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We report pseudopotential calculations of the electronic structure of strained-layer superlattices
consisting of Si and Siy sGeg s, with periods in the range 20—140 A. In our calculation, both the ef-
fect of the microscopic crystal potential and that of the strain peculiar to the choice of Sig 75Geg 25 as
a buffer layer are taken into account. The superlattice energy levels and wave functions are obtained
in the wave-vector space by expanding the wave function in terms of the eigenfunctions of a bulk
crystal Hamiltonian of the buffer layer. In this representation, the superlattice wave function is
uniquely determined by a set of bulk wave vectors and the optical matrix elements can be obtained
directly from the corresponding expansion coefficients. We assume the strain is uniform in both
constituents with the lattice constant parallel to the interfaces being determined by the choice of
buffer layer. Two different strain configurations are then investigated: firstly the lattice separation
in directions perpendicular to the interfaces being the same as in the unstrained bulk constituents
and secondly with this lattice separation as in the minimum-energy configuration. A scheme involv-
ing the nearly-free-electron model is used to deal with the absolute energies of the constituents. We
find that the electron states are confined in the silicon layers, in agreement with existing experimen-
tal results. The effective confining barrier in the conduction and valence bands is strain dependent.
We model the evolution of the effect of strain upon the formation of confined states and demon-
strate that the position of the conduction- and valence-band levels is a sensitive function of strain
and well and/or barrier widths. We calculate the optical matrix element across the fundamental su-
perlattice gap and find that the superlattice potential enhances this optical matrix element in ul-
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trathin layers.

I. AN OVERVIEW

It has been demonstrated that structures made of
“lattice-mismatched” materials (i.e., with differences be-
tween the constituent lattice constants >0.1%) can be
grown without a significant number of misfit defects at
interfaces provided that the constituent layers are suffi-
ciently thin (~100 A).! The lattice mismatch is accom-
modated by uniform strain. Simple calculations show?
that the strain field affects the confining barrier height
and should be treated on an equal footing with the micro-
scopic potential. This leads to a qualitatively different sit-
uation compared to, say, GaAs-Ga,_,Al,As structures
since the lattice mismatch at the interface may lead to
enhanced mixing of Bloch states with different momenta.
As a result, weak optical transitions across the fundamen-
tal band gap may be significantly enhanced, with interest-
ing opportunities for band-structure engineering. One of
the candidates for applications is the Si-Si,Ge,_, super-
lattice.

Bean et al.’ have achieved high-quality pseudomorphic
growth of Si/Si, Ge,_, multilayer structures by molecular
beam epitaxy. Much of the interest in this system stems
from the possibility of upgrading the existing silicon tech-
nology by exploiting the concept of modulation doping to
increase mobility. Another interesting opportunity pecu-
liar to this system is offered by the possibility of using
Si-based lasers in integrated optics. In both cases success-
ful implementation depends on the understanding of con-
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fined states in the superlattice. Some experimental and
theoretical results concerning Si/Si, Ge;_, are now avail-
able. For example, samples with Si/Si,Ge;_, superlat-
tices grown directly on Si(001) substrates did not show
any confinement in the silicon layers. Raman measure-
ments imply that electrons are confined in the alloy
layers.*

Very recently, Abstreiter et al.,’ reported observations
on a Si/Siy sGey 5 superlattice grown on Sij 75Geg 25 which
were consistent with the existence of electron confinement
in the silicon layers. In this structure the substrate is
chosen so as to match the lattice constant of the superlat-
tice period. The strain is taken up by both constituent
layers (compressive strain in Siy sGeg s and tensile strain
in Si). Experiments of Abstreiter ez al. imply that when
strain is included the nature of confinement is quite dif-
ferent in that the states related to the bulk X-point mini-
ma of the conduction band in silicon are pushed down rel-
ative to their counterparts in the alloy.’~7 This is illus-
trated in Fig. 1.

In this study we report calculations based on the pseu-
dopotential method of Jaros et al. which has been suc-
cessfully implemented in unstrained structures.®° Some
modifications are required in order to include the effect of
strain and these will be described in the following section.
The input to the calculations is the best fit of the starting
silicon and germanium atomic potentials which ensure a
good representation of the band structure of bulk Si and
Ge in the relevant range of energies (i.e., the energy sur-
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FIG. 1. A sketch of the band offsets of Si/Siy sGey s superlat-
tices grown on a Si,Ge,_, (x ~0.75) buffer layer. The way the
offsets are expected to change with the inclusion of strain is
shown, following the experimental data of Abstreiter et al.

faces of the bands near the fundamental gap). A scheme
involving the nearly-free-electron model is used to deal
with the absolute energies of the constituents.

In the earliest studies of semiconductor superlattices the
effect of strain was simply ignored. The first studies in
which the effect of strain was taken into account? intro-
duced the concept of a free-standing superlattice in which
the degree and type of strain was entirely determined by
the mutual adjustment of the two constituent materials.
This implies that in the direction perpendicular to the in-
terface plane the covalent bonds contract or expand exact-
ly so much as to absorb all elastic energy created by the
strain in the plane of the interface. In all strained struc-
tures experimentally studied there is evidence of line de-
fects which were formed to relieve the strained interface
and pushed by strain fields away from the superlattice
into the substrate. It is therefore possible that the lattice
constant in the perpendicular direction remains closer to
the bulk equilibrium value where it is held by strong bond
stretching force constants. Consequently, we have con-
sidered both possibilities in this study. It might be argued
that in the present context the distinction between the two
cases is rather academic. In the structure studied by
Abstreiter (which is modeled here) the difference in the
perpendicular lattice constants is too small to play a signi-
ficant part in the zone-folding phenomena we set out to
investigate. However, it transpired in the course of our
work that the effective conduction-band offset is small
and even relatively minor strain-induced shifts of energy
levels are worth investigating.

The two different strain configurations which we model
in this study are described as follows:

(i) Firstly, the values of a,(Si) and a, (SiGe), see Fig. 2,
are chosen to be the same as in the unstrained bulk con-
stituents. The value of a is the lattice constant of the
overall alloy concentration of the superlattice (i.e., of the

FIG. 2. A schematic drawing showing the atomic positions in
the strained superlattices modeled here. The lattice constants
associated with the two strain configurations are shown in Table
L

buffer layer). This shall be referred to as the bulk a, con-
figuration.

