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We present a method for calculating nonequilibrium current fluctuations (i.e., hot-electron noise)
in semiconductors based on the Green function to the time-dependent Boltzmann equation. The
method is valid for nondegenerate semiconductors for which the Boltzmann equation describes the
normal (i.e., time-independent) transport properties. We illustrate the method in uniform systems
within the relaxation-time approximation. We find that the noise can either increase or decrease
from its equilibrium value, depending on the band structure and the energy dependence of the relax-
ation time.

I. INTRODUCTION

Hot-electron noise (i.e., nonequilibrium current fluctua-
tions) in semiconductors is of great interest from both a
fundamental and applied point of view. From a funda-
mental viewpoint, nonequilibrium noise provides infor-
mation about a system that is not available from knowl-
edge of the conductivity. This is not true in equilibrium
where the "Callen-Welton-Kubo fluctuation-dissipation
theorem" requires that the noise be proportional to the
conductivity. From an applied viewpoint, many of the
devices being developed operate under high electric fields
and exploit nonequilibrium effects such as ballistic trans-
port. A knowledge of nonequilibrium (hot-electron) noise
is therefore essential to the design and performance of
these devices.

In view of these facts, a method for calculating the
nonequilibrium noise would be extremely useful. Present-
ly, the fluctuations are calculated either from Monte Car-
lo simulations or, by assuming that the distribution func-
tion is a heated, displaced Maxwellian and applying a gen-
eralized Einstein relation, which relates the noise to the
electron temperature and the differential mobility. In
large electric fields, the distribution function can deviate
substantially from Maxwellian and therefore the general-
ized Einstein relation is not applicable.

In this paper, we formulate a method for calculating
the nonequilibrium noise based on the Green function for
the time-dependent Boltzmann equation. The paper is or-
ganized as follows. The correlation functions and power
spectra needed for describing the fluctuations are given in
Sec. II and the method for calculating them is formulated
in Sec. III. In Sec. IV, we illustrate the method with
several examples, all within the relaxation-time approxi-
mation. The effect of a nonparabolic band structure is
considered in Sec. V. Our results show that the nonequili-
brium noise can either increase or decrease from its equili-
brium Nyquist value depending on the band structure and
the energy dependence of the scattering rate.

II. CORRELATION FUNCTIONS
AND POWER SPECTRA

The current across a dc-biased semiconductor device
fluctuates about its mean value (I). A measure of the
current fluctuations 5I(t) =I ( t) —(I ) is the current-
current correlation function

I (t, t, )=(6I(t )6I(t, )) . (2. 1)

We consider only "stationary" fluctuations, that is, the
correlation function depends only on the time difference

r(t) =(5I(t)5I(0)) . (2.2)

If we assume that each electron in the sample fluctuates
independently then the current-current correlation func-
tion (2.2), can be expressed in terms of the velocity-
velocity correlation function for a single electron,

Ner( t)=, (6v(t)6v(0) ),
(2L )' (2.3)

where N is the number of the electrons and 21 is the
length of the sample.

Typically measured in a noise experiment, the "noise
power spectrum" S(co) is twice the cosine transform of
the correlation function,

S(to) =2 f dt cos(cot)r(t) . (2.4)

We will commonly refer to the noise power spectrum as
the "noise."

The frequency dependence of the noise provides infor-
mation about the fluctuations. Figure 1 shows a plot of
three fluctuating signals and their corresponding power
spectra, "white, " 1/~, and 1/co. In addition to the fre-
quency dependence the magnitude of the noise spectrum
also provides information about the fluctuations. In this
paper, the nonequilibrium spectra we calculate usually
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WHI TE
A. The Boltzmann equation

The Boltzmann equation in nondegenerate semiconduc-
tors is usually written as'

D,f (x,v, t) =— +v + „ f (x, v, t)
a 8 eE a

c3t Bx m* Bv

3
(f)

= —g [W, „f(x, v, t) W, —,f(x, v', t)], (3.1)

