | x1,0,,0) is known, the current auto-
correlation function, Eq. (2.3), can be calculated from

e? L L P P
()= dx dx dv dvy vV R (x5,0,,t | x4,01,0)f(xq,v0¢) . (3.3)
(2L) f_L lf,,_ Zf#w 1f'w 20102R (x3,02, | x1,01,0)f (x 1,04
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In Eq. (3.3), the sample is assumed to run from — L to L,
and the distribution function is normalized to the total
number of particles,

f_Lde f:c dv f(x,v)=N ,

but R (x,,v,,¢; | x1,v{,0) is normalized to one (since it is a
probability for finding a single electron),

f_w dv, fjo dx; R (x3,05,t; [ x1,01,0)=1.

(3.4)

(3.5)

To summarize, the method for calculating the correla-
tion function and noise is given by

(i) Calculation of the steady state distribution function,
f(x,v) the solution to the time-independent Boltzmann
equation, Eq. (3.1) with 3f /90t =0.

(i) Calculation of the response function,
R (x,,v,,t5 | x1,v1,0), from the solution to the full time-
dependent Boltzmann Eq. (3.1) with the initial condition
(3.2).

(iii) Calculation of the current autocorrelation function
['(¢) from Eq. (3.3) and the noise power spectrum, S (w,E)
from Eq. (2.4).

C. Equivalence to other methods

Van Vliet and Fasset in their classic article'® on trans-
port noise calculate diffusion noise based on a Green-
function approach for the diffusion equation. They show
in the article that the Green-function approach to calcu-
lating noise is equivalent to a Langevin approach of calcu-
lating the noise. Their proof of the equivalence was based
on an expansion of the Green function in terms of its
eigenfunctions and was done for an arbitrary linear opera-
tor L(d/0r,8/3t). This should also hold true for the
Boltzmann-equation—Green-function method approach
(where the linear operator also depends on d/3v) and thus
the Boltzmann-Langevin approach®!! for calculating
current fluctuations and the Boltzmann-
equation—Green-function ~ method should produce
equivalent results. Numerous other authors have dis-
cussed the equivalence of Green function methods to
Langevin equations.!>13

While the Boltzmann-equation—Green-function
method of calculating noise and the Boltzmann-Langevin
method of calculating noise may be formally equivalent,
the Boltzmann-equation—Green-function method has two
distinct advantages over the Boltzmann-Langevin method.

(i) To determine the noise with the Boltzmann-
Langevin approach, it is necessary to solve a complicated
integro-differential equation for the flucation 8f as a
Sunctional of the fluctuating random force. This is a dif-
ficult task. In the Boltzmann-equation—Green-function
method, the equation for the Green function is not a func-
tional equation and can thus be solved numerically or in
some approximation. It is unclear how to solve a func-
tional equation numerically or how to make approxima-
tions in the functional Langevin equation. (In principle,
once approximations for the Green function are known,
they then can be converted into the Langevin formalism.)

(ii) The correlations for the random fluctuations in the
Langevin formalism are given in terms of the transition
probabilities W, .. If an approximation is made for the
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collision integral in Eq. (3.1), it is unclear what the corre-
lation of the random fluctuation in the Langevin formal-
ism is. In the Boltzmann-equation—Green-function
method, any approximation for the collision integral for
the steady-state distribution f can be consistently incor-
porated into the equation for the Green function.

Since the time-dependent Boltzmann equation is used to
determine the current fluctuations, the Boltzmann-
equation—Green-function method of calculating current
fluctuations should be equivalent to Monte Carlo methods
of determining the current fluctuations.

IV. EXAMPLES FOR UNIFORM, BULK SYSTEMS

In this section, we apply the Boltzmann-equation—
Green-function method of calculating current fluctuations
to uniform, bulk semiconductors with no spatial depen-
dence so that the vdf /dx term drops out of Eq. (3.1).

To obtain a tractable problem, we use the relaxation-
time approximation for the collision integral. The models
are one dimensional although extension to three dimen-
sions is not difficult (and the results are qualitatively the
same).

A. A constant relaxation time model

We first solve a simple model where the relaxation time
is a constant. This model is too simple to describe real de-
vices, but has the advantage that it is analytically solvable
and illustrates many important features.

