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A simple, universal model for structural properties of sp-bonded semiconductors and insulators is

presented. The model elucidates the physical mechanisms determining the chemical trends and

predicts semiquantitatively the stable crystal structures, bond lengths, bulk moduli, transition pres-
sures of structural phase transformations, long-wavelength transverse optical phonons, and band
structures for binary nonmetals in the rocksalt, cesium chloride, and zinc-blende phases. The theory
explains the puzzling strong cation and weak anion dependence of the observed structural transition
pressures. It predicts, as a function of pressure, a universal sequence of structural phase transfor-
mations among the cubic phases of binary solids. A drastic softening of the transverse optical pho-
nons across the pressure-induced phase transition from the zinc-blende to the rocksalt structure in
II-VI compounds is also predicted. The physical origin of this softening is shown to be closely relat-
ed to ferroelectricity. It is shown that the chemical trends in the structural properties of semicon-
ductors and insulators are governed by a counterbalance of attractive and repulsive short-range in-

teractions, whereas long-range interactions play only a minor role, in contrast to the classical point-
charge models of ionic crystals. The theory is based on the semiempirical tight-binding method and
includes charge transfer and nonorthogonality effects. Only properties of the neutral atoms are used

as input for a given crystal. The total energy is explicitly minimized as a function of volume in or-
der to find the static and dynamic equilibrium crystal properties.

I. INTRODUCTION

The study of cohesive properties and structural phase
transformations of insulators and semiconductors is one
of the classic problems in solid state physics. ' Most of
the models which have been developed so far are
phenomenological. ' ' These models are often applic-
able only to a restricted class of solids and have little
predictive power. Conversely, first-principles methods
have been developed in the last ten years which permit the
calculation of the cohesive properties of a variety of solids
with often a high degree of accuracy. ' '" Yet these com-
putationally elaborate techniques do not easily provide in-
sight into the dominant physical mechanisms. Therefore,
presently there is a substantial interest in new approaches
which provide a link between the full-scale microscopic,
quantum mechanical calculations of structural stabilities
and the intuitive physical and chemical arguments. "'

It is the purpose of this paper to provide such a link by
presenting a simple yet realistic and universal semiempiri-
cal tight-binding model which is able to predict the chem-
ical trends in a variety of static and dynamic structural
properties of a broad class of nonmetals. An important
aspect of this method is that it does not discriminate be-
tween "covalent" and "ionic" solids but treats both on an
equal footing.

It is widely believed that a prediction of the relative sta-
bility of two crystal structures, which usually differ by an

energy of the order of 0.1 eV, requires an extremely accu-
rate theory. Indeed, the state-of-the-art ab initio methods
for structural properties, which are based on elaborate
density-functional calculations, ' "" or the Hartree-
Fock method, are by now very well suited to answer
specific questions quantitatively.

On the other hand, several empirical models uncovered
clear chemical trends in the structural stabilities of
solids ' ' ' and suggest that the key for predicting and
conceptual understanding the relative structural energies
of solids is not absolute accuracy but a model which care-
fully incorporates the chemical trends in the atomic
characteristics.

The oldest and most widely used empirical model of
cohesive properties and structural stabilities of insulators
are the Born's model and its extensions. ' These
models incorporate many of the intuitive chemical argu-
ments of Pauling' but are restricted to ionic solids and re-
quire many empirical parameters to obtain semiquantita-
tive results (e.g. , 18 parameters in 20 crystals; see also
Ref. 30 for a critical discussion). In addition, this model
draws heavily on the concept of a static effective ionic
charge which may vary by as much as —,

' electron even in
"classical" ionic solids such as NaC1 depending on the
method employed in its definition.

Phillips and Van Vechten ' were able to successfully
order the relative stability of tetrahedral structures with
their well-known concept of ionicity which is based on the
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dielectric properties of solids. This approach and closely
related phenomenological models have been used to obtain
structural maps which provide an intriguing overall clas-
sification of solids in terms of various types of core radii.
However, they do not shed light on the origin of the dif-
ferent regions of structural stability.

Since the first-principles calculations, including the ap-
proximate electron-gas models, seem not well suited
to provide a conceptual framework for understanding
chemical trends in the static and dynamic structural prop-
erties of a broad class of nonmetallic solids, recently
several authors have developed theoretical schemes which
can provide a link between accurate calculations and a
physical understanding of the data. ' ' ' Andersen
and Jepsen' have developed a rigorous scheme to put the
linear muffin-tin-orbital method into the framework of a
tight-binding model. Chelikowski and Burdett' con-
firmed qualitative predictions of Phillips concerning tran-
sition pressures from tetrahedral to octahedral structures
of semiconductors. They augmented the ab initio poten-
tial of GaAs by a localized model potential to simulate
trends with ionicity. Harrison and others"'
have developed a modern version of the empirical tight-
binding method for the electronic structure of solids.
Formally, this approach follows closely the ab initio
methods by expressing the total energy in terms of Hamil-
tonian matrix elements. The crucial simplification is that
these solid-state matrix elements are determined approxi-
mately by scaling arguments and by incorporating the
chemical trends in the atomic data rather than being cal-
culated. So far, the tight-binding approach was applied to
relative structural stabilities of bulk crystals only in the
case of pd metals. '

In the present paper, we shall make use of the tight-
binding method and develop a universal and predictive
model which allows a physically transparent understand-
ing of the chemical trends in structural properties and rel-
ative phase stabilities of semiconductors and insulators.
We shall present results for cubic binary compounds. The
theory is based on a microscopic total energy minimiza-
tion procedure and requires only properties of the isolated
atoms as empirical input.

This paper is organized as follows. In Sec. II we
present the model. In Sec. III band structures and static
structural properties, namely, equilibrium bond lengths,
bulk moduli, relative phase stabilities, and transition pres-
sures, are calculated for the rocksalt, the cesium chloride,
and the zinc-blende phases of nonmetallic binary octet
compounds. In addition, long-wavelength optical-phonon
frequencies of several II-VI and IV-VI compounds in the
zinc-blende and rocksalt phases are predicted. Since the
present model is semi-empirical, it is imperative to check
the influence of the various simplifications on the results.
This is done in Sec. IV. The major purpose of the semi-
quantitative results in Sec. III is to support the new quali-
tative results concerning the structural stabilities of solids,
presented in Sec. V. This section demonstrates the ability
of the present approach to uncover and explain chemical
trends in the data. Finally, we present a highly simplified
but illustrative and analytical version of this theory in the
Appendix.

II. THE MODEL

The total energy per unit cell of a solid, consisting of
rigid ion cores and valence electrons, can be written in the
form

OCC

tot g ink +el-el + core-core
N

n, k

(2.1)

The first term on the right-hand side (rhs) of Eq. (2. 1) is
the band-structure energy per unit cell. It is obtained by
solving the one-electron Schrodinger equation

H„
l
n, k) =E„k

l
n, k), (2.2)

and summing over all occupied band states
l

n, k). In Eq.
(2.1), X is the number of unit cells in the crystal. The
second and third term in Eq. (2.1) represent the electron-
electron interaction between the valence electrons which is
doubly counted in the first term and the core-core interac-
tion, respectively.

In order to evaluate E„„we generalize the empirical
tight-binding method' ' ' and take into account long-
range interactions. Only sp-bonded nonmetals will be
considered in this paper. We exclude, therefore, a discus-
sion of compounds with partially filled d or f states, al-
though the present method can be adapted to this case. '

The first step consists in solving Eq. (2.2). To this end,
the wave function is expanded in terms of a minimal set
of localized Lowdin functions, consisting of a single s
state and three p states per atom. The basis states on dif-
ferent atoms are not assumed to be orthogonal and will be
orthogonalized explicitly as described below.

In the basis which results from the orthogonalization,
the Hamiltonian matrix can be written as

H„= g l

A, ,I)ex~(X,I
l

+ g l
A,I).