FIG. 1. Fluctuations and power spectra for three different
random processes. The first signal has fluctuations which are
completely uncorrelated in time and the resulting power spec-
trurn is independent of frequency or "white" in analogy with
white light. The second signal is extremely correlated and its
power spectrum is 1/co . The last signal has fluctuations which
are not as uncorrelated as the first signal but less correlated than
the second. This last spectrum is the famous 1/f spectrum
(f =co/2')

have a white power spectrum for frequencies below about
10' Hz, and so we will be concerned primarily with the
magnitude of the noise (below 10' Hz) as a function of
applied electric field and not the frequency dependence.
We will call the noise the "low-frequency noise" since the
frequency is low compared with the scattering rates but
this should not be confused with 1/f noise which is also
referred to as low-frequency noise and not considered in
this paper.

III. A METHOD FOR DETERMINING
NONEQUILIBRIUM CURRENT FLUCTUATIONS

Standard, time-independent transport properties in
semiconductors such as velocity-electric field curves and
thermopower are often calculated from the semiclassical
Boltzmann transport equation The current correlation
function is a more complicated quantity since it involves
time dependence. Still, we shall see that if the Boltzmann
equation is valid for the time-independent quantities such
as the velocity-field curve, then the current correlation
function can be calculated by a Boltzmann-
equation —Green-function approach.

where f (x, u, t) is the distribution function for the number
of particles at (x, t) with velocity u. The left-hand side of
Eq. (3.1) is the total derivative of f with respect to time t
Note that we use the convention that the electron has a
charge +e. The second line of Eq. (3.1) is the collision
integral. W„, is the transition rate for a collision from a
state with velocity v to a state with velocity v'. The col-
lision integral in Eq. (3.1) is valid for electron-phonon or
electron-impurity scattering in nondegenerate semicon-
ductors. For electron-electron scattering or degenerate
semiconductors, a more complicated collision integral
must be used.

B. A method to determine the current fluctuations

R (xq, v2, t2 ——0
~
x~, v~, O) =5(x~ —xq)5(v~ —uq) . (3.2)

Once R (x2, u„, t2
~
x&, u„O) is known, the current auto-

correlation function, Eq. (2.3), can be calculated from

The calculation reported here rests on the assumption
that the individual electrons fluctuate independently.
This assumption can break down in the presence of strong
electron-electron scattering which introduces correlations
between electrons.

Provided the above assumption holds, the current auto-
correlation function then depends on the joint probability
distribution for a single electron, P(x2, u2, t2 Ax&, u&, 0),
which gives the probability of finding an electron at
(x ~, t, =0) with velocity u, and then having that electron
arrive at (x2, t2) with velocity u2. The joint probability
can always be written as R (x2, u2, t2

~
x&, v&, 0)P (x~, v~, O).

Here R (x2, u2, t2
~

x &, v „0) is the "conditional probability"
(or "response function"), i.e., the probability of finding an
electron at (xq, t2) with velocity vq given that the electron
initially was at (x„t, =0) with velocity u~. P( ~,xv, ,O) is
the "steady-state" probability of finding a particle at posi-
tion x

&
with velocity u, , that is, P(x, , v, ) is nothing more

than the distribution function f(x ~, v
~ ) (normalized to one

since it is for a single particle) obtained by solving the
time-independent Boltzmann equation (note that the
steady-state distribution function is not the same as the
equilibrium distribution).

The key point in calculating this conditional probability
is in realizing that it is the solution to the full time-
dependent Boltzmann equation subject to the initial condi-
tion

e2 I L oo OO

I (t)= f dx, dx du, du2u~u2R(x2, u2, t ~x~, v~, O)f(x~, v~) .
(2L) —L oo —OO

(3.3)
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In Eq. (3.3), the sample is assumed to run from —L to L,
and the distribution function is normalized to the total
number of particles,

f dxf" (3.4)

but R (x2, u2, t2
~

x ~, u ~, 0) is normalized to one (since it is a
probability for finding a single electron),

dUp dXp R X2&U2 t2 X] U] 0 = 1 ~ 3.5

dv f(x,u)=N,

To summarize, the method for calculating the correla-
tion function and noise is given by

(i) Calculation of the steady state distribution function,
f (x,u) the solution to the time-independent Boltzmann
equation, Eq. (3.1) with df /r)t =0.