We assume that the electrons move in a single parabolic
band with an effective mass m*, and approximate the
Boltzmann equation by

. = (4.1)

eE 3f(v) | S0 —feq(v)
m dv

To

Here, the equilibrium function Seq(v) is a Maxwellian nor-
malized to the density
n exp( —pBm*v?/2)
feq(v)= (4.2)
“ (27 /(Bm*)]'/?

with B=1/(kpT,), T, being the lattice temperature.
This approximation for the collision integral is not arbi-
trary but takes into account that particle number (and
current) is conserved in the collision process.

The collision integral in Eq. (4.1) represents an inelastic
scattering mechanism since

fjw dv vz%

#0, (4.3)

col

i.e., energy is not conserved in the scattering process.
This is essential since the energy the electrons gain from
the electric field must be removed for a steady state to be
reached. In this case, the energy is removed by the pho-
nons. The phonons dissipate the energy they gain from
the electrons through the boundary of the material. If the
phonons cannot dissipate energy fast enough they will be-
gin to heat. Then the heating of the phonons must be tak-
en into account and a coupled set of Boltzman equations,
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one for the electrons and one for the phonons, must be
solved. While “hot phonons” have recently been shown to
be of importance in quantum-well structures,'*!* we as-
sume the phonons are in equilibrium.

The solution to (4.1) is straightforward.!®'” Using an
integrating factor, exp[ f dv(m* /eETy)], the differential
equation can be directly integrated

v *  _m*w—v)/(eETy)
f(v): f_wdv’g;g m*(—v')/(e Ofeq(u’)

2
= exp |l
2vy P vg 2 |y
v Uth

xerfc | — | ——+— 4.4)
\/—i Uth Vg4 }

Here vy, is the thermal velocity, vy, =(kgTo/m*)'/?, and
vy is the drift velocity, vy=eE7,/m*, and erfc is the
complementary error function.!® From the asymptotic
behavior of the complementary error function for large
argument, it can be seen that the distribution function
goes to the equilibrium Maxwell-Boltzmann distribution
in the limit E —O0.

The distribution function f(v) is plotted in Fig. 2 for
several values of the electric field. In the figures
throughout the paper, the distribution functions will be
multiplied by vy, /n and plotted against v/vy,. With this
normalization convention, all distributions have unit area.
Note: (1) The “high-velocity” tail decays as an exponen-
tial linear in the velocity, i.e., f(v)«< exp(—m*v/eETy).
(2) The distribution is asymmetric; for negative velocities,
f(v) < exp(—m*v2/2kpTy). (3) The width of the distri-
bution function (electron temperature) increases with E
and is given by

(v —{v)))Y=kgTo/m*+(eEto/m*)* .

Figures 3 and 4 show the exact distribution function
f(v) compared with two well-known approximations.
Figure 3 shows the exact solution f(v) for vy =2v, com-
pared with a displaced Maxwellian, fpy(v), which is a
Maxwellian distribution with the same first two moments
as the exact solution f(v), i.e.,

m* 172 —m*(v—0)2/(2kpT,)
W=n|—— . 4.5)
fom(v)=n 2wk, T, e (
with
© eET
U:(v)zlf dvuf(v)=v;= *O (4.6)
n —® m
and electron temperature
m*
kpT.="— [~ dv(v—0)f(v). 4.7)
n —

The exact solution is asymmetric about its mean, peaks at
a lower velocity, and decays faster in the negative velocity
direction and slower in the positive velocity direction than
the displaced Maxwellian. The equilibrium function (dot-
ted line) is shown so that the increase in the width of f(v)
with electron field can be seen.
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FIG. 2. The distribution function f(v) for several values of
the electric field. The distribution has several interesting
features: (i) It is asymmetric about its mean. (ii) As the electric
field increases, the number of electrons in the high positive velo-
city tail increases. (iii) The width of the distribution function in-
creases as the electric field increases.

In Fig. 4, the exact distribution function f(v) is com-
pared with the “linear-in- E” solution f7j,e.(v). This solu-
tion is obtained by iterating Eq. (4.6) to linear order in E,
and is given by

eETy 0f eq(v)

f]mear(v) feq(v) m * v . (4.8)
As seen from the exact solution Eq. (4.4) f(v) is nonana-
lytic in E so that an expansion in powers of E does not
converge but is only asymptotic. For any finite E, the
linear-in-E solution for the distribution function will ac-
tually become negative (which is unphysical) in the
negative-velocity region. In spite of this shortcoming, the
low-field current predicted by this approximation is still
correct.