&&tax (Rr —Rr )(A.',I'
l

(2.3)

g2
1m, 1'm 911'm

md
(2.4)

where d is the distance between the atoms and g~~ are
universal constants. These constants couple the neighbor-
ing s and p anion (a) and cation (c) states and are taken
from Ref. 42 for nearest neighbors. They are given by
'g~~~: 1 38~ '&PE~: 2 20~ '&PE~: 0 55~ g~aPc~: 1 687

——1.92. They were fitted in Ref. 42 to obtain ade-
quate band structures for semiconductors. For next-
nearest neighbors, we choose g„„=—0.3, and

——0.5, as will be discussed in Sec. IV. The major ef-
fect of the latter matrix elements is to give an overall im-
provement of the calculated band structures; otherwise the
coupling of second-nearest neighbors could be neglected.

The basis states are labeled by the site I and the
symmetry-related (collective) index A, =(l,m), where 1 and
m denote the appropriate angular-momentum quantum
numbers. The two-center approximation is used for the
offsite elements t~~. In addition, they are assumed to be
nonzero only for the nearest and second-nearest neighbors
and to follow Harrison's rule. This gives
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Eu =uru —Ur(Zr Qr—)

+ g (Zr' Qr')V(Rr —Rr')+far .
I' (~I)

(2.5)

Here, w~z are the orbital energies of the free, neutral
atoms which are given in Table I. Uz is an average of the
intra-atomic two-electron Coulomb integrals of the
valence electrons in the free atom of species I.' For the
convenience of the reader, these values are also included
in Table I. Zr is the atomic number of the atom I and Qr
the total valence electron occupancy of this atom in the
solid,

Q, =QQ =g —g ((A, ,I ~nk) ~'.
N „k

(2.6)

In Eq. (2.5), we assume E~r to vary linearly with occupan-
cy, which corresponds to a Hartree approximation in the
atomic case. The occupancies Qr depend on the Hamil-
tonian matrix elements, in particular on c~z, which in turn
depend on Qr. In the present model these occupancies are
therefore calculated self-consistently in an iterative
manner.

The third term on the rhs of Eq. (2.5) is the electrostat-
ic inter-atomic potential at site Rz due to the other cores
and electrons in the crystal. For large

~

Rr —Rr ~, V can

For elemental semiconductors and insulators, the arith-
metic average of the appropriate matrix elements is taken.
The onsite Hamiltonian elements E~r in Eq. (2.3) are as-
sumed to differ from free atomic-orbital energies by
charge transfer effects and nonorthogonality correc-
tions:

be approximated by a Coulomb potential. We shall dis-
cuss modifications of Vfor small

~

Rr —Rr
~

later in this
section.

The increase in the kinetic energy of the electrons upon
compression of the solid is incorporated into this model
by taking into account the nonorthogonality of the basis
states. ' ' ' ' It is this effect which prevents the col-
lapse of the crystal in the present context. We approxi-
mately orthogonalize the localized basis functions to their
neighbors by taking into account their overlap S to first
order. This leads to the nonorthogonality correction fr„r
in Eq. (2.5),

1fr.r = —
z (~~ i+H.is)r.r, r.r (2.7)

2 &'&0
Sll'm jll'm 3

~

& ( uri~ + trri rr ) md
(2.8)

In Eq. (2.8), K is a numerical constant. Similarly to Ref.
16, we have taken a different value for K for each row of
the Periodic Table and a geometric average for skew com-
pounds. The values are Kc ——1.67, Ks; ——1.31,

A similar correction affects also the off-diagonal matrix
elements trr in Eq. (2.3). Since, however, their depen-
dence on distance is constructed empirically, Eq. (2.4), the
effect of the overlap S on t~~ is assumed to be already in-
corporated in Eq. (2.4).

Following extended Huckel theory and Ref. 16, it is
plausible to take the overlap matrix elements between
atoms 3 and B to be proportional to the corresponding
hopping matrix elements and inversely proportional to the
atomic orbital energies:

TABLE I. Atomic term values for valence levels (Ref. 43) and intra-atomic Coulomb repulsions U (Ref. 15).

—w, (eV)
—w~ (eV)
U (eV)

Li

5.39
1.04
8.17

Be

8.41
2.55

10.25

B

13.46
8.43

10.26

19.19
11.79
11.76

25.71
15.44
13.15

0
33.85
17.19
14.47

F

42.77
19.86
15.75

(eV)
—w~ (eV)
U (eV)

Na

5.14
0.53
6.17

Mg

6.88
1.26
7.28

Al

10.70
5.71
6.63

Si

14.68
8.08
7.64

P

18.94
10.65
8.57

23.92
11.90
9.45

Cl

29.18
13.77
10.30

Zn As Se Br

(eV)
—w~ (eV)
U (eV)

4.34
0.25
5.56

6.11
1.46
6.40

7.96
3.48
7.83

11.55
5.67
6.61

15.05
7.82
7.51

18.66
10.05
8.31

22.78
10.68
9.07

27.00
12.43
9.79

—w, (eV)
—w~ (eV)
U (eV)

Rb

4.18
0.10
5.05

Sr

5.69
1.17
5.71

Cd

7.20
2.99
6.95

In

10.14
5.37
6.00

Sn

12.96
7.21
6.73

Sb

15.83
9.10
7.39

Te

19.06
9.79
8.00

22.33
10.97
8.58

Cs Ba Pb

—w, (eV)
—w~ (eV)
U (eV)

3.89
0.10
5.02

5.21
0.96
5.70

12.41
6.95
7.03
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Kz, ——1.16, Ks„——1.05, Kpb ——0.93, respectively. These
five values and the universal dependence of S on the dis-
tance between atoms A and B were fitted to obtain ade-
quate overall agreement between the calculated and the

experimental bond lengths and bulk rnoduli of semicon-
ductors and insulators. The influence of these choices on
the results is discussed in detail in Sec. IV. In Eq. (2.8),
ro is an average valence state radius which enters the ex-
pression Eq. (2.8) for dimensional reasons, and is taken to
be

' 'r ''r ''rfpi NN Tt spa spo + ppo ppa+ pprr pprr )

ii ii ll ll 11

NN& ~ p p pp pp + pp pp (2.15)

Eeore-core Eel-el ( o Zc Qo Qc ) UM (2.16)

where i,i'=a, c and nNN and n~NN denote the number of
nearest and next-nearest neighbors in the given structure,
respectively. The electrostatic energies in Eq. (2. 11) can
be explicitly summed and give

2

ro ——
2

1 1+
Ua

(2.9)
(2.17)

The total energy of the isolated neutral atoms i =a,c in
the unit cell is given by

E„, = .QZ~;wi. ; ——,(U, Z, +U, Z, ),
A, l

Finally, we turn to the doubly counted electron-electron
and the core-core energy in Eq. (2.1). Corresponding to
Eq. (2.5), we split the electron-electron interaction into an
intra- and inter-atomic term. In the Hartree approxima-
tion, the former is given by

(2.10)

where Z~; is the number of valence electrons in the anion
or cation valence electron shell of symmetry A, , and Z„Z,
denote the total number of anion or cation valence elec-
trons. After some algebra, the cohesive energy can be
written as a sum of three terms:

—E„h——E„,—E„,

The remaining long-range terms in Eq. (2.1) can be
lumped together and are given by

1Ecov

cov +Eoverlap + transfer (2.18)

(2.19)

E„„„„—E,'t';t' =—g (ZtZI' —QIQr ) V(RI —Ri') .
I, I

(I+I')

(2.1 1)

Eoverlap = g Q waif ai

Etransfer g ( QAiZk. i ) ~P.i

(2.20)

The cohesive energy per unit cell, E„h, is finally obtained
by subtracting the total crystal energy, Eq. (2.1), from the
energy of the isolated, neutral atoms.