(ii) Calculation of the response function,
R (x2, v2, tq

~
x~, v~, 0), from the solution to the full time-

dependent Boltzmann Eq. (3.1) with the initial condition
(3.2).

(iii) Calculation of the current autocorrelation function
I (t) from Eq. (3.3) and the noise power spectrum, S(tv, E)
from Eq. (2.4).

C. Equivalence to other methods

Van Vliet and Fasset in their classic article' on trans-
port noise calculate diffusion noise based on a Green-
function approach for the diffusion equation. They show
in the article that the Green-function approach to calcu-
lating noise is equivalent to a Langevin approach of calcu-
lating the noise. Their proof of the equivalence was based
on an expansion of the Green function in terms of its
eigenfunctions and was done for an arbitrary linear opera-
tor L(BIBr,Blat). This should also hold true for the
Boltzm ann-equation —Green-function method approach
(where the linear operator also depends on BIBv ) and thus
the Boltzmann-Langevin approach ' " for calculating
current fluctuations and the Boltzmann-
equation —Green-function method should produce
equivalent results. Numerous other authors have dis-
cussed the equivalence of Green function methods to
Langevin equations. ' '

While the Boltz mann-equation —Green-function
method of calculating noise and the Boltzmann-Langevin
method of calculating noise may be formally equivalent,
the Boltzmann-equation —Green-function method has two
distinct advantages over the Boltzmann-Langevin method.

(i) To determine the noise with the Boltzmann-
Langevin approach, it is necessary to solve a complicated
integro-differential equation for the flucation 5f as a
functional of the fluctuating random force. This is a dif-
ficult task. In the Boltzmann-equation —Green-function
method, the equation for the Green function is not a func-
tional equation and can thus be solved numerically or in
some approximation. It is unclear how to solve a func-
tional equation numerically or how to make approxima-
tions in the functional Langevin equation. (In principle,
once approximations for the Green function are known,
they then can be converted into the Langevin formalism. )

(ii) The correlations for the random fluctuations in the
Langevin formalism are given in terms of the transition
probabilities O', , If an approximation is made for the

collision integral in Eq. (3.1), it is unclear what the corre-
lation of the random fluctuation in the Langevin formal-
ism is. In the Boltzmann-equation —Green- function
method, any approximation for the collision integral for
the steady-state distribution f can be consistently incor-
porated into the equation for the Green function.

Since the time-dependent Boltzmann equation is used to
determine the current fluctuations, the Boltzmann-
equation —Green-function method of calculating current
fluctuations should be equivalent to Monte Carlo methods
of determining the current fluctuations.

IV. EXAMPLES FOR UNIFORM, BULK SYSTEMS

In this section, we apply the Boltzmann-equation—
Green-function method of calculating current fluctuations
to uniform, bulk semiconductors with no spatial depen-
dence so that the vlf /Bx term drops out of Eq. (3.1).

To obtain a tractable problem, we use the relaxation-
time approximation for the collision integral. The models
are one dimensional although extension to three dimen-
sions is not difficult (and the results are qualitatively the
same).

A. A constant relaxation time model

We first solve a simple model where the relaxation time
is a constant. This model is too simple to describe real de-
vices, but has the advantage that it is analytically solvable
and illustrates many important features.

We assume that the electrons move in a single parabolic
band with an effective mass m*, and approximate the
Boltzmann equation by

eE r)f(u)
m'

f (u) —f,q(v)
(4. 1)

Here, the equilibrium function f, (v) is a Maxwellian nor-
malized to the density

n exp( —Pm*v /2)
[2~/(/3m *)]'~ (4.2)

f" duu' ~0, (4.3)

i.e., energy is not conserved in the scattering process.
This is essential since the energy the electrons gain from
the electric field must be removed for a steady state to be
reached. In this case, the energy is removed by the pho-
nons. The phonons dissipate the energy they gain from
the electrons through the boundary of the material. If the
phonons cannot dissipate energy fast enough they will be-
gin to heat. Then the heating of the phonons must be tak-
en into account and a coupled set of Boltzman equations,

with g= I /(ktt To), To being the lattice temperature.
This approximation for the collision integral is not arbi-
trary but takes into account that particle number (and
current) is conserved in the collision process.