(ii) Secondly, the values of a,(Si) and a (SiGe) were
calculated by fixing the value of a; to that of the buffer
layer and then minimizing the elastic energy of the two
constituents.> This shall be referred to as the minimum
energy configuration.

In all cases the value of d, the lattice spacing across the
interface, is the simple average of a,(Si) and a,(SiGe).
The lattice constants associated with these strain configu-
rations are shown in Table I.

For reasons of comparison, a further calculation was
performed for each of the superlattices modeled here in
which all atomic positions are on a cubic lattice with the
lattice constant of the buffer layer. These shall be re-
ferred to as the “‘unstrained” calculations. The atomic po-
sitions in the “strained” calculations are shifted from this
cubic lattice in the direction perpendicular to the inter-
faces, the (001) direction. This shifting consists of in-
creasing the atomic spacing between adjacent SijsGeg s
atoms, in the (001) direction, and decreasing the atomic
spacing between adjacent silicon atoms. It should be not-
ed that this shifting leaves the size of the superlattice unit
cell unchanged.

The results of these calculations are described in Sec.
III. In the unstrained cases, we obtain well-confined elec-
tron states in the alloy layers. As we pointed out earlier!°
(see also Ref. 11), in both strain configurations considered,
the effect of strain is to shift the energies of the confined
states at the conduction-band edge and to localize the
electron levels in the silicon layers. This confirms the in-
tuitive view of the effect that the strain is expected to
have on band gaps of the constituent layers. Both the en-
ergy levels and the effective confining power of the super-

TABLE I. The lattice parameters associated with the two
strain configurations considered in the text: (I) the bulk a,
strain configuration and (II) the minimum-energy strain config-
uration. The value of a|| used in all cases is the lattice constant
of the buffer layer and for a buffer layer concentration of
Sig 75Geo s is 5.4875 A.

I I
a, (Si) 543 A 5.386 A
a, (Si-Ge) 5.545 A 5589 A
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lattice change as a function of the well and barrier width.
In the strained calculations the separation between the
lowest confined states is larger than the corresponding
separation in the unstrained calculations.

The effect of strain is to enhance the mixing in momen-
tum space to accommodate the change of the phase of the
total wave function at the interfaces where there is a
discontinuity in the lattice separation. This mixing has an
enhancing effect on the optical transition probabilities
across the fundamental superlattice gap. In the calcula-
tion described in Sec. II, the composition of the superlat-
tice wave functions in the wave-vector space is obtained
automatically since the solutions are given in terms of the
expansion coefficients A, . Examination of the expan-
sion coefficients can serve as a basis for a quick assess-
ment of the zone folding. In all the superlattices modeled
here, the lowermost conduction-band states are X-like
(i.e., these states are derived from the region in k space
near the conduction-band X-point minima of the bulk
starting Hamiltonian). The hole state, however, is derived
from bulk-valence-band states around k=0 the bulk-
valence-band maxima. The magnitude of the optical ma-
trix element across the fundamental superlattice gap re-
flects the degree of overlap in k space of the expansion
coefficients associated with these states. This optical ma-
trix element is small, due to the small degree of overlap of
the two states in k space. However it is enhanced with
the introduction of strain due to the mixing in momentum
space of these two states. Rigorous numerical calcula-
tions are reported which show that in the structures in
question the enhancement of the optical matrix element is
quite small except in ultrathin systems. However, it must
be stressed that the strength of the effect of strain does re-
flect the geometrical properties of the structure under in-
vestigation and it remains to be seen to what extent the
above conclusion is generally valid.

II. METHOD OF CALCULATION

The method of calculation used here is based on the
pseudopotential approach of Jaros et al.®° Various
changes are needed in order to model the strained
Si/Sig sGeg s system. The starting point of the calculation
is the bulk band structure of a Si, Ge,_, alloy with x cor-
responding to the overall alloy concentration of the super-
lattice (x ~0.75 in the superlattices considered here corre-
sponding to Si and SiysGeys layers of approximately
equal thickness). The superlattice is considered to be
grown upon a buffer layer of this overall alloy. The bulk
band structure of the buffer layer corresponding to the
overall alloy concentration of the superlattice is generated
from a Hamiltonian H,. To this Hamiltonian H, is add-
ed an additional potential V representing the difference
between the potential of the overall (~75%) alloy and the
actual potential of the superlattice. The form of this po-
tential is as follows:

Vin=3 |3 V,r—t;,—R)+ 3> V,(r—t,—R)
R |t t,

— 3 Volr—7—R) |, (1)
t
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where, V;, V4, and V| are the atomic pseudopotentials of
Si, Siy sGeg s, and Si, Ge;_,, respectively, with x ~0.75
corresponding to the overall alloy concentration of the su-
perlattice. R are the superlattice lattice vectors. t,, t,
are the positions of the silicon and the Siy sGey s atoms,
respectively, in the superlattice unit cell. 7 are the posi-
tions of Si,Ge;_, (x ~0.75) atoms in a cubic structure of
the same size and having the same number of atoms as
the superlattice. In this model strain is introduced by
shifting the positions of the Si and Sij sGey 5 atoms in one
direction (the (001) direction), with respect to the posi-
tions of the atoms of the cubic buffer later. The result is
a structure which has the lattice constant of Si,Ge,_,
(x ~0.75) in the directions parallel to the superlattice in-
terfaces and with the lattice constant of Si in the (001)
direction, a,(Si), being decreased with respect to the
buffer and the value of a,(SiGe) being increased. As ex-
plained earlier two strain configurations have been investi-
gated, (1) the bulk a; configuration and (ii) the
minimume-energy configuration. This is the structure ex-
perimentally studied by Abstreiter et al.> The purpose of
this approach is to start with the structure of the overall
alloy concentration of the superlattice and shifting atoms
in the direction of the superlattice axis, so as to achieve a
superlattice unit cell of exactly the same size as the corre-
sponding cell in the lattice of the overall alloy.