Current and Noise. The current is obtained by directly

integrating over the distribution function. For the
constant-7 model,
2
© ne- T
I=e [~ dvof()=—0("F, 4.9)

i.e., the current is strictly linear at all electric fields, which
corresponds to an ohmic resistor. In realistic semiconduc-
tors, the scattering rates increase as a function of energy
which leads to v-E curves which are nonlinear in E.

To calculate the noise, we solve the equation for the
response function R (v,,f |v,,0) with the relaxation time
approximation for the collision integral. The solution is
easily obtained by integration
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FIG. 3. The exact distribution function (solid line) compared
to the displaced Maxwellian approximation (dashed line) for
vg=2vy. The displaced Maxwellian is a Maxwellian function
with the same density, mean velocity, and effective temperature
(variance) as the exact solution. The equilibrium distribution
(dotted line) is shown for comparison.
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FIG. 4. The exact distribution function (solid line) compared
to the linear-in- E approximation (dashed line) for vy =vy. The
linear-in- E solution becomes negative for large negative veloci-
ties no matter how small the electric field is. Since the exact
distribution function is not analytic in E, an expansion of f(v)
in powers of E does not exist and the linear-in- E solution can
only be an asymptotic expansion.

R (03,1 |v1,0)=8 |v; ——

eEt ] —t/7
—U |e

m* 172

¢ —(t=1)/7,
d‘z" 0
+ fo ¢ 27TkB TO

X exp|—m

[v—eE(t—D)]

(4.10)

The current autocorrelation function is found from
(3.3),
2

€ | ((v—(v)2)e .

(t)=N oL

(4.11)

It decays exponentially from its ¢=0 value, I'(0)
= N(e/2L)*((v —{v))?), with the correlation time being
the relaxation time 7.

The noise, calculated from Eq. (4.11) by Fourier
transformation, is

4ne Zr(, A

S(w,E)=
(w,E) oL

> (0 —C(v)?), 4.12)

14+ (1)

with A being the cross-sectional area of the sample.
Evaluating the variance, we obtain the final expression for
the noise power spectrum

2

A eEtg

2L

2
4ne-ty

1+ (wrg)?

kgTo

m*

S(w,E)=

m*

(4.13)

For E =0, the noise is the thermal Nyquist noise, as it
must be. When Es40, there are corrections to the thermal
noise that vary as E?. These corrections represent noth-
ing more than the heating of the electron gas by the elec-
tric field. The formula for the noise could have been writ-
ten as

kB Te

*

2
4ne“ty

1+ (wTp)?

A

2L

S(w,E)= , (4.14)

m

with T, the electron temperature. Applying an electric
field causes the electron gas to heat and increase its vari-
ance. This increase in the variance leads to an increase in
the noise.

The frequency dependence of the noise is Lorentzian.
For frequencies o << 1/7, the noise is white (frequency in-
dependent), while for w>>1/7y the noise varies as
1/(w7g)?. Typical 7 are in the range 10~ !3 sec so that the
noise is white at the usual frequencies measured.

The current (solid line) and noise (dashed line) as a
function of electric field are shown in Fig. 5 for a con-
stant 7. The noise throughout this paper is normalized
by 4kzTy/Ry where R, is a ‘“‘characteristic resistance”
given by 1/Ro=ne’roA/(m*2L). The current is linear
for all fields, while the noise is constant for small fields
and varies as the square of the field for large fields.

The main results for a constant—relaxation-time model
are as follows: (1) The distribution function (a) is nonana-
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FIG. 5. The average velocity and noise versus the electric
field for a constant relaxation time. The average velocity is
given in units of vy, and the noise is given in units of 4kTpT,
where R, is a characteristic resistance given by 1/R,
=ne%roA/(2Lm™*) and the electric field is given in units of
m*v,,/eto. The current is linear in the electric field for all
values of E. The noise is constant and given by the thermal Ny-
quist relation for small E but increases quadratically for large E
due to the heating of the electron gas.

lytic in the electric field, (b) is not a displaced Maxwellian,
and (c) has a high positive velocity velocity tail that de-
cays as f(v)x exp(—m™*v/eET); (2) the current is linear
for all values of the electric field; (3) the noise calculated
by the Boltzmann-equation—Green-function method (a)
has a Lorentzian frequency dependence, (b) for E =0, is
thermal and satisfies the fluctuation-dissipation theorem,
and (c) for E=£0, has an E? field-dependent correction
which results from the increased width of the distribution
function caused by the heating of the electrons by the
electron field.