The collision integral in Eq. (4.1) represents an inelastic
scattering mechanism since
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The current autocorrelation function is found from
(3.3),

2

f (t)=N ((v —(v)')e
2I.

(4. 1 1)

0 & I i i I-»
—i0 —5 10

It decays exponentially from its t =0 value, I (0)
= X(e/2L) ((v —(v ) ) ), with the correlation time being
the relaxation time ~p.

The noise, calculated from Eq. (4.11) by Fourier
transformation, is

FIG. 3. The exact distribution function (solid line) compared

to the displaced Maxwellian approximation (dashed line) for

vd ——2v, q. The displaced Maxwellian is a Maxwellian function

with the same density, mean velocity, and effective temperature

(variance) as the exact solution. The equilibrium distribution

(dotted line) is shown for comparison.

S(tu, E) = 4ne ro2

( —(.) )'),1+(thoro)'
(4.12)

with 2 being the cross-sectional area of the sample.
Evaluating the variance, we obtain the final expression for
the noise power spectrum

4ne ~p
2

S (tu, E)=
1+(toro)

2
eE&p

O.B

O5—
EQUIL.

1QCkCT

——LINFM4 E
O.4—

/gI
I
I
I
I
I l.f.

I '.
~ I ~

~ I ~
1

~ I ~ l

(4.13)

For E =0, the noise is the thermal Nyquist noise, as it
must be. When E&0, there are corrections to the thermal
noise that vary as E . These corrections represent noth-
ing more than the heating of the electron gas by the elec-
tric field. The formula for the noise could have been writ-
ten as

~ 0.3—

8 O.a—
S(tu, E)= &p

1+(euro) 2L m * (4. 14)

o.i—

0

-O.i 5
I

0

FIG. 4. The exact distribution function (solid line) compared
to the linear-in-E approximation (dashed line) for vd ——v,h. The
linear-in-E solution becomes negative for large negative veloci-
ties no matter how small the electric field is. Since the exact
distribution function is not analytic in E, an expansion of f(u)
in powers of E does not exist and the linear-in-E solution can
only be an asymptotic expansion.

with T, the electron temperature. Applying an electric
field causes the electron gas to heat and increase its vari-
ance. This increase in the variance leads to an increase in
the noise.

The frequency dependence of the noise is Lorentzian.
For frequencies cu « 1/ro the noise is white (frequency in-
dependent), while for cu » 1/ro the noise varies as
1/(euro) . Typical ro are in the range 10 ' sec so that the
noise is white at the usual frequencies measured.

The current (solid line) and noise (dashed line) as a
function of electric field are shown in Fig. 5 for a con-
stant ~p. The noise throughout this paper is normalized
by 4 kg Tp /R p where R p is a "characteristic resistance"
given by 1/Ro=ne roA/(m*2L). The current is linear
for all fields, while the noise is constant for small fields
and varies as the square of the field for large fields.

The main results for a constant —relaxation-time model
are as follows: (1) The distribution function (a) is nonana-
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f(v) A(E)f q(u)

r(u)
(4.15)
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Electric Field eE~,/(m vu, )

i00

FIG. 5. The average velocity and noise versus the electric
field for a constant relaxation time. The average velocity is

given in units of U, h and the noise is given in units of 4kTgTO
where Ro is a characteristic resistance given by 1/Ro
=ne 703/{21.m*) and the electric field is given in units of
m*u, h/e~o. The current is linear in the electric field for all

values of E. The noise is constant and given by the thermal Ny-
quist relation for small F. but increases quadratically for large E
due to the heating of the electron gas.

lytic in the electric field, (b) is not a displaced Maxwellian,
and (c) has a high positive velocity velocity tail that de-
cays as f (u) ~ exp( —m*u/eErp); (2) the current is linear
for aH values of the electric field; (3) the noise calculated
by the Boltzmann-equation —Careen-function method (a)
has a Lorentzian frequency dependence, (b) for E =0, is
thermal and satisfies the fluctuation-dissipation theorem,
and (c) for E&0, has an E field-dependent correction
which results from the increased width of the distribution
function caused by the heating of the electrons by the
electron field.