So far, the derivation has been completely general and
applies to any sp-bonded solid. In this paper, we apply
this model to cubic, binary insulators and semiconductors.
The three cubic phases which are of relevance for these
solids are the rocksalt (B 1), the cesium chloride (B2),
and the zinc-blende (B3) structure. We shall henceforth
label the two atoms per unit cell by an index i, where
i =a denotes the anion and i =c the cation. In order to
get transparent expressions, at first we assume the two-
body potential V in Eqs. (2.5) and (2.11) to be strictly
Coulombic for all RI and introduce modifications after-
wards. Then Eq. (2.5) reads

eq; ——wq; —( U; —Uw)(Z; —Q;)+fz;,
with

e cx~2

d

(2.12)

(2.13)

r ' I ''I ''I

fsi = nNN(~ssarssa+~sparspa )

11 ll 11
NNN(Sssa ssa+ spa sptr ) (2.14)

In Eq. (2.13), aM is the Madelung constant which equals
1.7476, 1.7627, and 1.6381 for the rocksalt, cesium
chloride, and zinc-blende structures, respectively. The
overlap corrections to the diagonal matrix elements of
H, t, Eq. (2.7), become

+ —,
' Z* ( U, + U, 2UM ), — (2.21)

Z*=Z, —Q, = —(Z, —Q, ), (2.22)

is the effective charge, and Q~; has been defined in Eq.
(2.6). The cohesive energy in Eq. (2.18) is the energy of
separation of the solid into neutral atoms. Although only
the sum of the three terms of E,,h can be well defined,
the splitting in Eq. (2.18) allows a physically transparent
interpretation of the cohesive properties of solids.

The covalent energy contribution E,„„ in Eq. (2.19)
represents mainly the short-range electron-ion interaction
and has been defined in such a manner that it vanishes if
all hopping matrix elements t~~ are zero. It is therefore a
measure for the tendency of the anions and cations to
equalize their electron occupancies.

The overlap energy is a repulsive contribution to E„,
and arises from the orthogonalization of the atorniclike
orbitals. It can be predominantly ascribed to the increase
of the kinetic energy of the valence electrons upon
compression of the solid.

The transfer energy Eq. (2.21) consists of two terms.
The first term on the rhs of Eq. (2.21) takes into account
the different population of the orbitals in the solid com-
pared to neutral atoms. This energy originates both in the
inter-atomic charge transfer and in promoting electrons
from s to p orbitals within the atoms in the solid. The
second term in Eq. (2.21) is the electrostatic energy.

So far, we have assumed the electrostatic potential V in
Eqs. (2.5) and (2.11) to be strictly Coulombic. For short
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IRr —RI
l

( U, + U, )
I
RI —RI

i

1 —exp
2e

(2.23)

In order to evaluate c~I in Eq. (2.5), this interaction has to
be summed over all lattice points I. It turns out that the
sum over all lattice points in Eq. (2.5) can be well approxi-
mated for cubic crystals by the analytical form

e 0'~2

UM= '
1 —exp

d

U. +U,
2

2e nM

(2.24)

This form guarantees that the term U, + U, —2 UM is pos-
itive for all d, such that E„,has a minimum rather than a
maximum as a function of Z* in the ionic limit
(t&&.~0). ' We have used Eq. (2.24) throughout this pa-
per although the difference between U~ in Eqs. (2.13) and
(2.24) is small (typically less than 20%) and either form
could be used. The influence of the differences between
Eqs. (2.13) and (2.24) on the results is discussed in Sec. IV.

By minimizing —E,,I, or, equivalently, E„„in Eqs.
(2. 18)—(2.22) as a function of volume, we are now in the
position to calculate static equilibrium properties,
structural phase transition pressures, and phonons for the
solids considered. Once the universal constants g and K
have been determined, the only empirical inputs required
for any given solid are the atomic-orbital energies ~, and
w~, and the intra-atomic Coulomb repulsion U (see Table
I).

III. RESULTS

First, we present results for the undistorted structures.
Equations (2.2), (2.5), and (2.6) were solved self-
consistently with respect to the occupancies Ql. Then the
cohesive energy in Eq. (2.18) was calculated as a function
of the volume for the NaCl, the CsC1, and the ZnS struc-
ture of each compound and the stable phase for zero pres-
sure, the equilibrium volume Vo, bulk modulus Bo,
derivative of Bo with pressure, transition pressures, and
corresponding volume changes were obtained. As an ad-
ditional result of the self-consistency procedure, the elec-
tronic band structures are obtained for all three cubic
phases.

The k sums were performed using up to 19 special k
points, and Eqs. (2.5) and (2.6) were iterated to give the
total energies with an accuracy of better than 0.01 eV.
Mostly, two special k points and less than ten iterations
are sufficient. The calculations can easily be performed

distances, however, the charge overlap will render arbi-
trary any distinction between the intra-atomic electron-
electron interaction and the inter-atomic Coulomb in-
teraction in Eqs. (2.5) and (2.21). The simplest way to
take this into account is to assume that the electrostatic
terms in Eqs. (2.5) and (2.21) cancel for short distances
and then to interpolate V for long and for short distances.
This leads to

V(Ri —RI )

on a personal computer. The calculated total energies
were fit to polynomials as a function of the lattice con-
stant and subsequently their minima and derivatives were
computed.

A. Band structures

10—
GaAs (B3 )

10

)
CU 0 15

—10

I X U, K
O'AVE VECTOR

—15
L r X U, K

O'AVE VECTOR

FIG. 1. Calculated band structure of GaAs (a) in the zinc-
blende (B3) phase and (b) in the rocksalt (B 1) phase.

It was demonstrated previously that the overall feature
of the valence and lowest conduction bands of tetrahedral-
ly coordinated semiconductors can be well represented
within empirical tight-binding models. ' We find that
the use of universal diagonal and off-diagonal matrix ele-
ments in the electron Hamiltonian according to the
present model gives very satisfactory energy bands also
for sixfold and eightfold coordinated semiconductors and
insulators.

In Fig. 1 the band structure of GaAs in the zinc-blende
(B3) and the rocksalt (B 1) phases is shown. It was cal-
culated at the predicted equilibrium volumes (cf. Fig. 3).
In the B3 phase, the model gives the energy gap and
width of the uppermost valence bands as 1.38 and 6.72
eV, in reasonable agreement with the experimental values,
given by 1.52 and 6.9 eV, respectively. It is remarkable
that all major features of the band structure in the B 1

phase agree excellently with ab initio calculations; GaAs
in the B 1 phase is predicted to be metallic, also in agree-
ment with Ref. 23.

In Fig. 2 the band structure of NaC1 is depicted as a
typical example for an ionic solid. The upper valence
bands of NaC1 exhibit all major characteristic features of
rocksalt-phase crystals which were discussed previously in
Ref. 49. The calculated band gap at k=O and the anion
valence-band width is 6.8 and 4.4 eV. The experimental
data are 8.5 eV (Ref. 50) and 4. 1+0.2 eV (Ref. 51),
respectively.

These figures illustrate that the present universal tight-
binding model is able to predict semiquantitatively the
band structures for both covalent and ionic and both four-
fold and sixfold coordinated solids. We have actually cal-
culated the band widths and gaps at k=O for 62 binary
solids, including IV-IV, III-V, II-VI, and I-VII com-
pounds. The agreement with experiment is generally sa-
tisfactory. The band gaps are mostly somewhat underes-
timated (which is not unreasonable since we use a
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15—

0— -5—

LJ
~ —10—

—15—

-20
L I X V K

WAVE VECTOR

FICx. 2. Calculated band structure of NaCl in the rocksalt
(81) phase.

Hartree-type approximation ) and the predicted band
widths for I-VII compounds are somewhat overestimated,
typically by 30% (see Sec. IV).

B. Structural properties

In Fig. 3 the theoretical equilibrium bond lengths are
compared with the experimental ones for the 62 com-
pounds studied in this paper. Figures 4(a) and 4(b) depict
the trends in the bulk moduli as a function of volume and
also compare the present theoretical results with experi-
ment. The data exhibit chemical trends which have been

4. 0

3.0
I

C3

C)
CC)

2. 0

1.5
1.5 2. 0 2. 5 3.0 3.5 4. 0

BONO LENGTH — EXPERIMENT (A)

FICx. 3. Comparison of predicted bond lengths with experi-
mental data. The experimental bond lengths for I-VII com-
pounds are taken from Ref. 53, all other data are from Ref. 54.

studied in several papers. ' These trends are well
reproduced by our model and will be explained in Sec. V.
For the group-IV, III-V, and II-VI compounds, the agree-
ment with the data is very good, whereas the theoretical
bulk moduli Bp for the I-VII compounds depend some-
what too strongly on volume V Bp ~ V compared to
Bp ~ V ' in the data.