The atomic pseudopotentials used in (1) are bulk local
pseudopotentials which were fitted so as to obtain an ac-
curate account of the band structure of Si and Ge near the
band gap. To simplify the numerical procedure, no ac-
count of nonlocality and spin-orbit coupling is made in
this study. All alloys in the calculation are treated using
the virtual crystal approximation for the respective alloy
potentials. Although we are aware that these approxima-
tions affect the position of the states lying further from
the superlattice band edges we do not think that the corre-
sponding corrections can alter significantly the con-
clusions of this study.

As the results outlined in the following section demon-
strate, our model yields the valence-band offsets which are
practically the same as those obtained from the local-
density total-energy calculations’ (i.e., they fall within the
error that might be incurred as a result of a different
choice of the local-density functional). It would appear
that the changes in energy levels and band offsets, at least
as far as Si/Sig sGeg s systems considered in this study are
concerned, are almost entirely due to simple first-order
volume-dependent terms in the Hamiltonian, familiar
from the nearly-free-electron theory, and can be evaluated
without recourse to exacting calculations. Note that the
secret of our success lies in the choice of the starting
point, i.e., the bulk Hamiltonian of the buffer layer from
which we begin is “lattice matched” to the superlattice.
The energies of the superlattice states are then calculated
from energy differences which are very small compared to
the mean-valence-band energy.

To set up our calculation, the superlattice wave func-
tions ¢ are expanded in terms of the eigenfunctions of the
buffer layer [Si,Ge;_, (x~0.75)] ¢, (where n
represents the band index and k the wave vector). This
gives an equation of the form
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(Ho+V—E)W=0, 2)
with
V= 2 An,k¢n,k s
n,k

ﬁod)n,k:En,kd’n,k . (3)

Since the potential, ¥, has the period of the superlattice
then, by Bloch’s theorem, the values of k needed in the
expansion are equal to k; + g, where k; is a reduced wave
vector in the superlattice Brillouin zone and g is a super-
lattice reciprocal lattice vector. Most calculations per-
formed here are done at the center of the superlattice Bril-
louin zone (I'), see Fig. 3, corresponding to k,=0. This
unique definition of W is then used in (2) and the equation
multiplied from the left by ¢, then integrating over all
space gives us the secular equation of the form

1 A
Ank(Enk—E)Snn'Skk'+ 6 2 An,k f ¢:'k'V¢nkd3r:0 >
(4)

where (2 is the total volume of the crystal. This secular
J

1

Pl LAD TV (@) S e T 1 Vy(g) T ekt
SL t ty T

s

where

Vig)= [ e V(nd’r, V(@)= [ BV, (nd’r, V1

and Qg is the volume of the superlattice unit cell. The
structure factors in (7) are treated exactly by specifying
the exact positions of the constituent atoms in the super-
lattice unit cell.

The atomic pseudopotentials introduced in (7) are ob-
tained by considering first of all calculations performed
on bulk materials using empirical pseudopotentials. The
empirical pseudopotentials, evaluated at bulk reciprocal
lattice vectors, were chosen so as to ensure an accurate
description of the band structures in the relevant energy

d-—-——————)i

~

1

D — = ]

FIG. 3. A sketch of the Brillouin zone of the superlattice,
with the special points I', P, and X shown.

equation is solved numerically by a direct diagonalization
procedure to give eigenvalues E, and eigenvectors 4, y.
Since the bulk eigenfunctions ¢,, of Eq. (3) used as a
basis set in the expansion of the superlattice wave func-
tions are described in the form of plane-wave expansions,
the matrix element of the potential between two plane
waves is needed in setting up the secular equation, i.e.,

%(k»cw P(r) | k+G) , (5)

where G are reciprocal lattice vectors of the bulk buffer
layer lattice. V(r) is a local pseudopotential so that (5)
can be written as

1 —ig-r 3
o Je T, (6)

with g=k'—k+G'—G.

Since k'’ —k is a reciprocal lattice vector of the superlat-
tice then g is also a superlattice reciprocal lattice vector.
Hence using the form of the potential in (1), Eq. (6) can be
separated into the structure factors and atomic pseudopo-
tentials:

g)= [ e Vo(nd’r,

f

range (i.e.,, near the band gap). The absolute energies of
the relevant band structures were obtained by using the
nearly-free-electron model'? to evaluate the atomic pseu-
dopotentials at g =0 [V (0)=—>Ey, where Ep is the
free-electron Fermi energy], which is calculated using the
volume per atom in the relevant crystal. The introduction
of V(0) into a calculation on a bulklike crystal simply in-
troduces a rigid shift in the energies of the band structure.

Calculations were then performed on bulk materials (Si
and Sig sGeg 5) varying the volume-dependent kinetic ener-
gy terms and V(0) to obtain the volume dependence of
the energies of the bulk band edges. The atomic pseudo-
potentials at nonzero reciprocal lattice vectors were left
unchanged. This in effect means varying the kinetic ener-
gy terms and the average potential in the bulk Hamiltoni-
ans which turn out to be playing a dominant role in deter-
mining the band offsets.

The positions of the band edges of silicon and Sij sGeg s
with their real lattice constants and the lattice constant of
the substrate (Si,Ge;_,, x ~0.75) are displayed in Fig.
4(a). The relative positions of the two band structures (Si
and Siy 5Geg s) with the volume per atom as seen by the
strained calculations is then obtained by linearly extrapo-
lating between the two band structures shown in Fig. 4(a)
to the appropriate volume per atom. These are the rela-
tive alignments of the two band structures where the two
constituents have the volume per atom as seen by the
strained configurations. These relative alignments for the
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two strained configurations are shown in Fig. 4(b). In the
final superlattice calculation the introduction of uniaxial
strain will produce further shifts and splitting in the band
edges.

The atomic pseudopotentials to be used in the superlat-
tice calculation are then obtained from the appropriate
values at the first three nonzero reciprocal lattice vectors.
The potentials at g=0 are adjusted so as to reproduce the
band offsets shown in Fig. 4(b) in the unstrained calcula-
tions, (the configuration in which all atomic positions are
in the cubic lattice of the buffer layer). A functional fit is
used to extrapolate between the values at these bulk re-
ciprocal lattice vectors. To facilitate smooth truncation,
which occurs at g=(4,0,0), the potential has a node at
the next two reciprocal-lattice vectors [i.e., (2,2,2) and
(4,0,0)].