B. A constant —mean-free-path model

In the preceding section, we looked at a constant relaxa-
tion time model and found that the current was linear in
E at all fields, and that there were quadratic in E correc-
tions to the thermal noise due to the heating of the elec-
trons by the electric field. Real semiconductors however
have nonlinear velocity-field curves and the energy depen-
dence of the scattering rates is important. In this section
we look at energy-dependent relaxation-times and their ef-
fect on the distribution function, current, and noise. We
find that a scattering rate that increases with energy tends
to decrease the noise. This effect opposes the increase in
noise due to the electron heating and therefore the noise
versus electric field curve can be quite complicated, either
increasing or decreasing with E.

The Boltzm ann equation for an energy-dependent
relaxation-time is written

Note the factor A (E) before the equilibrium distribution
function. A (E) is determined by the constraint that the
collision operator must vanish when integrated over U

(this insures that the current continuity equation is
obeyed), and implies that

du f(u)/r(v)
A(E)= (4.16)f dv f,q(u)/r(u)

For the constant relaxation time approximation of the
first section, A (E)=1 for all values of E and so A (E)
was not explicitly in the equation. Note that
A (E =0)=1 for any r(u) since the collision integral must
vanish for the equilibrium distribution function.

This model is formally equivalent to writing the transi-
tion rates in the full Boltzmann equation as
8'„„=S ( u, u ')f,q ( v ') where S ( u, v

'
) =S ( v ', u ) and choos-

ing 5 to have a separable form, '

[1/r( v ) ][1/r( u') ]
( I/r)
f,q(v)(I/r)= f du

r(u)

(4.17)

The solution to this model is obtained by multiplying
Eq. (4.15) by an integrating factor and then directly in-
tegrating the differential equation in much the same way
the constant relaxation-time model was solved, '

f(v)=A(E) f du' exp —f eE7.(v )

m 'f,q(u')

eEr(v')
(4.18)

f(u)= ~

1 —u n exp( —Pm *v~/2)
U&0

1 —u V 2~/(pm *)
't

1+u n exp( —Pm *u~/2)

+2m. /(Pm '
)

2g 2 e
—Pm*v /2u

U~O,
1 —u V2m/(pm "). (4.19)

The normalization of f ( v) is used to determined A (E).
The average velocity is then calculated from Eq. (4.6).

It is straightforward though tedious to solve the equa-
tion for the response function. The expression then ob-
tained for the power spectrum is quite complicated. De-
tails of the solution are outlined in the Appendix [where
the problem is solved for a general band structure e(k)].
The resultant integrals are numerically evaluated in the
low-frequency limit to give the results obtained here.

One of the simplest energy-dependent models is given
by I/r(u) =

~

u
~

/uth Tp which corresponds to the electrons
having a constant mean free path given by I = U,h~o. Such
a model could arise from having a constant matrix ele-
ment and a Ve density of states. For this scattering rate,
the integrals in Eq. (4.18) can be done analytically. The
resulting expression for the distribution function is given
by
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V. NONPARABOLICITY
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f (k) =Ce P~(k) (S.2)

The constant C is determined by normalization. For
e(k) =( I/2a)[(1+2k a)'/ —1], C is given by
nV a /2exp(1 /2a)/K&(1/a) with K& a modified Bessel
function of the second kind. Figure 10 shows the equili-
brium distribution function f~(k).