The derivative of the bulk modulus with respect to
pressure Bp is a c number which, qualitatively, reflects
the slope of the repulsive potential between atoms in the
solid. In the present model the calculations give univer-
sally Bp ——4.5+0.4 irrespective of the equilibrium struc-
ture and compound, which seems to be in accord with the
experimental data for group-IV, III-V (Ref. 55), II-VI
(Refs. 64 and 67), and I-VII (Ref. 68) compounds. Com-
parison with experiment in I-VII materials is hampered by
the appreciable scattering in these data. In NaCl, for ex-
ample, the theory gives Bp ——4.75, whereas published data
vary from 4.0 to 6.0.

C. Relative stability of phases
and structural phase transitions

P, =

Figures 5(a) and 5(b) show the equations of state for
ZnS and CaO for the three cubic phases. Among these
structures, the lowest phase in energy is predicted to be
B3 for ZnS and B 1 for CaO, in agreement with experi-
ment. We point out that the minima of the total energies
as a function of volume occur in the same order B2, B 1,
and B3 in both cases. In fact, this is a universal feature
of all compounds investigated in this paper, as will be ex-
plained physically in Sec. V C, and it is in accord with ex-
periment: As a function of pressure, only transitions
from zinc-blende to rocksalt and rocksalt to cesium
chloride have been observed, whereas no pressure-induced
transitions from rocksalt to zinc-blende or cesium
chloride to rocksalt are known.

Figure 6 summarizes the predictions for transition pres-
sures for II-VI compounds together with the known ex-
perimental data. The chemical trends in the theoretical
results are in good agreement with the available data and
are insensitive to details of the model. In particular, the

We have performed calculations for compounds in
NaC1 (B 1), CsCI (B2), and ZnS (B3) phases and calcu-
lated the total energy in each phase as a function of
volume. Since the group-IV and III-V compounds be-
come metallic in the high-pressure phase and tend to
transform to noncubic phases, we focused on II-VI and
I-VII crystals.

A phase transformation as a function of pressure can be
calculated by equating the Gibbs free energies G&, GB of
the two phases A and B. For given pressure, we mini-
mized G =E„,+PV as a function of V for each phase
and calculated AG =Gz —GB. By varying the pressure,
we determined the zero of AG, which occurs at P=P,
and at volumes equal to the transition volumes V, and
V, for phases A and B, respectively. P, at zero tempera-
ture is then given by

Et.« I'i") «.« I—'t )

VB
(3.1)
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FIG. 4. (a) Predicted bulk modulus for cubic, binary compounds plotted as a function of the calculated equilibrium volume. (b)
Experimental bulk modulus vs experimental equilibrium volumes (the latter are from Refs. 53 and 54). The data are from Refs. 55
and 56 (group IV and III-V's), Ref. 57 (zinc and cadmium chalocogenides), Ref. 58 (BeO), Ref. 59 (MgO), Ref. 60 (CaO, SrO, BaO),
Ref. 61 (BaS), Ref. 62 (BaSe, BaTe), Ref. 63 (CaS), Ref. 64 (CaTe, SrTe), and Ref. 6 (I-VII's).

theory reproduces the puzzling strong cation dependence
(e.g., CaTe, SrTe, BaTe) and the relative anion indepen-
dence (e.g. , ZnO, ZnS, ZnSe, ZnTe) of the observed transi-
tion pressures. The physical reason for this effect was not
understood so far, but can be easily explained in terms
of the present model (see Sec. V).

Some detailed theoretical results and the experimental
data for crystal properties associated with structural phase
transformations as a function of hydrostatic pressure are
summarized in Tables II—V. Previous theoretical results
are also included in Tables II and III. For all II-VI com-
pounds except two (namely MgS and CaTe) the present

1.2 1 ~ 2

1.0 1.0—
0.8

(-') o.6

Z
~ o.e

LL) o.~

0.8—
~ o.s-
Z
~ o.4—
LLI o.~—

0.0—

0.6 0.8
VOLUME

B5
I

1.0

0.0—

0.6
Bl

I I I

0.8 1.0
VO UME

I

1.2

FICx. 5. Calculated total energy per unit cell as a function of volume (relative to equilibrium volume) for the rocksalt (B1), the
cesium chloride ( B2) and the zinc-blende ( B3) phase of (a) ZnS and (b) CaO.
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FIG. 6. Theoretical and experimental transition pressures for
the indicated structural phase transitions vs the calculated and
experimental equilibrium volume at zero pressure, respectively.
The dashed lines indicate the chemical trends in the transition
pressures and are shown only to guide the eye. The transition
pressures depend strongly on the cation, but only weakly on the
anion. The sources of the experimental data are cited in the
captions of Tables II and III.

D. Transverse optical phonons

As an example for dynamic properties of solids, we
have calculated long-wavelength transverse-optical (TO)

model gives the phase lowest in energy at zero pressure in
agreement with the data. We have not, however,
discriminated between the wurzite and the zinc-blende
phase in the calculations.

Tables II and III show that the chemical trends in the
cohesive energies are also correctly reproduced by the
model. Quantitatively, the cohesive energies are some-
what overestimated, particularly for oxides which have
very small bond lengths.

In Tables IV and V the theoretical results for the
structural energy differences between the cubic phases of
I-VII compounds are listed. In all cases, the minimum of
the total energy in the B3 phase is correctly obtained to
be energetically higher than the total energy in the B1
phase. We find this difference to be significantly larger
for the I-VII compounds than for the II-VI compounds,
in accord with intuitive ionicity arguments. The energy
of the minimum of the B2 phase, however, is found to be
systematically lower than the B1 phase, which disagrees
with experiment. All I-VII compounds except CsC1,
CsBr, CsI actually crystallize in the B1 phase. We shall
discuss the origin of these results in Sec. IV.

b, E„,(u) =2~ Mvrou +k„y,xyz (3.2)

where M is the reduced cell mass, v&Q is the harmonic
TO-phonon frequency, and k yz denotes the cubic anhar-
monic force constant. ' The latter is nonzero only in the
absence of inversion symmetry (B3 phase).

The displacement u changes the off-diagonal elements
of the one-electron Hamiltonian H in Eq. (2.2) in k space
via the d dependence of t~~, the direction cosines and the
phase factors exp(ik R). The k sums in Eqs. (2.6) and
(2.19) were performed using 17 special k points in the 81
phase and 5 in the B3 phase to obtain convergent results.
This corresponds to six and two special k points, respec-
tively, in the undistorted crystal.

The long-range interatomic interaction terms in Eqs.
(2.5) and (2.11) are obtained by summing the potential
V(RI —RI ) over all lattice sites, where Ri denote the dis-
placed lattice vectors. We find that the numerically per-
formed summation can be very well approximated by the
following analytical form:

g (ZJ —Qi) 1 (Ri)

=(Z, —Q, )UM 1 —exp
U. +U,

2UM
(3.3)

where we have chosen the origin at the cation site and UM
denotes the Madelung energy, analogous to Eq. (2.13), for
the displaced lattice. To second order in u, UM in Eq.
(3.3) can be evaluated analytically for the 8 1, B2, and B3
phase,

M e 4~2 2

d 3Q
(3.4)

where Oo is the unit cell volume. We calculated v&Q as a
function of pressure in the B1, B2, and the B3 phase.
The most striking result is that this model predicts a
strong TO-phonon softening, i.e., a reduction of v~Q by an
order of magnitude, across a pressure-induced phase
transformation from the B3 to the B1 phase for II-VI
compounds. We find a strong TO-phonon softening for
all tetrahedral II-VI compounds and summarize the re-
sults in Table VI. These materials probably do not be-
come metallic for pressures near the transition pres-
sure. ' The physical origin of this effect is analogous to
the phonon-instability in ferroelectrics and will be dis-
cussed in Sec. V. To our knowledge no experimental data
for v+Q across the B3-B1 transformation are published.
Yet a TO softening across the B3-B 1 phase transition for
metallic GaAs, and a softening of vLo (q=0) and of
zero-boundary phonons in metallic high-pressure phases
of Si was predicted recently.

phonons in different crystal structures. In the adiabatic
approximation and for binary crystals, this amounts to
the calculation of the total energy of the crystal as a func-
tion of the displacement u of the two sublattices relative
to each other.

