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Exchange and correlation effects on the quasiparticle band structure of semiconductors
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The influence of the nonlocal exchange and electron correlations on the quasiparticle band struc-
ture of semiconductors is investigated in a simple and transparent way. The starting point is a
determinantal wave function in the bond-orbital approximation. In a model with hopping between
neighboring bonds the main effects of the nonlocal exchange on the band structure, especially the
band gap, can be extracted. Electronic correlations are taken into account by applying a variational
ansatz. Analytical expressions for the different correlation-energy contributions to the quasiparticle
energy are obtained and physically interpreted. The theory is applied to diamond, silicon, and ger-
manium. It provides a good understanding of the exchange-correlation effects on the band gaps and
bandwidths.

I. INTRODUCTION

Energy-band calculations of semiconductors have at-
tracted considerable interest over the last years, mainly be-
cause for that particular problem the limitations of the
local-density approximation (LDA) to exchange and
correlation have become obvious. The band gaps and
bandwidths come out much too small in LDA calcula-
tions. ' It is now clear ' that this failure is due to the
use of a local, energy-independent exchange-correlation
potential V„,(r) in the effective single-particle
Schrodinger equation which cannot describe correctly the
energy-dependent self-energy.

This suggests taking an alternative approach to the cal-
culation of the quasiparticle band structure, namely by us-
ing a Hartree-Fock (HF) calculation as a starting point for
the many-body or correlation calculation. Recent work
along this line has been done by using a Green's-function
technique' ' or by applying the local approach (LA), a
variational ansatz. ' The LA has also been successfully
applied to make transparent the physics of electronic
correlations in the ground state of covalent semiconduc-
tors. ' The use of a variational ansatz was motivated by
the fact that from quantum chemistry it is known that
variational calculations of correlation effects are prefer-
able to perturbation expansions. '

In this work we want to give a simple and transparent
picture of exchange and correlation effects concerning the
quasiparticle band structure using the LA. In order to be
able to perform analytical calculations some approxima-
tions have to be made. The basic approximation which
leads to the required simplification is the bond-orbital ap-
proximation (BOA). ' ' It enables us to derive expres-
sions for those correlation-energy contributions to the
quasiparticle band structure which can be described
within a minimal basis set. It also allows for good insight
into the role of the nonlocal exchange and its influence on
the band structure, e.g., the energy gap.

The present paper is organized as follows. In Sec. II
the basic equations are written down, and in Sec. III the
role of the nonlocal exchange is discussed in a simple

model which allows a straightforward discussion of the
exchange part of the self-energy. In Sec. IV the treatment
of electron correlations is described. The matrix elements
which appear in the theory are evaluated in Sec. V using
the BOA. A physical interpretation of the various
correlation-energy contributions to the quasiparticle ener-

gy is given in Sec. VI. The theory is applied to the ele-
mental semiconductors diamond (C) and silicon (Si) in
Sec. VII. Thereby we use ab initio HF energy bands as
input for the correlation-energy contributions to the
quasiparticle energies. Finally, Sec. VIII contains a brief
summary and the conclusions.

II. BASIC EQUATIONS

The basic equations which we need for a discussion of
exchange and correlation effects on the quasiparticle band
structure of covalent semiconductors are summarized in
this section. Let us consider a system with a diamond lat-
tice structure built up from atomiclike (sp ) hybrid orbi-
tals. We assume that our starting hybrid functions have
been orthogonalized with respect to each other by a
Lowdin orthogonalization. The resulting functions are
denoted by h;(r). The corresponding electron creation
and annihilation operators a; and aJ, respectively, fulfill
the usual anticommutation relations.

The Hamiltonian H expressed in terms of the hybrid
creation and annihilation operators is given by

H =HO+Hint

Here

t&
——Jd3rh;*(r)[ —,

'
b, +V(r)]hl(r)—

is the bare hopping matrix element between hybrid orbi-
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where fr. denotes the Fock matrix which consists of a
Hartree part f r and an exchange part fr. , that is

f„=f,", +f,", , (5)

where

and

f;r =rr+ g Vjkl(irk 'rrlcr )'
k, l, o'

(6a)

fir = —
2 g Vilkj (rrkcr'alar') . (6b)

k, I,cr'

The one-particle density matrix (ak al ~ ) is evaluated
with respect to the HF ground state

~

cxsHF) which has to
be determined self-consistently from Eqs. (4)—(6). Here
and in the following

&=(@HF
I I

@HF& .