B. A constant—mean-free-path model

In the preceding section, we looked at a constant relaxa-
tion time model and found that the current was linear in
E at all fields, and that there were quadratic in E correc-
tions to the thermal noise due to the heating of the elec-
trons by the electric field. Real semiconductors however
have nonlinear velocity-field curves and the energy depen-
dence of the scattering rates is important. In this section
we look at energy-dependent relaxation-times and their ef-
fect on the distribution function, current, and noise. We
find that a scattering rate that increases with energy tends
to decrease the noise. This effect opposes the increase in
noise due to the electron heating and therefore the noise
versus electric field curve can be quite complicated, either
increasing or decreasing with E.

The Boltzmann equation for an energy-dependent
relaxation-time is written

9727

m* v T(v) @13

eE 3f(v) _ [f(v)—A(E)feq(v) ,

Note the factor A4 (E) before the equilibrium distribution
function. A4 (E) is determined by the constraint that the
collision operator must vanish when integrated over v
(this insures that the current continuity equation is
obeyed), and implies that

[ av rw)/nw)
[7 dvfeqoi/ro)

For the constant relaxation time approximation of the
first section, 4 (E)=1 for all values of E and so A(E)
was not explicitly in the equation. Note that
A(E =0)=1 for any 7(v) since the collision integral must
vanish for the equilibrium distribution function.

This model is formally equivalent to writing the transi-
tion rates in the full Boltzmann equation as
W =S (1,0")feq(v") wWhere S(v,0")=S(v’,v) and choos-
ing S to have a separable form,!”

S(v,01)— [/r@I[1/70)]

(1/7)
Seq()
(v)

The solution to this model is obtained by multiplying
Eq. (4.15) by an integrating factor and then directly in-
tegrating the differential equation in much the same way
the constant relaxation-time model was solved,!”

A(E)=

(4.16)

(4.17)

a7n= [ av

v v * *feq(v')
()=A(E) [ dv’ S L M feq
7 f°° R f"' UeET(LT) eEr(v’)
(4.18)

The normalization of f(v) is used to determined A4 (E).
The average velocity is then calculated from Eq. (4.6).

It is straightforward though tedious to solve the equa-
tion for the response function. The expression then ob-
tained for the power spectrum is quite complicated. De-
tails of the solution are outlined in the Appendix [where
the problem is solved for a general band structure e(k)].
The resultant integrals are numerically evaluated in the
low-frequency limit to give the results obtained here.

One of the simplest energy-dependent models is given
by 1/7(v)=|v | /vy 7o, Which corresponds to the electrons
having a constant mean free path given by / =v,7,. Such
a model could arise from having a constant matrix ele-
ment and a V'e density of states. For this scattering rate,
the integrals in Eq. (4.18) can be done analytically. The
resulting expression for the distribution function is given
by

1—u? | nexp(—pBm*v2/2)
3 , v<0
1—u 27 /(Bm*)
flo)= 1+u? | nexp(—Bm*v?/2)
1—u? 27 /(Bm*)
22 ne—Bm"‘vz/Zu2
— , v>0, (4.19)
1—u? 2w /(Bm™)
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where

u2= - .
m U

E
BT (4.20)

The calculated distribution functions are shown in Fig.
6 for several values of the electric field. The features to
note are the following: (1) The nonequilibrium distribu-
tion functions are still asymmetric about the mean and are
not displaced Maxwellians. (2) The hot-electron tail,
present in the constant relaxation time model is no longer
present at low fields. At larger fields, there is a substan-
tial amount of electrons with high velocities. In fact,
from the analytic expression for f(v), one sees that high-
velocity behavior is given by f(v)« exp(—Bm*v2/2) for
small fields and by f(v) < exp( —v2/2u?) for large fields.
This behavior is not too surprising. The energy depen-
dence of the scattering rate is V'e. For small energies, the
change in scattering rate with change in energy increases
rapidly and this makes it difficult for electrons to reach
velocities in the tail before they scatter. At higher ener-
gies, the change in scattering rate now increases slowly
with change in € and more electrons attain higher veloci-
ties before scattering and thus the number of electrons
with high velocities decays slower than at low fields. (3)
There is structure at v =0. This structure is associated
with the fact that the scattering rate goes to 0 at v =0.