To third order in u, the change of the total energy with
u can be written as

3



9674 J. A. MAJEWSKI AND P. VOGL 35

Pt (B3—+B 1'
(Gp.) VB 1 yVB3VB3gVB3Compound

TABLE II. Predicted transition pressure P„ transition volume V, relative to the zero pressure volume Vo, and relative volume

change from the zinc-blende (B3) to the rocksalt (B 1) transition of II-VI compounds. E;„denotes the minimum of the total energy
in each labeled phase and E„h is the cohesive energy. The observed stable phase of all compounds is the zinc-blende (or wurzite)
structure. The experimental data are given in parentheses, and previous theoretical results are given below the results of this paper.

Bl B3 B2 B3
Em)n —Em)n Em)n —Em)n Ecph ( B3 )

(eV) (eV) (eV)

BeO
ZnO
BeS
ZnS

Cds
BeSe
MgSe
ZnSe

CdSe
BeTe
MgTe
ZnTe

CdTe

'Reference 70.
Reference 69.

'Reference 71.
Reference 72.

'Reference 73.
Reference 74.
Reference 75.

"Reference 76.

25.1

3.6 (9.0 )

13.2
4.7 (11.7-18 ")

20—30'
1.4 (1.65—2.5 ")

1 1.2
0.7
4.4 (10—14'-' ')

15—23, ' 28.2'

1.6 (2.3—3 '")
9.1

1.0
4.2 (8.5—12 " )

10—15,' 18.8"
9 ( 3 4f~g~P~P )

1.5—5.6, ' 7.2"

0.94
0.98
0.91
0.94
0 93'
0.97 (0.9g)

0.91
0.98
0.93
0.93,'0. 80'
0.96 (0.91g)
0.90
0.97
0.92
0.92'
0.94 (0.93,' 0.09~)
0.92'

0.14
0.16
0.14
0.15
0.16—0.2'
0.16 (0.2")
0.14
0.16
0.15
0.16—0.2, ' 0.21'
0.15 (0.2")
0.14
0.15
0.14
0.17—0.2, ' 0.08"
0.15 (0. 17,' 0. 16P)
0.17—0.2, ' 0. 16"

'Reference 77.
'Reference 78.
"Reference 79.
'Reference 80.

Reference 81.
"Reference 82.
Reference 83.
Reference 84.

0.32
0.07
0.32
0.16

0.06
0.32
0.03
0.17

0.08
0.33
0.06
0.21

0.11

1.85
1.01
1.54
0.99

0.67
1.47
0.58
0.98

0.67
1.42
0.60
1.01

0.71

26.7 (12.2')
21.9 (7.6')
14.9 (8.6')
12.5 (6.4')

11.4 (5.7')
12.4
9.3

10.7 (5.2')

9.7 (4.8')
10.2
7.3 (5.7')
8.7 (4.6')

7.9 (4. 1')

In Table VII, our calculations of vTQ and related prop-
erties for zero pressure are given for a few typical materi-
als and compared to published experimental and previous
theoretical ab initio results. It is noticable that the present
simple model is able to predict even subtle nonlinear
dynamical properties such as the anharmonic force con-
stants in reasonable agreement with experiment or first-
principles calculations.

We have actually computed vTQ for all compounds con-
sidered in the previous section. It seems sufficient to say
here that the results are generally satisfactory. The model
tends to underestimate vTQ somewhat for materials in the
B1 phase, particularly for the oxides where the bond
length is exceptionally small. For CaO, for example, we
obtain vTQ ——3.6 THz compared to the experimental value
of 8.7 THz.

IV. CHOICE OF PARAMETERS

Since the aim of this paper is to show that a simple and
universal model is able to provide both the essential quali-
tative physics and semiquantitative results for solid-state
properties in a wide range of materials, we attempted to
use as few empirical parameters as possible. In Table
VIII we exemplify the effects of changing particular pa-
rameters or assumptions in this model. One can see that
this theory is quite insensitive to modifications, provided
the parameters reflect the chemical trends in the atomic

data.
We used one s and three p states per atom throughout.

Actually, this is somewhat artificial for I-VII compounds
such as NaC1, since the ¹ p state contributes very little
to cohesion. In this case the ¹ p basis state plays the
role of a peripheral state which simulates both more dis-
tant than nearest-neighbor interactions as well as higher
excited states. Similar arguments apply to Sr and Ba
compounds, where the conduction bands are actually d-
like but are simulated by p states in our model.

The inclusion of a peripheral s state, as was done previ-
ously in Ref. 42, affects only details of the conduction
bands and influences the total energy only negligibly.
Therefore s* states were neglected. In addition, in Ref.
42 the diagonal Hamiltonian matrix elements Ezl for
semiconductors were obtained by scaling the atomic orbi-
tal energies w~l by factors of 0.6 for p states and 0.8 for s
states. This is consistent with the present model: We
have constructed the solid-state corrections to w~l expli-
citly [see Eq. (2.5)] and included some second-neighbor
matrix elements. The resulting effective a~i are indeed
close to the ones determined previously, apart from an
irrelevant overall shift.

The transfer or offsite matrix elements t~~ were taken
from Ref. 42 for nearest neighbors, although Harrison's
parameters could have been used as well. ' The important
point is that we implicitly use the assumption that the pa-
rameters pl~ are independent of the structure. This is
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TABLE III. Predicted transition pressure P„ transition volume V, relative to the zero pressure volume Vo, and relative volume
change from the rocksalt (B1) to the cesium chloride (82) transition of II-VI compounds. E;„denotes the minimum of the total
energy in each labeled phase and E„h is the cohesive energy. The observed stable phase of all compounds is the rocksalt structure.
The experimental data are given in parenthesis, and previous theoretical results are given below the results of this paper.

Compound

MgO

Cao

SI0

Bao

Cdo
MgS
CaS

SrS
BaS
CaSe
SrSe
BaSe

CaTe
SrTe
BaTe

'Reference 70.
Reference 21.

'Reference 27.
Reference 34.

'Reference 7.
Reference 35.

gReference 85.
"Reference 33.

126
172—1050

66.8 (70+10")
1P6
35.6 (36+4')

88—95, ' 36
26.9 (14+0.5")

88—95, ' 21
118.3
64.0
35.5

19.3
14.0 (6.5')
31.1
17.2
12.6 (6.0+2 )

5 6n

27.5 {35+5 )

15.4 (12+1')
11.2 (4.8+0.3~)

3 2n

VB1yVB1

0.70
P.38—0.68
0.75 {0.74')
0.69,' 0.75
0.79 (0.8O')

0.65—0.78'
0.80
0.62—0.67, ' 0.82
0.70
0.65
0.70

0.74
0.76 (0.90')
0.68
0.72
0.75
0 90"
0.65 (0.70')
0.69 (0.83')
0.72
0 93"

VB2yVB1

0.05
O.O4—O. 11b. . .f

0.05 (0.11')
0.07—0.08'
0.06 (0.12")
0.06—0.08'
o.o6
O.O5, ' O. O8'

0.05
0.05
0.05

0.05
0.05 (0. 14')
0.05
0.05
0.06 (0. 14 )

0.15"
0.05 (0. 11 )

0.05 (0. 11')
0.05 (0. 13~)
0.14"

'Reference 86.
"Reference 87.
"Reference 88.
'Reference 67.