The actual point of truncation is unimportant provided
that the potential is truncated in a continuous fashion.
Indeed it has been demonstrated!® that making the poten-
tial discontinuous may lead to a significant error. The
precise form of the potential between the bulk reciprocal
lattice vectors is also unimportant as results derived from
various different functional fits lead to virtually identical

(@) silicon Sips Gegs
3.025 ;963 2.931 2.986
2.126
1.887 _1.931 1
N 1.696
(1) (I (1) (IL)
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]
|
|
|
|
i
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I
i _1.809
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FIG. 4. (a) The positions of the conduction- and valence-band
edges in silicon and SipsGegs [using the nearly-free-electron
model to evaluate V(0)], for the materials with (I) their actual
volume per atom and (II) with the volume per atom of
Sip.75Geg 25 (all energies are in eV). (b) The position of the (aver-
age) conduction- and valence-band edges of Si and SijsGeg s
with the volume per atom as seen by the two strain configura-
tions (I) the bulk a, strain configuration and (II) the minimum-
energy strain configuration. The band-structure calculations
leading to these results are described in the text.

results. The potential representing silicon in the present
calculation is shown in Fig. 5. The form of the functional
fit used is (for all of the atomic pseudopotentials)

a,+a,g’+asgi+asg?, 0.0<g<3.2

exp[7(3—g)](by +byg +b3g>+b,g° +bsg?),
Vig)= (8)
& 3.2<g<4.0
0, 40<«g,

with potential at g = 3.2 being matched to the first deriva-
tive. The a; and b; are constants and their values for the
fit of silicon are shown in Table II. The units of g used
here are 27 /A, where A, is the lattice constant of the
buffer layer.

In this procedure for fitting the atomic pseudopoten-
tials, as a first approximation, no account was taken of
the volume dependence at nonzero bulk reciprocal lattice
vectors. This in effect means neglecting the change in
magnitude of the potential due to the change in length of
the reciprocal lattice vectors and ignoring the correspond-
ing factor which renormalizes the atomic pseudopotentials
to volumes as seen in the strained superlattice.

To see that this constitutes a reasonable approximation,
consider first of all, g parallel to the superlattice inter-
faces. Since the atomic positions of silicon and Sij sGeg s
in directions parallel to the interfaces are the same, then
for symmetric wells and/or barriers we can write

DXRAED WRES ©
t ty

Hence the actual superlattice potential used in (7) can be
written
S V() + Valg)] (10)
tS

Now taking into account the change in magnitude of the
bulk reciprocal lattice vectors from the relevant materials

ENERGY (a. u.:

35 e

FIG. 5. The atomic pseudopotential for silicon used in the
calculation and tabulated in Table II. The position of the bulk
reciprocal-lattice vectors is also shown (x). The units of g used
are 27/ Ay where A, is the lattice constant of the substrate.
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TABLE II. The coefficients used in the expansion of the sil-
icon potential as described in the text. The units of energy are
atomic units and the units of the wave vector are 27/ A,, where
A, is the lattice constant of the buffer layer.

a —0.298 8300000 b, 2930.960939089 7
a 0.110708 905 4 b, —3443.0484699577
as —0.0311249085 bs 1512.458 5276143
a, 0.002203 6725 by —294.3788299528

bs 214146156870

to the materials with the structure as seen by the strained
superlattices we can write

g=g,—0g
and
g=g4+08g, (11)

where g, and g, are the respective values if no account of
the change in lattice constant is taken. Expanding V(g)
and V,(g) to first order gives

Vs(g)zVs(gs)_Sg Vsl(gs) >
V@)=V, (g4)+0g Vy(ga),

(12)

since the potentials of silicon and Sig sGey 5 are very simi-
lar, in summing the expansions in (12) a large degree of
cancellation is expected between the first-order terms.

This argument does not apply if g is perpendicular to
the superlattice interfaces since the atomic positions of the
two constituents in this direction are very different. How-
ever, it is worth stressing that the net volume dependence
of the short-wavelength components of the microscopic
potential is weak. Consider scattering events perpendicu-
lar to the superlattice interfaces. The potential at
g=(1,1,1) will dominate these scattering events (simply
compare its magnitude to the potential at other nonzero
bulk reciprocal lattice vectors). Taking into account the
volume dependence of the reciprocal lattice vector (1,1,1)
as one goes from bulk silicon to the silicon as seen by the
strained calculation means reducing its magnitude. This
also means that the potential associated with (1,1,1)
should be increased slightly. However, taking into ac-
count the renormalization of the atomic pseudopotential
to the volume as seen in the strained calculation implies
multiplying the potential by a factor Q,/Q;, where £ is
the volume per atom of bulk silicon and € is the corre-
sponding volume seen by the strained calculation. This
factor is less than unity and at (1,1,1) tends to cancel the
volume correction due to the change in magnitude of the
reciprocal lattice vectors. A similar argument applies
when considering scattering events in the alloy. This is
well in keeping with our earlier observations indicating
the dominant role of the kinetic energy and the long-
wavelength potential-energy terms in determining the
band lineup.

A check on the accuracy of our numerical procedure
based on (4) can be performed by filling the superlattice
unit cell with Si and SipsGeg s, respectively, with the
atoms in the unstrained cubic lattice. This should repro-

duce the bulk band structure of silicon and Siy sGeg 5 exe-
cuted with the lattice constant of the Sij 75Geg 25 and with
the V(0)’s corrected accordingly. This is indeed achieved
with a meV accuracy. Doing this tells us the value of the
band offsets as seen by the unstrained calculations. This
procedure cannot be repeated in the case of the strained
calculations as filling the superlattice with one of the con-
stituents using the strained lattice parameters would result
in a unit cell of different size. Hence no direct determina-
tion of the strained band offsets is possible. It is only pos-
sible, by examining the confinement of the superlattice
states, to estimate where the band edges lie.