The HF ground-state energy is given by

EHF = (HO+Hi t) n+ENN

(~HF & T (~i t & +ENN

where ENN denotes the interaction energy of the nuclei
and core electrons.

The eigenvalues E„(k) of the HF Hamiltonian form
the HF energy bands. Their interpretation is given by
Koopmans's theorem, which states that

en~(k) =EHp(N) EH p(N —1)— (8a)

for a one-electron state which is occupied in the ground
state of the system, and

E„~(k') =EH p(N + 1) EHF(N)— (8b)

for a one-electron state which is vacant in the ground
state of the system. Here EHF(N) is the total energy of
the ¹ lectron system calculated in the HF approxima-
tion. In Eqs. (8), the assumption is made that during the
removal or addition of an electron to the ¹ lectron sys-
tem, the HF one-particle eigenfunctions do not change ap-
preciably. Whereas this assumption is not valid for "lo-
calized" states like electronic core states or electron states
in atoms or small molecules, it is valid for, e.g., valence-
and conduction-band states of infinite systems.

The electron correlations are, by definition, determined
by the residual electron-electron interaction Hamiltonian
H„, which is given by

tais i and j, V(r) is the electrostatic potential due to the
nuclei and core electrons, and

2

Vrkl = fd r d r'h;*(r)hj(r), hk(r')hl(r') (3)
/r —r'

are the interaction matrix elements.
In the HF approximation the effective one-particle

Hamiltonian is given by

~HF = g fera;~aj~ (4)

~res ~int g ( Vijkl Ocrcr Vrlkr )(akcr alcr ) rricraj cr .
i,j,k, l

i jinI
~ aioaj a'~ = '

0, otherwise .
(12)

This diagonal form which follows directly from the BOA
allows firstly for a simple discussion of the exchange ef-
fects on the band structure and secondly for an analytical
treatment of the many-body or correlation corrections.

III. ROLE OF NONLOCAL EXCHANGE

In this section we want to discuss the influence of the
nonlocal exchange on the energy gaps and valence-band
widths of covalent semiconductors. A summary of the re-
sults has been published recently by the authors. ' The
dispersion relation for the state

I 4kncr & =C kncr I
@HF & (13)

where ck„creates an additional electron (or hole) in the
HF Bloch state specified by k, band index n, and spin o.,
is given by

s„""(k)=e„(k)+e"„(k) . (14)

The (non-self-consistent) Hartree part e„(k) is deter-
mined by f r while the exchange part E"„(k) is determined
by f,", .

For the sake of transparency only matrix elements
within a bond and between neighboring bonds will be con-
sidered. For a definition of the hopping matrix elements
fr see Fig. l. In spite of its drawbacks, concerning espe-
cially the conduction bands, this simple model is suffi-
cient to describe the essential physics of the exchange
corrections to the Hartree band structure. For that reason

An investigation of the influence of electron correla-
tions on ground-state properties of covalent semiconduc-
tors has been given recently by the authors. ' In this work
we will discuss the effects of electron correlations —and
exchange —on the quasiparticle band structure of covalent
semiconductors. For that purpose we introduce bonding
and antibonding functions

Br =2 (rrr t +rrr 2
—1/2

(10)
Ar =2 (rrr i

—arz
—1/2

The operators ai& and ai2 refer to the hybrid orbitals 1

and 2 which form bond I. This construction applies to
elemental semiconductors. The transformation from the
hybrid functions to bonding and antibonding functions
can be made irrespective of whether or not a bond-orbital
approximation (BOA) is made. The simplifications of the
BOA come in when the HF ground-state wave function

~
@Hp) is derived. In that case it has the simple form

~
e„„)= +a,'.

~

0), (1 1)
I, o

where
~

0) is the vacuum state. The one-particle density
matrix is then of the simple diagonal form
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E,"(I )=E, (1 )+2t"—2(f f„"—)

=Z,".„(r) +re 4—V„„,
W„l ——W„,I +8'

= Wval +4V1113+ 8 V]114
H

(18)

(19)

g4

FIG. 1. Schematic representation of different bonds in a dia-
mond lattice and the definition of different Fock matrix ele-
ments f;, .

E"„(k)= . fo to+2fa—,—U =1,2
fo —to —2'[ 1—+2 cos(k)], U = 3,4

and

e", (k)= .
fo+to+2f—„", e =1,2
fo+ to —2f„"[1+—2 cos(k)], e =3,4 .