Reference 89.
"Reference 26.
'Reference 64.
Reference 90.

B2 B1
Emin Emin

(eV)

0.68
073 2 04b

0.49
1 21—1 43 '"'
0.36
1.18—1.22'
0.31
1.15—1 ~ 19'
0.67
0.57
0.42

—0.07~

0.31
0.27
0.42
0.32
0.27
0 31"
0.42
0.32
0.28
0.20"

B3 BlEmin min

(eV)

0.07
0.06g

0.14
0.30g

0.18

0.19

0.04
—0.01

0.04

0.09
0.10
0.02
0.06
0.08

—0.01
0.03
0.05

E„h (B1)
(eV)

20.7 (11.6')
10.0—11.6 "
20.0 (11.0')

18.8 (10.4')

18.7 (10.2')

20.3 (6.4')
11.1 (8.0')
11.1 (9.7')
1O.1'
10.4 (9.3')
10.4 (9.3')
9.3 (7.8')
8.8
8.8 (10.3')

7.4
6.9
7.0

strongly supported by the present results for the electronic
band structures, Figs. 1 and 2. In addition, the nearest-
neighbor distances vary by more than a factor of 2 in the
materials studied in this paper, which provides a stringent
and successful test for the d dependence of t~& in Eq.
(2.4). The next-nearest neighbors have little influence on
the cohesive properties as can be deduced from Table
VIII. However, the energy gaps at k=O are overestimat-
ed by typically 3 eV if the next-nearest neighbor couplings
are neglected. We therefore fitted g„„and qp p ~ to ob-

tain energy gaps in semiconductors in approximate overall
agreement with the experimental band gaps.

The next-nearest-neighbor couplings have the additional
effect of raising the top of the valence band at k=O with
respect to the k points at the boundary of the Brillouin
zone and therefore favor direct gaps. For sake of univer-
sality, the scaling of these matrix elements with bond
length was taken to be d as well.

The d dependence of the overlap matrix elements S was
chosen empirically as d universally. A weaker d

TABLE IV. Predicted total energy difference per unit cell (in
meV) between the minimum of the zinc-blende (83) and the
rocksalt (8 1) phases of I-VII compounds.

TABLE V. Predicted total energy difference per unit cell (in
meV) between the minimum of the cesium chloride (B2) and
the rocksalt (8 1) phases of I-VII compounds.

Li
Na
K
Rb
Cs

F

546
475
417
365
343

Cl

352
320
284
253
235

Br

310
284
269
230
216

258
242
220
190
190

Li
Na
K
Rb
Cs

F
—112
—209
—217
—193
—183

Cl

—42
—122
—133
—126
—119

Br

—27
—98

—104
—107
—102

2
—69
—88
—87
—84
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TABLE VI. Predicted long-wavelength transverse-optical-
phonon frequencies at the B3~B 1 transition pressure.

Compound

ZnO
ZnS
ZnSe
ZnTe

vTo (q =0, B 3)
(THz)

18.8
1 1.0
8.4
7.1

vTo (q=0, B 1)
(THz)

1.8
1.2
1.0
0.9

Cds
CdSe
CdTe

8.3
5.7
4.6

0.8
0.4
0.5

dependence, e.g. , S ~d, underestimates the bulk moduli
and the optical-phonon frequencies by approximately a
factor of 3 in ionic compounds, whereas a stronger depen-
dence, e.g. , S ~d, overestimates these quantities in
semiconductors and stabilizes the B 1 phase relative to the
B3 phase in II-VI compounds.

In the B2 phase, the next-nearest neighbors are closer
to the nearest neighbors than in the B1 or B3 phase. In
the present model, we assumed the d dependence of the
overlap to be the same for nearest and next-nearest neigh-
bors. The static cohesive properties, such as the bulk
modulus and bond lengths, as well as the relative stability
of the B3 and B 1 phase are quite insensitive to this as-
sumption. However, the relative stability of the B1 and
B2 phase can be affected by modifications of this as-
sumption. In particular, the model developed in Sec. II
stabilizes most of the I-VII compounds in the B2 rather
than in the B 1 phase (Table V). We can obtain the
correct ordering of structures for I-VII compounds by as-
suming a stronger d dependence of the next-nearest-
neighbor contribution to the overlap interaction. Using a
functional form for S analogous to Eq. (2.8) but using
S ~ d for second-nearest neighbors, we obtain transition
pressures for all I-VII compounds in excellent agreement
with experiment.

V. UNDERSTANDING THE CHEMICAL TRENDS

Many empirical models for ionic crystals ' ' ' invoke
the classical point charge picture. In such a model, the
cohesive properties result from a balance between the
Madelung energy and an overall repulsive force, which
makes it difficult to discuss chemical trends. It is widely
believed that this ionic picture is supported by the calcu-
lated or measured charge density of ionic crystals, which
indeed suggests closed-shell ions. We should like to point
out, however, that the static charge density is very insensi-
tive to charge transfer or the degree of ionicity. As an il-
lustrative example, one may calculate the approximate
electronic valence charge density of NaF either by super-
imposing Hartree-Fock charge densities of free Na+ ' and
F ' ions or, alternatively, by superimposing neutral-atom
charge densities of Na and F . One finds that these
two types of charge densities are practically indiscrimin-
able and differ by less than 5% outside of the core re-
gimes. One may even calculate x-ray integrated intensities
for NaF, using either neutral-atomic or ionic form fac-
tors. Again, the results are sufficiently similar that the
experimental data cannot discriminate between them.
In covalent solids, Harrison' pointed out several years
ago that the valence charge density of aluminum, calculat-
ed in the zinc-blende phase, is practically identical to that
of silicon, even though such a crystal is a metal and unsta-
ble.

In this section, we show that the present model gives
new qualitative insight into the physical mechanisms
governing the trends in the structural properties of
nonmetallic solids. The understanding of the physical
mechanisms is greatly facilitated by first discussing the
trends in the individual contributions to the total energy
which are given in Eqs. (2.18)—(2.22). Although such a
breakup is not unique, it provides a very useful frame-
work for interpreting the results.

The overlap energy is a repulsive contribution to Et
and the calculations show that it scales approximately asd, where d is the nearest-neighbor distance. In a series
of compounds AB, the overlap energy becomes more

TABLE VII. Predicted long-wavelength transverse-optical-phonon frequencies, their pressure deriva-
tives at zero pressure, and the associated cubic anharmonic force constants. The experimental data are
given in parentheses, and previous theoretical results are given below the results of this paper.

Compound

Si

GaAs

ZnSe
NaCl

vTo (q=0)
(THz)

18.6 (15.6')
15.2,' 15 0 '
9.0 (8.2')
8.29g

7.2 (6. 1')
3.3 (4.9')
4 9h

d vTo/dp
(THz GPa ')

0.19 (0. 16')

0.17 (0. 13')

0.20 (0. 16')
0.47 (0.46')

d vTo /dp
(THz &Pa )

—0.005( —0.004 )

—0.010 ( —0.006 )

—0.010
—0.126

kxyz

(eV/A )

—47.5 ( —35. 1' )
—32.8,' —34.8, —47 ~

5'
—26.7
—35.2g

—19.6
0

'Reference 57.
Reference 94.

'Reference 22.
Reference 95.

'Reference 91.
Reference 96.
Reference 97.

"Reference 20.
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TABLE VIII. Summary of changes of the results for CaO with changes in the parameters. The entries are lattice constant, bulk
modulus at zero pressure, cohesive energy, transition pressure, total energy differences, and the electronic energy gap at k=O.