III. NUMERICAL RESULTS

As explained previously, for reasons of comparison, an
unstrained and strained calculation were performed on
each structure studied. In the unstrained structures all
atomic positions are the same as in the bulk (cubic) buffer
layer. In the strained calculations the atomic positions
were shifted in directions perpendicular to the interfaces
changing the lattice constants of the constituents in this
direction, i.e., introducing uniaxial strain. As explained
previously two configurations of strain were investigated,
namely, (i) the bulk a, configuration, and (ii) the
minimum energy configuration. The results concerning
these two strain configurations are described in Secs. III A
and III B, respectively.

A. Results for the bulk a, configuration of strain

Firstly, let us deal with the results concerning the bulk
a, configuration of strain. Three different periods of
superlattice were investigated (20, 70, and 140 A). The
actual sizes of these three systems are as follows:

(i) The 20-A-period case consists of a superlattice with
eight silicon atoms and eight Siy sGegy s atoms in the unit
cell. This results in a superlattice of period 21.95 A
and an overall alloy concentration of Sij 75Geg 2s.

(ii) The 70-A-period case consists of a superlattice with
28 silicon atoms and 24 Siy sGep s atoms in the unit cell.
This results in a superlattice of period 71.28 A and an
overall alloy concentration of Sij 77Gey »3.

(iii) The 140-A-period case consists of a superlattice
with 52 silicon atoms and 48 Sij sGey s atoms in the unit
cell. This results in a superlattice of period 137.1 A and
an overall alloy concentration of Sij 76Gep. 24-

In the latter two cases the asymmetry in the well widths
was chosen to rule out any high-symmetry effects which
may result from the more symmetric cases corresponding
to equal numbers of silicon and Siy sGey s atoms in the su-
perlattice unit cell.

The positions of the lowest conduction-band energies in
all calculations with this strain configuration are
displayed in Fig. 6. All energies are measured from the
top of the valence band of Sij sGeg 5 (with lattice constant
corresponding to Siy5Gegzs). All conduction states
described here are doubly degenerate in character, the de-
generacy arising from the flat structure of the bulk X
minima, see Sec. IIID. Also shown on this diagram are
the positions of the conduction-band minima (the minima
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FIG. 6. The energy levels of the superlattice conduction-band
states, at the center of the Brillouin zone, in the bulk a, strain
configuration. Results of both the “strained” and “‘unstrained”

calculations are shown for superlattice periods of 140, 70, and
20 A. Al energies being doubly degenerate. All energies are
measured from the valence-band edge of unstrained Siy sGey s.
Also shown are the conduction-band edges of Si, P, and
Sig sGegs, Q, as seen by the unstrained calculation in each case.
Note how these values move up in energy as the well width is re-
duced. This is because as the period is reduced the number of
sampling points between I" and X is reduced, hence states at the
actual minimum of the conduction band of Si and Siy sGey 5 are
not reproduced by the superlattice calculations.

near the X point of the bulk Brillouin zone) of silicon (P)
and Siy sGep s (Q), as seen by the unstrained calculation.
These are the so-called conduction-band offsets and are
calculated by filling the unstrained superlattice with sil-
icon and Sig sGey s, respectively, as described in Sec. II. It
is not possible to calculate these offsets in the strained cal-
culation in such a manner as filling the superlattice with
either silicon or Sip sGey s would result in a superlattice
cell of different size. However, estimations of the strained
band offsets have been made and will be described later.

The effective conduction-band edges, i.e., as “seen” by
the superlattice calculation performed at point ' of the
superlattice Brillouin zone, increase in energy as the well
width is reduced. This is due to the decrease in the num-
ber of sampling points needed in the bulk Brillouin zone
to describe ¥ of (3) as the superlattice period is reduced.
In the case of the 20-A-period calculation nine k points
must be included from the line —X to X. Hence the cal-
culation does not “see” the actual conduction-band
minimum of silicon or SijsGey s, the nearest sampling
point being away from the minima and hence of higher
energy. If calculations were performed with k, (k, being
the reduced wave vector in the superlattice Brillouin
zone), away from I on the line T" to P in the superlattice
Brillouin zone, see Fig. 3, then for a certain value of k;
the calculation would see the actual conduction-band
minima of silicon and Sip sGeg s and a band offset in the
conventional sense (familiar from simple semiclassical
methods) would be recovered.

Figure 7 shows the charge densities of the first four

Siys Geg s Si

FIG. 7. Charge densities, summed over degeneracies, gen-
erated at the center of the superlattice Brillouin zone (I") of the
first four conduction-band states in the 140-A-period strained
superlattice calculation, in the bulk a, strain configuration. We
plot these charge densities along a line in the (001) direction
going through bond centers. Arbitrary units are used with all
states being normalized to the maximum charge density of the
first state, as is the case in all the charge densities presented
here.

conduction-band states in the 140-/&-period strained cal-
culation. The charge densities are summed over the dou-
bly degenerate states, as are all conduction state charge
densities presented here. These are charge densities along
a line in the (001) direction going through bond centers.
The first two states are confined in the silicon layers in
agreement with the sketch of band offsets presented in
Fig. 1. These states exhibit a very high degree of confine-
ment and are practically dispersionless. The separation
between states 1 and 2 localized in silicon is markedly in-
creased in going from the unstrained to the strained calcu-
lation. Since state 3 is localized in the alloy the effective
confining barrier in this structure lies between levels 2 and
3.

Figure 8 shows plots of the values of | A, |2 summed
over the degeneracy, for the states shown in Fig. 7, along
the line —X to X in the bulk Brillouin zone of the
Sig 76Geg 24 alloy. Coefficients from five bands are shown
in ascending band order in the figure, (i.e., the highest
three valence bands and lowest two conduction bands).
The plots show that all confined states are derived from
around the X minima of the lowest conduction band. Fig-
ures 9 and 10 show the corresponding states for the 70-
A-period calculation. Thege states are slightly less well
confined than in the 140-A-period case. Figures 11 and
12 show the corresponding states for the 20-A-period cal-
culation. The degree of confinement is again less than in
the two preceding cases.