(16)

In these equations the following abbreviations have been
used

we don't investigate a more elaborate model.
We now want to discuss how the Hartree energy bands,

especially how the direct band gap Es,~(r) and the
valence-band width W„1 are changed when the nonlocal
exchange is taken into account. In the present model one
finds for the exchange contributions E', (k) and e', (k) to
the dispersion relations of the valence and conduction
bands, e.g., along the I -X direction

First of all we note that the exchange leads to down-
ward shift of the bands by fo -=U/2. This results from
the cancellation of the self-interaction in the Hartree part,
as given by Eq. (6a), due to the nonlocal exchange. The
exchange energy contribution K to the direct HF band-
gap results from the nonlocal exchange interaction within
a bond as can be seen from Eq. (17b). Stated differently,
the exchange contribution K/2 to the effective HF hop-
ping matrix element between the two hybrids forming a
bond leads to a drastic increase, K, in the bonding-
antibonding splitting. This is the main effect of the ex-
change on the gap, which demonstrates why the HF gaps
are so large in these materials. The same situation is ex-
pected to occur in other semiconductors. In the simple
model used here the exchange part of the quasiparticle en-

ergy has a discontinuity

&„(r)=2tII 2(fg f" ) =—& —4V—II 4 (2O)

DI AIUIOND

across the direct gap [compare with Eq. (18)].
From Eq. (19) we see that in general the HF valence-

band width will be larger than the Hartree valence-band
width. This is due to the fact that the exchange contribu-
tion fJ to the HF hopping matrix element f J. enters with
the same sign as the bare hopping matrix element t;~

which is negative in general. In diamond it is W„1——30
eV as compared to 8'„,

&

——24 eV.
In Fig. 2 the exchange part of the quasiparticle energy

is plotted as a function of the exact quasiparticle energy

x x 1fo= fll 2 + 2
—1331+ z V1221+

x x
to = f 12 =

z l~ + 2 1 1221+

x & x xfJ3 Tf 13 f 14 2 V1113+V1114+
x & x x

fA 2 f13+f14 T 1 1113 1 1114+

(17a)

(17b)

(17c)

(17d)

-10—
LLJ

LLI

Here U = V»» and K = V»22 are the Coulomb interac-
tions of two electrons in the same hybrid orbitals and in
the two different hybrid orbitals 1 and 2 forming a bond,
respectively. The meaning of the other interaction matrix
elements can be easily understood from Fig. 1. The
second equality in Eqs. (17a)—(17d) is approximate only
because we have neglected terms like V1zzz, V1441, etc.
For diamond the values U=22.5, %=13.3, V»» ——1.9,
V1221

——0.3, V»» ——0.7, and V»14 ——0.4 eV, respectively,
were obtained in an approximate HF calculation.

Combining Eqs. (15)—(17) we arrive at the following
expressions for the direct band gap Es,z(I ) and the
valence-band width Wyg1 in the HF approximation

UJ
-20—

OC
LU -30—

d

Ad d d
d

d

-20
I I I I I I I I I I I I I I I I I I I I I I I

-10 0 10 20

EXACT ENERGY (eV)
30

FIG. 2. Exchange contribution to the quasiparticle energy as
function of the quasiparticle energy for diamond.



9572 WERNER BORRMANN AND PETER FULDE 35

for the case of diamond. Here Eqs. (15)—(17) have been
used to calculate the exchange part with the interaction
parameters listed above. The exact energies have been
taken from Sec. VII. Because, in general, the dispersion
relations for the valence bands can be rather well
described by the BOA (Refs. 19 and 20) the energy depen-
dence of the exchange part of the valence-band energies
should be realistic. In principle one also expects the
conduction-band exchange energy to increase with in-
creasing energy. " The fact that in Fig. 2 the conduction-
band exchange energy is nearly energy independent is due
to our simple model and the fact that the conduction
bands are poorly described by the BOA. ' ' Nevertheless
we think that the simple model discussed in this section
gives a qualitative understanding of the effects of the non-
local exchange on the quasiparticle band structure of
semiconductors.

A more realistic discussion of the exchange self-energy
for semiconductors and insulators, starting from a Penn
model, has been given recently by Horsch.