The average velocity for this model is given by

2
3

1—u

(v)=Q2/m"? |u? Vip (4.21)

1—u

with u given by Eq. (4.20). This is plotted in Fig. 7. For
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FIG. 6. The distribution function for several values of elec-
tric field for a scattering rate given by 1/7(v)=|v | /vw7o. The
distribution functions are as follows, (i) asymmetric about their
mean, (ii) do not have as long a high-velocity tail as the constant
7 case at low fields, (iii) show structure at v =0 due to the fact
that the scattering rate vanishes there. Note that as the electric
field increases, the widths become wider.
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FIG. 7. Noise and average velocity for the constant mean-
free-path model. The average velocity (solid line) is linear in the
electric field for small values of the electric field but for large
fields varies as the square root of the electric field. The noise
(dashed line) decreases from its thermal equilibrium value at
small electric fields but at large electric fields increases.

low fields, the average velocity is linear in the field while
for large fields the dependence is V'E,

2 eET, eET
’ <V
V2r | m* m* th
= (4.22)
() 2 eETy 172 eETy
‘/ET m* Uth ’ + >Vt -

The noise for this model is plotted in Fig. 7 on a log-log
plot. Note that the noise initially decreases and then fi-
nally increases. How can this occur if the electric field is
heating up the electron distribution and causing the elec-
tron temperature to rise? The answer is that the noise de-
pends not only on the electron temperature but also on the
scattering rate. The low-frequency noise is the area under
the autocorrelation function, i.e.,

S(=0,E)= [~ diT(). (4.23)

The area under the autocorrelation function is roughly
proportional to its height times its width. The height of
the autocorrelation function is

ro)={w—<(v))?),

i.e., the variance or temperature of the distribution func-
tion. As the electric field is increased, the electrons gain
energy and the variance increases. This increases the
height of the distribution and tends to increase the noise.
The noise also depends on the width of the correlation
function which is determined by the correlation time, i.e.,
the time on which an electron’s velocity is correlated and
is approximately given by the average collision time. If

(4.24)
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the electron scattering rates increase as a function of ener-
gy, then when the electric field is increased, the average
energy of the particles is increased and so is the average
scattering rate. This means the correlation time decreases
which causes the noise to decrease. Increased scattering
rates also have a secondary effect which reduces the noise.
A scattering rate that increases with electric field causes
the variance or width of the distribution to increase more
slowly with field than would a constant scattering rate
and thus electron heating is smaller with scattering rates
that are stronger functions of energy.

To summarize the main effects:

(i) Electric field increase => heating or increased vari-
ance of the velocity distribution => noise increase.

(ii) Electric field increase can increase the effective
scattering rates = correlation time decrease = noise
decrease.

(iii) Increased scattering rates = reduced electron
heating == reduced noise.

C. An optic-phonon model

The final energy dependence we consider (more energy
dependences are considered in Ref. 19) is a scattering rate
given by

o
)

Here, K and C are constants. This represents a scattering
rate that is one constant below Cv,, and then another
scattering channel opens and the scattering rate is another
constant above Cvy,. This could represent some type of
optic-phonon scattering since an electron can always
scatter by absorbing an optic phonon but can’t scatter by
emitting an optic phonon unless it has an energy greater
then 7w, the optic-phonon energy. This type of scatter-
ing rate would most likely represent some sort of
deformation-potential optic-phonon scattering since polar
optic-phonon scattering highly favors forward scattering
(small g transfer).

If we assume that the scattering rate in Eq. (4.25) is due
to optic-phonon scattering, then K is equal to the ratio of
the probability of scattering by optic-phonon emission to
the probability of scattering by optic-phonon absorption.
Since the probability of optic-phonon absorption is pro-
portional to »n (the number of optic phonons present) and
the probability of emission is proportional to n + 1, we see
(ignoring density of states and matrix element factors)
that K should be given by

o
SRl ey
h

{1+ KO[v:—(Cvy,)*1} /70 - (4.25)

K (4.26)

The constant C is determined by the optic-phonon energy,
24w

m*U‘Zh

Ci= 4.27)
For Si, Ge, and GaAs, the optic-phonon energy is 63, 37,
and 35 meV, respectively.?°

The effect of this scattering rate on the distribution
function is shown in Fig. 8. As an electron’s energy be-
comes greater than the optic-phonon emission threshold,
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FIG. 8. The distribution function for an optic-phonon model.
The slope of the distribution function changes discontinuously
at the velocities v =+ 2%iwo/m* =1.5v,, due to the fact that
an additional channel for scattering now opens up—electrons
can now scatter by emitting optic phonons. At high electric
fields, the average scattering rate is no longer increasing with
the electric field and a high velocity tail begins to appear.

there is a steep change in the slope of the distribution
function associated with the increase in the scattering rate
due to optic-phonon emission. For high electric fields, a
fair number of electrons have velocities greater than the
threshold velocity and since the scattering rate above the
threshold is constant, a high-velocity tail begins forming
in the direction of the electric field.