The solution for f (k) is clearly the same as (4.18) ex-
cept that v is replaced by k/m* and the equilibrium

I

same as Eq. (4.15) except that v is replaced by k/m and
the equilibrium distribution function f,q(k), is no longer
gaussian but is

(U)= f dk f(k) (S.3)

and the noise is given by

function is modified as described above. For typical a s,
the effect on the resulting distribution functions, even for
large electric fields is small.

Average velocity and noise. While nonparabolicity does
not change the shape of the distribution function appreci-
ably, it can change the average velocity and noise substan-
tially. Since U (k) =Be(k)/Bk, the current is given by

OO Be(k, ) Be(k, )&(~)=2e' f dtcos(cot) f dk, f dk, R(k2, t ~kt)f(kt) .
1 2

(5.4)

These equations together with the expressions for f (k)
and R (k2, t

~

k t ) solve the problem of a k-dependent
scattering time in a nonparabolic energy band e(k). In
general, the integrals cannot be done analytically even for
a constant relaxation time and must be evaluated numeri-
cally. In the Appendix, we write down the equations for
the current and noise in a simplified form from which the
integrals can be numerically evaluated. The results for
the simple constant relaxation time model with energy
dispersion e(k) =( I/2a)[(1+2k a)'/ —1] are shown
in Fig. 11. The average velocity is linear in the field for
smaH field but saturates as the field increases.

The noise S(co=0, E) is shown in Fig. 12 for the con-
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stant relaxation time model. In the parabolic case, the
noise is thermal then increases as E with an applied elec-
tric field. As the band becomes more nonparabolic, the
noise decreases at large fields. The decrease is due to the
fact that even though there are fluctuations in the dif-
ferent k states, the velocities associated with these k states
are the same so that fluctuations in the k states do not
lead to velocity fluctuations. For a=0.01, the noise is
thermal at low values, begins to increase with field due to
the heating of the electrons and then decreases when the
electrons get to the linear part of the band. As a is in-
creased even further, the noise no longer increases above
its thermal value because the heated electrons are in the
linear part of the band. Finally, one should note the drop

CQ
10

100 I I I 1 I ltft

ro/r(k) = 1

t 1 I I Ill(.

A

A

V
o.i

0.01
0.0i 0.1

Electric Field eET,//(~ kaT, )
s/a

i00

FIG. 11. Average velocity for a constant relaxation time in a
nonparabolic band. The solid line corresponds to a=0, the
dashed line to a=0.01 (in units of 1/k~To), the long-dashed
line to a=0. 1 and the dotted-dashed line to a=1.0. The most
realistic value of a corresponds to the short-dashed line. Al-
though for this value of a, the distribution function does not
change appreciably, there is a significant change in the current
associated with the velocity saturating in the linear part of the
energy band.

10—

O
= 0.01

1

~~ ~~~ ~~~ ~ ~y ~~ ~ &=0.1

0.1— a=j..0i.

Ppg l t t l lllil t l t t littl &j&&&&t&IX
0.01

LLJ

O
&I

3
CO

0.1 1 10 100
Electric Field eEro/(rn" kaTO)'
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velocity.
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in the low-field (thermal) noise as a increases. This re-
sults from the fact that the linear conductivity decreases
as a increases as is evident from Fig. 11.

To summarize the results of this section, we have con-
sidered a k-dependent scattering rate in a nonparabolic
band given by e(k). For the special case
e(k) =(1/2a)[(1+2k a)' —1], we found that the aver-
age velocity saturates as a function of the electric field
and that the noise decreases at high fields because fluctua-
tions in the k states no longer lead to velocity fluctua-
tions.

VI. CONCLUSIONS

In this paper, we have formulated the Boltzmann-
equation —Green-function method for calculating none-
quilibrium current fluctuations and have demonstrated
the applicability of the method to uniform, bulk semicon-
ductors. We have calculated the distribution function,
average velocity and noise in several relaxation-time
models as a function of electric field.