Change of
parameters

none

ap (Bl)
(A)

4.72
4.34
4.67
4.54
4.33
4.81
4.70
4.60

Bp
(GPa)

120.4
183.3
123.4
151.2
135.6
97.5

123.4
170.3

E,.„(B1)
(eV)

20.0
23.2
16.8
23.0
18.4
21.2
20.3
24.7

P, (B1~B2)
(GPa)

66.8
138.1

96.5
120.4
40.4
26.4
81.3
82. 1

B2 B1
min Emin

(eV)

0.49
0.67
0.62
0.66
0.33
0.23
0.58
0.76

B3 BlEmin Emin

(eV)

0.14
0.08
0.08
0.05
0.16
0.27
0.19
0.19

Ega@
(eV)

7.95
10.02
6.34
9.20
5.96
8.71

11.19
14.29

'Increase of constant E by 25%.
Decrease of atomic-orbital energy m„by 2.5 eV.

'Decrease of atomic energy w~ by 2.5 eV.
Decrease of all offsite matrix elements t~~ by 25%.

'Decrease of all Coulomb repulsions U„U, by 25%. The constant rp in Eq. (2.9) is not changed.
fAll second-nearest-neighbor matrix elements tqq are set equal to zero.
Strictly Coulombic long-range electron-ion and electron-electron interaction. Equation (2.13) is used instead of Eq. (2.24).

repulsive when either A or 8 vary downward in a given
valence column of the Periodic Table. This follows from
the explicit form of the overlap matrix [see Eq. (2.8) and
Table I] and is also physically plausible due to the increas-
ing size of the heavier atoms.

The covalent energy contribution Eq. (2.19) to E„, is an
effectively attractive energy and is also inversely propor-
tional to d. Qualitatively, the covalent energy contribu-
tion becomes more attractive when the difference between
the anion and cation orbital energies decreases. This can
be explicitly seen in the limiting case of a two-state model
(see Appendix) where the covalent energy is proportional
to —t /(w —w ).

The charge transfer energy Eq. (2.21) depends weakly
on d. It consists of two parts. The first part takes into
account the different populations of the orbitals in the
solid compared to neutral atoms, whereas the second part
is proportional to the Madelung energy.

Figure 7 depicts the individual contributions to the to-
tal energy for a typical insulator (CaO) and a typical semi-
conductor (GaAs). The important point in this figure is
that both the short-range overlap and the short-range co-
valent energy depend much more strongly on the inter-
atomic distance than the charge transfer energy and there-
fore determine the chemical trends in structural properties
such as lattice constant, bulk modulus, or relative phase
stabilities. Only the absolute value of the cohesive energy
itself is largely governed by the Madelung energy in I-VII
and II-VI compounds since the overlap and the covalent
energy tend to cancel each other near the equilibrium
volume.

Consequently, all major static and dynamic structural
properties of fourfold as well as sixfold coordinated crys-
tals are governed by the short-range energy contributions,
whereas the long-range electrostatic interaction plays only
a minor role even in crystals such as NaC1. This finding
is in contrast to the point-charge-type models ' but is
consistent with the experimental fact that the bandwidth

of the upper valence bands is comparable in magnitude in
III-V and in I-VII compounds (see Figs. 1 and 2). ' ' As a
consequence, the short-range electron-ion interaction is of
the same order of magnitude in III-V compounds as in
I-VII or II-VI materials.

In the present model the chemical trends in the
structural properties of solids are determined by the orbi-
tal energies m~1 and the Coulomb repulsion energies UI of
the constituent neutral atoms which completely character-
ize a compound. This is in accord with the empirical con-
cepts of electronegativity and atomic size: ' For hetero-
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FIG. 7. The individual contributions to the calculated total
energy of CaO and GaAs as a function of volume. The total en-

ergy (tot) is given by the sum of the covalent (cov), the overlap
(ovl) and the charge-transfer (transf) energy. The common zero
of energy is the minimum of the total energy of GaAs.
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planar crystals, the difference between the cation s and
anion p atomic-orbital energy provides an "atomic" elec-
tronegativity scale which generally agrees with the scale
introduced by Pauling' and Phillips. Since, in addition,
the atomic-orbital energies are inversely proportional to
the corresponding atomic radius, the atomic size is also
incorporated.

A. Trends in bond lengths

B. Trends in bulk modulus

Qualitatively, the total energy may be written as

E„,=a V ' —PV (5.1)

the first term being proportional to the repulsive overlap
energy and the second term to the attractive covalent en-
ergy. Taking the second derivative of Eq. (5.1) at the
equilibrium volume Vo ——(ralsP)" ', one obtains the bulk
modulus

B,~PV-'+" (5.2)

This shows that the bulk modulus systematically de-
creases with increasing equilibrium volume. Numerically,
we find s to be of the order of —', . As a consequence, we
find B ~ V ' in comparison to the experimental values
B ~ V ' to V ' . For given equilibrium volume, the
trends in B are seen from Eq. (5.2) to be determined by
the covalent interaction beta. As a consequence, B is
predicted to decrease in a sequence of compounds with
similar equilibrium bond length but decreasing P, such as
Si, A1P, NaC1. As can be seen from Fig. 4, this finding
explains the trends in the experimental data.

C. Trends in structural stabilities

It was noted in Sec. III C that the present model gives
the equilibrium volume Vo always in the order B2,B1,B3
[see Figs. 5(a) and 5(b)]. Vo is mainly determined by that

Let us consider a sequence of compounds AB with one
type of atoms fixed and the other varying downward in a
given column of the Periodic Table. Examples are BeO,
MgO, CaO, SrO, BaO, or alternatively, CaO, CaS, CaSe,
CaTe. Since the orbitals become more extended, the
repulsive overlap interaction strongly increases and conse-
quently the equilibrium position of the total energy shifts
towards larger volume in any such sequences of com-
pounds. This explains the trends in the data shown in
Fig. 3.

The attractive covalent energy supports this trend when
the compounds have a common anion (e.g. , oxides). In
this case the cation s and anion p atomic-orbital energy
differences increase with the atomic number Z of the ca-
tion (Be to Ba; see Table I) which causes the covalent en-

ergy to become less attractive. When compounds with the
same cation are compared, on the other hand, the covalent
energy becomes more attractive with increasing Z of the
anion (0 to Te; see Table I) and counteracts the trend
governed by the overlap energy. We find, however, that
the overlap interaction always dominates the chemical
trends in the bond lengths.

D. Trends in transition pressures

Let us specifically consider the pressure-induced transi-
tion from the Bl to the B2 phase. The arguments given
below can be immediately transferred to the transition
from the B3 to the B1 phase. For a qualitative discus-
sion, Eq. (3.1) for the transition pressure can be approxi-
mated by

EB2( VB2) EB1(VB1)

Vo —Vo
(5.3)

where the transition volumes have been replaced by the
corresponding equilibrium volumes. The trends in P,

term in the total energy which depends most strongly on
volume, and this is the overlap energy. For given unit cell
volume, the nearest neighbor distance d is smallest in the
B3 phase and largest in the B2 phase. The ratio of bond
lengths is 1:1.15:1.26 for the B3, B1, B2 phase, respective-
ly. The overlap energy for a unit cell of fixed volume is
therefore most strongly repulsive in the B3 phase and
least repulsive in the B2 phase (E,„„~,z ~d ). Conse-
quently, the minimum energy of the B3 phase occurs at a
larger volume than the equilibrium energies of the other
phases and one has Vo & Vo & Vo .B2 B1 B3

This theory therefore predicts a universal sequence of
structural phase transformations among the cubic phases
of a given compound. As a function of pressure, structur-
al phase transformations can occur only in the sequence
zinc blende~rocksalt~cesium chloride but not in the re-
verse order. This result is independent of the relative total
energies of these phases at their equilibrium volumes. If,
for example, the rocksalt phase has the lowest equilibrium
energy, such a crystal can only transform to the cesium
chloride but not to the zinc-blende phases as a function of
pressure [cf. Fig. 5(b)]. Actually, of course, any crystal
will become metallic at sufficiently high pressure and
transform to other structures, which are not considered
here.