The current and noise calculated numerically for this
model are shown in Fig. 9. For simplicity, we take
C=1.5 which corresponds at room temperature to an
optic-phonon energy of about 56 meV, somewhere be-
tween Si and Ge. The constant K is chosen to be 5. If the
scattering were due to just optic phonons, then according
to Eq. (4.26), K should be about 9.4. K could be less than
9.4 if there were some other scattering mechanism (such
as acoustic phonon scattering) which was also present. In
the first graph, the current is plotted against the electric
field on a linear scale. The current is linear in E at small
fields, (with a slope of 0.567 as shown in the graph by the
dashed line) increases less rapidly than linearly at inter-
mediate fields, and then becomes linear again at high
fields but with a smaller slope (the dashed line has a slope
of <+, which corresponds to an effective 7~67,) than it
had at small fields. This behavior is shown more clearly
in the second plot which is on a log-log scale and shows
both the current and noise versus the electric field. It is
seen that the current is linear at low fields and high fields
but at intermediate regions, there is a crossover region
where the slope of the two linear regions changes. The
key feature of the optic phonon is this crossover region.
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The noise is also shown on the log-log plot. For small
fields, the noise is constant at a value given by the
fluctuation-dissipation theorem (0.567, the value of the
slope in the first linear region for the current). At inter-
mediate fields, the noise decreases from its E =0 value
due to the fact that the scattering rate abruptly increases
as the threshold for optic-phonon scattering is reached.
Beyond this threshold, the scattering rate becomes effec-
tively constant and the noise begins to increase at high
fields due to the heating of the electrons by the electric
field. Thus we have an example of a scattering rate were
the noise decreases at first due to increasing scattering
rates but finally the rates saturate and the noise then be-
gins to increase, due to heating.

V. NONPARABOLICITY

Here, we consider the effect of a nonparabolic band
structure on the shape of the distribution function, the
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FIG. 9. The average velocity and noise for the optic phonon
scattering rate. The top graph shows the average velocity plot-
ted against electric field on a linear scale. At small fields, the
average velocity is linear in the electric field with a slope of
~0.567 (long-dashed line). At high fields, the average velocity
is again linear in the electric field but the slope has decreased
(the long-dashed line shows a slope of %, which corresponds to a
scattering rate of 6/7¢). The bottom graph shows the average
velocity and noise on a log-log plot. The linearity of the average
velocity for high and low fields can now be more easily seen.
For the noise, we see an initial decrease in the noise from its
thermal value at low fields. This decrease is associated with the
fact that many of the electrons are accelerated by the electric
field to velocities above the optic-phonon emission threshold and
thus see a sudden sharp increase in the effective scattering rate.
At high electric fields, most of the electrons are already above
the optic phonon emission threshold, and therefore the scatter-
ing rate no longer increases with the electric field and the heat-
ing of the electrons causes the noise to increase.
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average velocity, and the noise. We find that for typical
values of the nonparabolicity parameter «, the effect on
the distribution function (in k space) is minimal both in
equilibrium and in the presence of high electric fields. On
the other hand, nonparabolicity can cause the current to
saturate and the noise to decrease even if the scattering
rates are constant. This later effect is associated with the
fact that the energy is linear in k for large k; accordingly
fluctuations in the k states do not lead to velocity fluctua-
tions since the different k states have the same velocity.

Nonparabolicity is easily incorporated into the
Boltzmann equation. Consider a band with a dispersion
€(k) (we take 7i=1). For concreteness, we take

e(k)=[(1+2k’a/m*)'"*_1]/2a .