Unlike the velocity-field curve which usually is a mono-
tonic increasing function of the electric field, the noise
can increase and decrease above its thermal equilibrium
value when an electric field is applied. There are two non-
linear effects that change the noise from its thermal
equilibrium value. The first is the heating of the electron
gas by the electric field which increases the electric tem-
perature and increases the noise. The second is the energy
dependence of the scattering rates. Scattering rates that
increase with energy decrease the correlation time and
tend to decrease the noise as a function of electric field.

Also, increasing scattering rates slow the heating of the

electron gas.
We have also looked at the effect of band structure and

nonparabolicity on the noise spectrum. There we found
that a band that becomes linear at high k will lead to a sa-
turation of the average velocity and a decrease in the noise
spectrum. This decrease comes about not because there
are no longer fluctuations in the various k states but be-
cause these fluctuations no longer lead to velocity fluctua-
tions.
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APPENDIX: EXPRESSIONS FOR THE NOISE
AND AVERAGE VELOCITY

In this appendix we provide expressions for the average
velocity and noise that are numerically evaluated to get
the results in the text. We assume that the band structure
is given by e(k) so that the velocity depends on k through
v(k)=Be(k)/Bk. The current is given by a double in-
tegral

00 k k
( q) =g f dk f dk', U(k) exp —f dk f, (k') .

eEr(k )

(A 1)

To obtain an expression for the noise, it is easier to deal with the equation for the response function in Laplace space.
The equation for R(k&,s

~
k~ ), the Laplace transformed Green function is

c)R(k~, s
~

k, )
sR(k~, s

~
k, )+eE

2

R(kq, s
~

k, ) —A (s,E;k, )f,q(kz)
+6(k~ —k)) . (A2)

This equation can be solved by using an integrating factor,

k2
R(k2, s

~
k, )= f dk', expeEr(k')

s(k~ —k') k2—f dk [3 (s,E;k, )f,q(k')+5(k' —ki )],
eEr(k )

(A3)

with A (s,E;k
~ ) determined by integrating this equation over k2 and using the normalization condition on R (kz, s

~

k, ).
The result is

oo 1 s(k' —k&) t'
A ( Es;k~ ) = ——f dk', exp — ——f dk

s —t'i eEr(k') eE

oo k2
X dk2 dk', exp

s(k2 —k')
dk f,q(k')

eE " eEr(k )

(A4)

The expression for A (t,E;k&) is the inverse Laplace transform of Eq. (A4). In general, the inverse Laplace transform
cannot be done analytically. If we are interested in the noise however, we do not have to invert the Laplace transform
but can analytically continue the transform into real frequency co. In doing this, we exploit the fact that the autocorrela-
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tion function is an even function of time (for a stationary process), and take twice the real part of R(kz, s
~

k& ) evaluated
at s =i co. The expression for the noise is then

S(co,E)=4Re e f dk2 f dkt v(k2)u(kt)R(k2, s =ico
~
k~)f(k~) (A5)

From these equations, after a bit of algebraic manipulations, one obtains an expression for the noise

S(co,E)= . 1

C +S
()

( V,S—V, C) —C( V,X, —V,X, ) —S( V,X, +X, V, )

OO k2 1
k

+~ f dk, f du v(k2)f,q(u) exp —f dk

with 2 given by Eq. (4.16) and C, S, X„X„,V„and V, by

eEr(k )

co(k2 —k')
f dk' u(k')cos

u eE eE

(A6)

S.——A f dk f dk', exp —f dk f,q(k') X .
eEr(k )

co(k —k')
cos

eE

co(k —k')
sin

eE

(A7)

V' . ——A f dk f dk', exp —f dk f,q(k')u(k) X .
Vs —~ —~ eEr(k') k' eEr(k )

co(k —k')
cos

eE

co( k —k ')
sin

eE

(Ag)

eEr k

co(k —k )cos
eE

co(k —k )
sin

eE

(A9)

In the low-frequency limit the noise is

S(~=0,E)=W 1' dk f dk', exp —f dk f,q(k') [v (k) —( v ) ] —(u )
oo k e(k) —e(k') k —k'

eEz(k') "' eEr(k ) eE eE

(A10)

It is this quantity which is numerically evaluated to produce the results given in the text.
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