Which mechanisms determine the chemical trends in
the relative stability of phases in a series of compounds?
For a given unit cell volume, the covalent energy is most
strongly attractive in the zinc-blende (B3) phase. Thus,
the covalent energy favors energetically the B3 phase,
whereas the repulsive overlap interaction always favors
the B2 phase and, to a lesser extent, the B1 phase. If the
difference in the cation s and anion p orbital energy de-
creases in a series of heteropolar compounds, the covalent
energy becomes more attractive and the B3 phase becomes
more favorable [in the simple model given in the Appen-
dix, one has E„,~ —t !(w,—w, )]. This is the case in
any series of compounds, where the anions vary down-
ward in a given column of the Periodic Table. Examples
are MgO (Bl), MgS (Bl), MgSe (B3), and MgTe (B3),
where we have indicated the stable phase in parentheses.
On the other hand, the overlap energy becomes dominant
and the B2 phase more favorable if the difference in the
cation s and anion p orbital energy increases in a series of
compounds, such as in NaC1 (Bl), KCI (Bl), RbCI (Bl),
CsC1 (B2). In this case, the cations vary downward in a
column.
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therefore arise from two factors: (i) the equilibrium unit
cell volumes in the denominator of Eq. (5.3) and (ii) the
difference in total energies in the numerator of Eq. (5.3).
Since both theory and the experimental data give
Vo —Vo

' cc Vo for all compounds (see Table III), the
denominator of Eq. (5.3) causes the transition pressures to
decrease with increasing equilibrium volume.

The numerator of Eq. (5.3) decreases in any series of
heteropolar compounds with increasing equilibrium
volume, where the difference in cation s and anion p orbi-
tal energies increases. This can be understood as follows.
The covalent energy is more attractive in the 81 phase
than in the 82 phase, as we explained in the previous sec-
tion. If w, „„,„—w&,„,„„increases, the covalent energy
becomes relatively less attractive in the 81 phase and di-
minishes the numerator in Eq. (5.3). This trend supports
and enhances the effect of the denominator in Eq. (5.3)
for a series of compounds with the same anion
(MgO, . . . , BaO). In a series of compounds with the
same cation (BaS, BaSe, BaTe, or CdS, CdSe, CdTe), how-
ever, the chemical trend in the numerator counteracts the
trend in the denumerator. This explains the empirically
observed strong cation dependence and relative anion in-
dependence of the transition pressures of II-VI and I-VII
compounds. In the light of these results it is not
surprising that an attempt to correlate the transition pres-
sures with a phenomenological ionicity scale ' is success-
ful for cation-related trends but fails completely to predict
the weaker trend with anions. '

pied band energies is found to be dominated by contribu-
tions near the I. point. To second order in u, the energy
change of the valence bands is therefore dominated by
terms of the form

/
( uL

f
6H, i u

i
cL ) iAE~

EvI. —EcI
(5.4)

which are all negative. In the 83 phase, on the other
hand, the energy bands have mixed anion and cation char-
acter throughout the Brillouin zone already in the unper-
turbed lattice. This implies that the displacement causes a
particular valence-band state to be pushed by both higher
and lower states rather than being coherently lowered in
energy.

Which materials are likely to have soft TO modes? On
the basis of the above arguments, we find two prere-
quisites for soft phonon modes: (i) the crystal should be
in the Bl-phase and (ii) the difference in the cation and
anion atomic energies should be small, as can be seen
from Eq. (5.4). The group of IV-VI compounds
represents such a class of materials. '

In order to check these arguments, we have applied the
present theory to a IV-VI compound, namely SnTe. '

We find the 81-phase to be the stable phase at zero pres-
sure with a lattice constant a =6.51 A (experiment:
a =6.32 A). The calculations give indeed vro &0 which
implies a structural instability of the 81 phase. This is in
qualitative accord with experiment and recent ab initio
calculations' of IV-VI compounds.

E. Trends in optical phonons F. Summary

The present model predicts a striking softening of vtQ
(q=0) across the B3~B1 phase transition. The physical
mechanism causing this effect originates (i) in the
geometry of the sodium-chloride structure and (ii) in the
covalent interaction. The softening of the TO mode in
ferroelectric materials such as SnTe has the same physical
origin.

Since the bond length for a unit cell of given volume is
larger in the 81 phase than in the 83 phase, the overlap
interaction (E„„~,~ ~ d ) is less repulsive in the Bl
phase. This effect reduces the TO frequency of the Bl
phase relative to the 83 phase, since MvtQ
~ d Eo,«~,~ /du ~ d . This reduction amounts to ap-
proximately 50% of the calculated softening of v+Q in
Table VI.

The calculations show that the relative sublattice dis-
placement associated with v+Q lowers the sum of the
valence-band energies in both the 83 and 81 phase. This
effect, which destabilizes v~Q, is theoretically found to be
much more pronounced in the 81 phase. In ZnTe, for ex-
ample, the second derivative of the covalent energy is
given by d EQQQ /du = —3.6 eV A in the 83 phase and
= —9.4 eVA in the Bl phase. This destabilization
originates in a unique feature of the energy bands in the
rocksalt phase. At the I point, the anion p states, which
form the upper valence bands, do not couple to the cation
p states, which form the lower part of the conduction
bands. The displacement u mixes the cation and anion
states and pushes them apart. The k sum over the occu-

Let us summarize the main results of this discussion.
In this paper, we have considered cubic, binary sp-bonded
semiconductors and insulators. The chemical trends in
the structural properties of sp-bonded solids can be under-
stood entirely in terms of the valence orbital energies of
their constituent atoms. It is therefore useful to define an
atomic electronegativity difference for a compound AB
which one may take as the difference w, „„,„—w~,„;„„be-
tween the outermost atomic cation s and anion p orbital
energies for heteropolar compounds.

(i) The equilibrium bond length of a crystal increases in
any sequence of compounds AB with one type of atoms
fixed and the other varying downward in a column of the
Periodic Table.

(ii) The bulk modulus decreases with increasing equili-
brium volume. For a given volume, it also decreases in a
series of compounds with increasing atomic electronega-
tivity differences.

(iii) As a function of pressure, structural phase transfor-
m ations can occur only in the sequence zinc blende
—+rocksalt ~cesium chloride.

(iv) The transition pressures P, for the 8 3~B 1 and
8 1~B2 transition generally decrease with increasing
equilibrium volume. They also decrease in any series of
compounds with increasing atomic electronegativity
differences. For compounds with the same metal ion the
latter trend counteracts the trend with volume and leads
to a very weak volume dependence of P, .

(v) The TO phonons strongly soften across a pressure-
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induced phase transition from the zinc blende to the rock-
salt phase. This softening is caused by the symmetry of
the rocksalt phase and is more pronounced in crystals
with a smaller atomic electronegativity difference.
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APPENDIX: A TWO-STATE MODEL

In order to illustrate the model developed in Sec. II, we
further simplify the Hamiltonian in Eq. (2.3). We include
only a single s state on the cation site and three p states
on the anion site. In addition, we neglect all transfer-
matrix elements except t,z between nearest neighbors.
These assumptions are qualitatively appropriate for a
heteropolar solid.

The band-structure energy can be evaluated analytically
if the k sum in Eq. (2.1) is approximated by the Balderes-
chi point. ' The cation core charge is denoted by Z, =Z
and the electron occupancy on the cation by Q, = Q. Note
that Q, +Q, =6, since there are three doubly occupied
valence bands. In a I-VII compound, one has Z, =1 and
Z, =5, since the anion s electrons are included in the core
in this simple model. One obtains easily

+overlap =Qfc + (6 Q)fa

E,r,„,ter = —(Z —Q)(w, —wa )

+ —,(Z —Q)'(U, + U, 2UM) . —

(A7)

(A8)

In the ionic limit, t~0, both Q and E„,„ tend to z.ero. If
one additionally omits the overlap term, one obtains the
expression for E„h which was recently derived in Ref. 15.

In Eqs. (Al) and (A4), nNN is the number of nearest
neighbors. The remaining terms are defined in Sec. II.
The electron charge Q is calculated self-consistently with
the orbital energies of Eqs. (A2) and (A3). After some
algebra one obtains

F-„,=(1—Q)(e, —E, ) —2[ 4 (E, —E, ) +nNNt p
]'

(A6)
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