For small k, the energy depends quadratically on wave
vector while for large k the dependence is linear. Typical
values of « are in the range of 0.5—1.0 (eV)~L.!! In the
figures, we give a in units of (kzT)~! at room tempera-
ture, (i.e., in units of % meV). The value of a is typically
in the range of 0.01—0.02 in these units, so that the
amount of nonparabolicity in real systems is less than is
shown. The velocity is given by
de(k) k
vik)= 9k  m*(142k%a/m*)V/?’
which is linear for small k but constant for large k.
The distribution function. The distribution function is
now conveniently written as a function of k and not the
velocity. The equation for the distribution function is the
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FIG. 10. The equilibrium distribution function fc(k) for
values of the nonparabolicity parameter a. The equilibrium dis-
tribution function is given by f.q(k)=Ce —Bek)  The effects of
nonparabolicity is seen to be a slight increase in the number of
electrons with high-k values. This increase results from the fact
that the energy is lower in the nonparabolic model than it is in
the parabolic model and thus the higher k states are more popu-
lated. Realistic values of a are smaller than those given here
and the actual differences between the nonparabolic and para-
bolic equilibrium functions is small.
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same as Eq. (4.15) except that v is replaced by k/m and
the equilibrium distribution function f,(k), is no longer
Gaussian but is

foqlk)=Ce —Petk) (5.2)

The constant C is determined by normalization. For
elk)=(1/2a)[(14-2k%a)/>—1], C is given by
nVa/2exp(l1/2a)/K,(1/a) with K| a modified Bessel
function of the second kind. Figure 10 shows the equili-
brium distribution function fq(k).

The solution for f(k) is clearly the same as (4.18) ex-
cept that v is replaced by k/m* and the equilibrium
J

S(w)=2¢* [ “drcostor) [ * dk, [7 dk, =
e . 1

These equations together with the expressions for f(k)
and R(k,,t|k,) solve the problem of a k-dependent
scattering time in a nonparabolic energy band e(k). In
general, the integrals cannot be done analytically even for
a constant relaxation time and must be evaluated numeri-
cally. In the Appendix, we write down the equations for
the current and noise in a simplified form from which the
integrals can be numerically evaluated. The results for
the simple constant relaxation time model with energy
dispersion €(k)=(1/2a)[(1+2k%a)!”>—~1] are shown
in Fig. 11. The average velocity is linear in the field for
small field but saturates as the field increases.

The noise S(w=0, E) is shown in Fig. 12 for the con-
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FIG. 11. Average velocity for a constant relaxation time in a
nonparabolic band. The solid line corresponds to a=0, the
dashed line to @=0.01 (in units of 1/kzT,), the long-dashed
line to a=0.1 and the dotted-dashed line to a=1.0. The most
realistic value of a corresponds to the short-dashed line. Al-
though for this value of a, the distribution function does not
change appreciably, there is a significant change in the current
associated with the velocity saturating in the linear part of the
energy band.
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function is modified as described above. For typical a's,
the effect on the resulting distribution functions, even for
large electric fields is small.

Average velocity and noise. While nonparabolicity does
not change the shape of the distribution function appreci-
ably, it can change the average velocity and noise substan-
tially. Since v (k)=03e(k)/dk, the current is given by

de(ky) Oe(ky)

® de(k)
(v)y= f_wdka(k) (5.3)
and the noise is given by
R(kz,t |k1)f(k1) . (5.4)

stant relaxation time model. In the parabolic case, the
noise is thermal then increases as E? with an applied elec-
tric field. As the band becomes more nonparabolic, the
noise decreases at large fields. The decrease is due to the
fact that even though there are fluctuations in the dif-
ferent k states, the velocities associated with these k states
are the same so that fluctuations in the k states do not
lead to velocity fluctuations. For a=0.01, the noise is
thermal at low values, begins to increase with field due to
the heating of the electrons and then decreases when the
electrons get to the linear part of the band. As « is in-
creased even further, the noise no longer increases above
its thermal value because the heated electrons are in the
linear part of the band. Finally, one should note the drop
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FIG. 12. The noise for a constant relaxation time in a non-
parabolic band. As the electrons move up the band to the linear
region, the velocity fluctuations are suppressed. This occurs not
because there are fewer fluctuations between the various k states
in the band but because these different k states have the same
velocity.
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in the low-field (thermal) noise as a increases. This re-
sults from the fact that the linear conductivity decreases
as a increases as is evident from Fig. 11.

To summarize the results of this section, we have con-
sidered a k-dependent scattering rate in a nonparabolic
band given by €(k). For the special case
e(k)=(1/2a)[(1+2k?a)'">—1], we found that the aver-
age velocity saturates as a function of the electric field
and that the noise decreases at high fields because fluctua-
tions in the k states no longer lead to velocity fluctua-
tions.

VI. CONCLUSIONS

In this paper, we have formulated the Boltzmann-
equation—Green-function method for calculating none-
quilibrium current fluctuations and have demonstrated
the applicability of the method to uniform, bulk semicon-
ductors. We have calculated the distribution function,
average velocity and noise in several relaxation-time
models as a function of electric field.