Figures 13 and 14 show the first four conduction-
band-state charge densities, summed over the double de-
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FIG. 8. Plots of the wave-function coefficients, | A, |?
(summed over degeneracies) associated with the states shown in
Fig. 7, as a function of the wave vector (k) in the bulk Brillouin
zone of Sip 76Geg.24- The k vector runs from — X to X through
I'. Coefficients belonging to five bands (n) are shown; VBI,
VB2, and VB3 are the uppermost valence bands and CB1, CB2
the lowermost conduction bands. The vertical scaling is such
that the spacing between bands is unity.
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FIG. 9. Charge densities of the first four conduction-band
states in the 70-A-period strained calculation, in the bulk a;
strain configuration.
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FIG. 10. Plots of the | A, |? associated with the states
shown in Fig. 9.

generacy, in the 70-;\-period unstrained calculation. In
this case the lowest state is confined in the Siy sGe, s layer
and not in the silicon layer as in the corresponding
strained calculation (Fig. 9). Also the degree of confine-
ment in all the states is much less than in states of the
corresponding strained calculation. This is in agreement
with the sketch of band offsets presented in Fig. 1. In all
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NN

NN
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FIG. 11. Charge densities of the first four conduction band
states in the 20-A period strained calculation, in the bulk a,
strain configuration.
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shown in Fig. 11.

these cases the higher-lying states exhibit a similar
behavior to those seen in GaAs/Ga, Al,_, As systems.
Figures 15 and 16 show the top four valence band states
in the 70-A-period strained calculation, and in Fig. 17 are
shown the energies of these states together with the ener-
gies of the corresponding states in the unstrained calcula-
tion. All these states are confined in the Sij sGeg 5 region
as the well depth due to the valence-band offsets is very
large (~300 meV). The energies are again measured from

Sigs Geg Si

FIG. 13. Chz}rge densities of the first four conduction-band
states in the 70-A-period unstrained calculation.
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FIG. 14. Plots of the |A,.|? associated with the states
shown in Fig. 13.

the valence-band edge of SiysGeys as seen by the un-
strained calculation. The strain-induced splitting of the
top of the valence band (~30 meV) is in good agreement
with calculations performed by People® after taking into
account the fact that his calculations were performed for
superlattices grown on silicon and not on Si,Ge;_,
(x ~0.75) as is performed here. It is worth commenting

PR
Lodl

Sig s Geg s Si

FIG. 15. Charge densities of the highest four states derived
from the valence band in the 70-A-period strained calculation,
in the bulk a; strain configuration.
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that magnitudes of the charge densities seen here are
peculiar to the direction along one line in the (001) direc-
tion (through the bond). If a different line were chosen
some changes in the magnitudes of these charge densities
would be seen. It is the sum of such plots which should
be used to make a quantitative comparison with the con-
ventional envelope functions.

In the 70-A-period calculation the effect of evolution of
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FIG. 17. Energy eigenvalues from states derived from the top
of the valence band in the 70-1§x-period calculation, in the bulk
a, strain configuration. Results for both the strained and un-
strained calculations are shown, all energies being measured
from the valence-band edge of SipsGeps as seen in the un-
strained calculation.
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FIG. 18. Charge densities for the first conduction-band state
with the slow inclusion of strain, in the 70-10\-period calculation
with the bulk a, strain configuration. The effect on the con-
finement of the state as strain is increased is clearly seen as you
go from state 1 (unstrained) to state 5 (fully strained, as in the
bulk a, strain configuration).

—
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FIG. 19. The variation of the |A,;|? with the slow in-
clusion of strain, corresponding to the charge densities shown in
Fig. 18. Only contributions from the first conduction band
(CB1) are shown (all other bands having little or zero contribu-
tion). The k vector runs from —X to X through I in the bulk
Brillouin zone of Sip77Geg,3. It is clearly shown how the
| Anx | 2 spread out in k space as strain is increased. The verti-
cal scaling is such that the spacing between plots is unity.
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FIG. 20. Charge densities for the second conduction-band
state with the slow inclusion of strain, in the 70-A-period calcu-
lation with the bulk a, strain configuration. It is clearly shown
how the state changes from one with no particular confinement
in the unstrained case, state 1, to the first excited state confined
in silicon in the fully strained case, state 5, strained as in the
bulk a, strain configuration.
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FIG. 21. The variation of the | A, |2 with the slow inclusion
of strain corresponding to the charge densities shown in Fig. 20,
only contributions from the first conduction band are shown. It
is clearly shown how the state «hanges from having a single
peak around the X minimum to having a double peak around
the X minimum corresponding to the first excited state confined
in silicon.

strain induced states were investigated. The atomic posi-
tions in the (001) direction were changed in steps from
the unstrained case, where all atomic spacings are equal to
those in Siy 77Geg 53, to the strained case where the atomic
spacing in the (001) direction is equal to the atomic spac-
ing in silicon and Sig sGey s, respectively. The effect on
the first conduction-band-state charge densities is shown
in Fig. 18. The state changes from being confined in
Siy. sGeg s to being confined in the silicon. As the atomic
positions are shifted more and more the degree of confine-
ment increases. Figure 19 shows the values of | A, | > for
the states shown in Fig. 18. Only contributions from the
first conduction band used in the expansion are shown,
contributions from other bands being negligible. Note
that the amount of the Brillouin zone needed to describe
the confined state increases as the strain is increased.
This explains the increase in the separation of the adjacent
confined levels obtained in the strained calculation. Fig-
ures 20 and 21 show the corresponding results for the
second conduction-band state. In this case the charge
densities change from showing no particular confinement
with no strain to the first excited state confined in silicon.
Corresponding changes are seen in the values of | 4, | 2.

B. Results for the minimum-energy configuration of strain

Secondly, consider calculations performed with the
atomic positions in the minimum-energy configuration.
Two superlattice periods were chosen here, 20 and 44 A.
The actual sizes of these two systems are as follows:

(i) The 20-A-period case consists of a superlattice with
eight silicon atoms and eight Siy sGeg 5 atoms in thg unit
cell. This results in a superlattice of period 21.95 A and
an overall alloy concentration of Sig,75Geg 5. This system
is the same as the preceding 20-A case except for the
values of a,(Si) and a, (SiGe).