Unlike the velocity-field curve which usually is a mono-
tonic increasing function of the electric field, the noise
can increase and decrease above its thermal equilibrium
value when an electric field is applied. There are two non-
linear effects that change the noise from its thermal
equilibrium value. The first is the heating of the electron
gas by the electric field which increases the electric tem-
perature and increases the noise. The second is the energy
dependence of the scattering rates. Scattering rates that
increase with energy decrease the correlation time and
tend to decrease the noise as a function of electric field.
Also, increasing scattering rates slow the heating of the

|

© k , 1 k
(y=a [ dk [ dk'——ssokexp |~ [l dk——

1
eEr(k
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electron gas.

We have also looked at the effect of band structure and
nonparabolicity on the noise spectrum. There we found
that a band that becomes linear at high k will lead to a sa-
turation of the average velocity and a decrease in the noise
spectrum. This decrease comes about not because there
are no longer fluctuations in the various k states but be-
cause these fluctuations no longer lead to velocity fluctua-
tions.
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APPENDIX: EXPRESSIONS FOR THE NOISE
AND AVERAGE VELOCITY

In this appendix we provide expressions for the average
velocity and noise that are numerically evaluated to get
the results in the text. We assume that the band structure
is given by €(k) so that the velocity depends on k through
v(k)=0e(k)/0k. The current is given by a double in-
tegral

]feq . (A1)

To obtain an expression for the noise, it is easier to deal with the equation for the response function in Laplace space.

The equation for R(k,,s | k;)

AR (ks | ky) Riky,s |ki)—

A(S,E 3k ) feq(ky)

, the Laplace transformed Green function is

(A2)

sR(ky,s | ki)+eE

ok,
This equation can be solved by using an integrating factor,

- k
Riky,s | k)= f_;dk’

exp

1
eEr(k’)

(k)

- [

1+ 8(ky—ky) .

[A(s,E k) feq(k)+8(k"—Kk )], (A3)

eE'r k)

with A (s,E;k,) determined by integrating this equation over k, and using the normalization condition on R(kj,s | k;)

The result is

1
A(s,E;k|)=|—
(s S f"‘l CEr(K) exp

© k , 1
f_wdkz fﬁ;dk m exp

The expression for A(t,E;k) is the inverse Laplace transform of Eq. (A4).

Ko~ 1
- fk dk =
1 eEr(k)
-1
ky—k") ky
2 _ f,z Feglk (Ad)
k eET(k)

In general, the inverse Laplace transform

cannot be done analytically. If we are interested in the noise however, we do not have to invert the Laplace transform
but can analytically continue the transform into real frequency w. In doing this, we exploit the fact that the autocorrela-
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tion function is an even function of time (for a stationary process), and take twice the real part of R(k,,s | k1) evaluated
at s =iw. The expression for the noise is then
S(w,E)=4Re |e? f_f"’mark2 _{_""wdk1 vk (k )R (kyys =i | ky)f (ky) ] ) (AS)
From these equations, after a bit of algebraic manipulations, one obtains an expression for the noise
S(w,B)= | —— <”> (V.S—V.C) | —C(V.X,—V,X,) =S (V.X. +X,V.)
C+S
© k, 1 ky , 1 , (k,—k')
+A fwdk2 fwdueET(u) 2)feq(u)exp | — f dkeET = ] ‘fu dk'—=v(k')cos " )
(A6)
with A4 given by Eq. (4.16) and C, S, X,, X,, V,, and V by
wlk —k')
cos | =
=A dk dk’ e dk eq(k') X , (A7)
I, f P f ]fq | ok —k')
sin | —————
eE
wlk —k')
v cos | =
fi=A dk dk’— ex dk — ek U (k) X , (A8)
v, I”. f_w P f ~E) }f“ | otk —k")
sin | ————~
eE
wlk —k)
cos
X, , k —~v(k) ¢E
X (=4 f_wdk f_wdk ~Eae &P f dk feq fk,dk? X ) . (A9)
| otk —k) ]
sin
eE
In the low-frequency limit the noise is
o k 1 k)—e(k’) k—k'
- - N S— k)— —
Se=0E)=4 [ ak [ dk ey &P f dkeE " ]feq [v(k)—(v)] E ()=~

(A10)

It is this quantity which is numerically evaluated to produce the results given in the text.
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