(ii) The 44-A-period case consists of a superlattice with
16 silicon atoms and 16 Siy sGeg s atoms in the unit cell.
This results in a superlattice of period 43.90 A and an
overall alloy concentration of Sig 75Geg »s.

The energies in the strained configurations of these two
structures are displayed in Fig. 22. As in the previous
strain configuration the effect of shifting the atoms in the
(001) direction results in the confinement of the first
conduction-band state changing from the alloy to the sil-
icon layers. The wave functions associated with these
states show a great deal of similarity to the bulk a, strain
configuration and are not shown here. Comparison of the
eigenvalues of the two 20-A-period strained calculations
shows a 20-meV increase in the separation of the valence-
and conduction-band states in going from the bulk a;
strain configuration to the minimum-energy strain config-
uration. There is also an increase in the separation of the
first two conduction-band states of about 20 meV.

C. Discussion of the accuracy of the calculation

In our calculational procedure we limit the number of
bands used in our expansion of the superlattice wave func-
tions. In the calculations presented here seven bands have
been used in the expansion set, the three uppermost
valence bands and the first four conduction bands. As
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FIG. 22. Energy eigenvalues associated with the 20- and 44-
A-period strained calculations with the atomic positions in the
minimum-energy configuration. All energies are measured from
the valence-band edge of Sip sGeg s as seen by the unstrained cal-
culation.

has been demonstrated in Ga;_,Al, As systems®’ this
truncation is well justified since there is very little mixing
between the bands. However in the case of strained sys-
tems the number of bands included in the expansion set
needs to be increased if calculations are to be performed
on large-period superlattices. This can be seen by examin-
ing Fig. 23; here we have the superlattice band gap plotted
against the period. These are the results of seven band
calculations for the bulk a, strain configuration. The
band gap should approach a constant value as the effects
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FIG. 23. A plot of the superlattice band gap against the su-
perlattice period for the bulk a, strain configuration. Results of
five- and seven-band calculations are shown. From this figure it
can be seen how a larger expansion set is needed in order to
model large-period superlattices.

IAN MORRISON, M. JAROS, AND K. B. WONG 35

of quantum confinement and dispersion become unimpor-
tant as the period is increased. This occurs up to a certain
limit (period 70 A corresponding to 52 atoms in the unit
cell) after which it falls off, indicating that the number of
bands in the expansion set is not large enough.

To demonstrate the breakdown of the calculation for
seven bands two results for a five-band calculation are
also shown. For 70-A period the gap is nearly the same
whereas for 140-A period (100 atoms in the unit cell),
there is a significant difference. This need for a larger ex-
pansion set for large periods is due to the large cumulative
shifts of atoms from the positions of the bulk (cubic)
buffer layer. With the origin chosen at the center of the
alloy layer, the largest atomic shift is for the atoms on ei-
ther side of the interface. In the 140-A-period calculation
this shift is ~25% of the atomic spacing in this direction
(for the bulk a, strain configuration). The expansion set
using seven bands is not large enough to cope with this
large shift. As can be seen from the figure the largest
period which can be modeled accurately with this basis set
is about 70 A corresponding to a maximum shift of atoms
of ~12% of the atomic spacing. With the atomic posi-
tions in the minimum energy configuration these shifts
are even larger hence the maximum period considered in
the seven-band model is ~44 A.

D. Estimation of the band alignments
and discussion of dispersion

As explained previously there is no direct way of deter-
mining the “band offsets” in our strained calculations.
However an estimate of where the bulk band edges lie,
and therefore the apparent value of the band offsets, can
be obtained by examining the confinement of the superlat-
tice states. We have made such an estimate in the case of
the 44-A-period calculation in the minimum-energy strain
configuration.

(i) Firstly, consider the valence-band discontinuity. In
both constituents the valence-band maxima occur at the
center (I') of the bulk Brillouin zone, hence one need only
consider the superlattice states at I' in order to assess the
valence-band alignment. The barrier must lie somewhere
between the two states where the confinement shifts from
Sip sGeg s to silicon. We find the valence-band discon-
tinuity must lie somewhere between 312 and 394 meV, (no
account of the energy shift due to confinement is con-
sidered here). The local-density calculation of Van de
Walle and Martin”!* was performed on a different system
and a direct comparison with their result is not possible.
However a linear interpolation to our case yields an offset
of 304 meV, in good agreement with our result.

(i1) Secondly, consider the alignments of the
conduction-band edges of the two constituents. In order
to make a full assessment it is necessary to consider the
dispersion throughout the superlattice Brillouin zone and
the strain induced splittings of the bulk conduction-band
edges. Without strain both constituents have six
equivalent minima near to the bulk X points. With the
introduction of uniaxial strain (along the z direction) these
are split into a twofold degenerate set [the (0,1,0) and
(0,0,—1), minima] and a fourfold degenerate set [the
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(0,1,0) and (0,—1,0), (1,0,0), and (— 1,0,0) minima]. Using
the deformation potentials of Ref. 14 and the minimum-
energy strain parameters the splitting of these minima
have been estimated. In silicon the splitting is ~ 170 meV
with the twofold degenerate valleys being lowest in ener-
gy, in Sig sGey 5 the splitting is ~ 171 meV with the four-
fold degenerate valleys being lowest in energy.

The dispersion, both perpendicular (z direction) and
parallel (y direction) to the interfaces, for the lowest con-
duction states in the 44-A-period minimum-energy calcu-
lation, has been calculated and are shown in Figs. 24 and
25. The qualitative features of these dispersion curves can
be described by considering the zone folding of the bulk
band structures under consideration. Looking first of all
at the dispersion in the z direction we see two quasidegen-
erate practically dispersionless bands, the confinement
here being in the silicon layer. These originate from the
folding in of the bulk silicon minima in the z direction to
inside the superlattice Brillouin zone. The quasidegen-
erate nature originates from the “camel’s back” structure
of the bulk minima. The dispersionless nature originates
from the flat structure of these minima in the z direction;
more dispersion is expected in shorter periods.

Now consider the dispersion in the y direction, Fig. 25,
parallel to the interfaces. Here two minima are seen. As
explained above, the I'-point minimum originates from
the folding in of the bulk silicon minima from the z direc-
tion. The minimum near the superlattice X point ori-
ginates from the bulk minimum in the y direction near
the bulk X point (the bulk X point in the y direction maps
directly onto the superlattice X point). The effective
masses at both of these minima have been calculated, us-
ing k-p theory, and are shown in the figure. The effective
mass at the I’ minimum (m*=0.194m, where m, is the
free-electron mass) is very close to the transverse silicon
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FIG. 24. The dispersion of the lowest conduction states along
the line I'—P (in the Z direction, see Fig. 3) in the 44-A-period
strained calculation in the minimum-energy configuration.
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FIG. 25. The dispersion of the lowest conduction states along
the line I'—X (in the y direction, see Fig. 3) in the 44-;\-period
strained calculation in the minimum-energy configuration. The
effective masses at the minima are shown on the figure, m, is
the free-electron mass.

conduction-band effective mass (m,=0.19m,), as would
be expected from the zone-folding picture. The effective
mass at the minima near the superlattice X point
(m*=1.004m,) is close to the longitudinal silicon
conduction-band effective mass (m; =0.98m,).

Due to the strain the band discontinuities seen by the
calculation at these two minima are very different. At the
I' minima the discontinuity is between the twofold degen-
erate bulk minima folded in from the z direction. At the
minima near the superlattice X point the discontinuity is
between the fourfold degenerate bulk minima. At the
minimum near the superlattice X point no confinement of
charge is seen indicating that the fourfold degenerate bulk
minima of the strained constituents are aligned to within
a few meV. At the I' minimum, because of the low effec-
tive mass here, it is necessary to estimate the energy shift
due to confinement in order to fully assess the band
discontinuity seen here. The change in confinement, from
silicon to Siy ;Geys, occurs between 126 and 195 meV
above the lowest confined level in silicon. In order to esti-
mate this shift, Kronig-Penney effective mass type calcu-
lations were performed with the effective mass as calcu-
lated at I" and the well or barrier widths of the 44-A
strained minimum-energy calculation, varying the height
of the barrier. The picture of confinement is best
described with a barrier height in the range 250 to 300
meV, with the shift in energy of the first confined state
above the bottom of the well in the region 96 to 111 meV.

The band discontinuity between the lowest minimum in
silicon, the twofold degenerate minimum, and the lowest
in Sij sGey_s, the fourfold degenerate minimum, is then es-
timated at 105+15 meV (this shall be referred to as the
conduction-band offset). This is in reasonable agreement
with the value predicted by People® using semiclassical
means of 150 meV. A summary of these estimates of the
band discontinuities and a comparison with Van de Walle
and Martin’ and People® are shown in Table III.
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TABLE III. A summary and comparison with other authors,
[Van de Walle and Martin (Ref. 7) and People (Ref. 6)], of the
band discontinuities estimated in the case of the 44-A period
strained calculation in the minimum-energy configuration. The
explanation of how these values have been arrived at is dis-
cussed in the text.

Our calculation Comparison

Valence band 353+41 meV 304 meV?
discontinuity
Conduction-band
discontinuity
at superlattice

I'-point minima
Conduction-band
discontinuity

at minima near

superlattice

X point
Conduction-band

offset

275+25 meV

0+5 meV

105+15 meV 150 meV®

2Van de Walle and Martin, Ref. 7.
®People, Ref. 6.

E. Discussion of the optical properties

The optical matrix elements of structures comprising
52, 32, 16, and 4 atoms in the superlattice unit cell have
been calculated. These are the optical transition probabili-
ties between the uppermost valence-band superlattice state
and the lowermost conduction-band state. These optical
matrix elements are small because of the small degree of
overlap in k space of the coefficients, 4, , associated
with the two states. The uppermost valence-band state is
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FIG. 26. A plot of the oscillator strength, associated with the
transition across the fundamental superlattice gap, against the
superlattice period. These are the results for the bulk a; strain
configuration. There is very little difference between these re-
sults and the results of the minimum-energy configuration.

localized around I' whereas the lowermost conduction-
band state is localized near the bulk conduction minima
near the X point. The optical matrix elements (presented
as the normalized oscillator strengths) for the bulk a,
strain configuration are shown in Fig. 26. There is very
little difference between the two strain configurations con-
sidered here. As expected the enhancement of this optical
matrix element (the zone-folding effect) is much greater in
the small-period calculations.

IV. CONCLUSIONS

In this paper we have presented band structures of
Si/Sig sGep.s (001) superlattices with periods in the range
20—140 A generated at the center of the Brillouin zone of
the superlattice. A scheme involving the nearly-free-
electron model was used to deal with the absolute energies
of the constituents. The results presented here are in good
agreement with existing experimental and phenomenologi-
cal understanding of this problem. We believe that our
calculation opens the way for more quantitative studies of
confinement in Si-based microstructures. Our predictions
can be summarized as follows:

(i) The effect of strain is to confine electrons in the sil-
icon layers.

(i) The separation between the confined ground state
and the first excited state is increased by strain and the lo-
calization of these states in Si is enhanced. The effective
height of the confining barrier at k=0 is greatly in-
creased.

(iii) The valence- and conduction-band offsets are large-
ly determined by volume effects and there is a simple way
of evaluating them.

(iv) The evolution of the effect of confinement as a
function of strain shows that strain plays an important
part in determining the effective confining power of the
barrier.

(v) The strain alters the fundamental superlattice gap
and introduces splittings which are in good agreement
with first-order (deformation-potential) theory.

(vi) The optical matrix element across the superlattice
gap is enhanced by the combined effect of the microscopic
superlattice potential and strain. However, its magnitude
is small compared to direct-gap systems, except in struc-
tures with ultrathin (~ 10 A) wells and barriers.

(vii) Our calculation raises the question concerning the
precise relationship between the results of the rigorous
local-density-functional approach and our semiempirical
model for the valence-band offsets between elemental
semiconductors. Although it is clear from the account
given in the present study that the success of our simple
model stems from the dominant role of the volume-
dependent kinetic energy terms in the band structure, the
degree of agreement between the two results is surprising
and deserves a more thorough investigation.
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