IV. TREATMENT OF ELECTRON CORRELATIONS

In the following we will consider the case where an
electron is added to the system. In that case the HF excit-
ed state is given by

AraAra
l
@HF) =0. The ansatz

e"
l
@HF) exp g gIJSIJ l

@HF)
I,J

(26)

is then identical to that for the correlated ground-state
function of Ref. 17. The operator SIJ describes electron
correlations within a bond (I =J) and between different
bonds (I&J) and the grJ are determined by minimizing
the total energy.

When an electron is added to
l

&PHF), i.e., when we
start from Ak,

l
cIrHF), states of the form

(27)

and

Ar
l
@HF& (28)

must be considered instead of Eq. (26). The operator
exp(S") introduces again electron correlations within and
between bonds like in the ground state but with one modi-
fication. Due to the presence of the additional electron
some of the ground-state correlations are blocked result-
ing in a loss of ground-state correlation energy.

When the operator S is applied on Ara
l 4HF) one ob-

tains

I Pkca & A kerr I @HF) (21) S"Ara
l
@HF & = —

~ g rrrJ A ra BJa'Ara @HF & .
J,o'

where

Ak, Nrr ga——k, (I)Ar
I

(22)

creates an electron in the conduction-band specified by the
momentum k, band index n =c, and spin o.. The posi-
tions of the 2V& different bonds are denoted by I. The
coefficients ak, (I) follow from the solution of the HF
eigenvalue problem.

In order to describe the effect of electron correlations
we use the ansatz

By generating particle-hole excitations (or dipoles)
AJ BJ ~ in bonds J around bond I, a long-range polariza-
tion cloud is created around the extra electron. It reduces
considerably the energy which is required for adding an
extra electron into the conduction band.

The variational parameters ~IJ and glJ are determined
by minimizing the total energy

Ek, (N+1)= (30)
kccr kccr

I @HF& (23)
of the ( N + 1)-electron system. By making use of a
linked cluster theorem' it follows that

for the correlated excited state, in analogy to the correlat-
ed ground-state wave function. ' The operator S is ex-
pressed directly in terms of bonding and antibonding
functions

E„, (N+1)=s, (k)+E(N) .

Here

E(N) = (e He ),

(31)

(32a)
S =S +S"=—g rruSIJ —g VIJSIJ r'

I,J I,J

where

SIJ ———, g AJ BJ AI AI (25a)

is the total energy of the ¹ lectron system and the sub-
script c means that only connected diagrams have to be
taken into account in evaluating the expectation value.
Furthermore

and
( Ak, ae He A k, a ),

sts t(A„, e eAk, ),
(32b)

SIJ 4 g AJa'BJa'AlcrBIcr
o', o'

(25b)

The ~IJ and glJ are variational parameters.
In order to understand the implications of this form of

S let us assume first that the extra electron would not be
present, that means exp(S) acts on the HF ground state

l
@HF). In that case SIJ

l
NHF) =0 because

From Eq. (31) it is seen that E, (k) plays the role of a
quasiparticle energy. It should be stressed that like in the
HF problem (see Sec. II) we do not have to calculate
E (N + 1). Instead we can directly calculate the quasipar-
ticle energy from Eq. (32b).

The variational parameters m.lJ and gzJ are determined
by requiring that E (N + 1) is minimized. This implies



35 EXCHANGE AND CORRELATION EFFECTS ON THE. . . 9573

dE, (k) =0
der J

(33a)
dE(N)
d Y/IJ

(33c)

dE(N)+ =0.
d QIJ d77IJ

(33b)

The grJ are therefore the same parameters as in the
ground-state correlation calculation. They remain un-
changed when excited states are considered.

The correlation contribution to the quasiparticle energy
is by definition

E,""(k)=s, (k) —sc "(k) . (34)

Because E(N) is the total energy of N electrons and
E, (k) is that of a single one, the last equation reduces to

In order to calculate E,'""(k) we replace in Eq. (32b)
exp(S) by 1 + S.' ' It follows that

(Ak, o(S H +HS+S HS)Ak, o), —Sco(k)(AkcoS SA k,o),
E,""(k)=

1~(Ak, S SAk, ), (35)

s, (k)=(Ak, H„,S Ak, ),
7rg ~IJ & AkcoHresSIJA kco )c

I,J
(38)

represents the energy gain due to the polarization of the
bonds by the extra electron while

s," (k) = (Ak, H„,S"A k, ),
= —QIIIJ(Ak, H„,SIJAk, ),

I,J
(39)

is the loss of ground-state correlation energy due to the ex-
tra electron. What remains is the evaluation of the vari-
ous expectation values.

V. EVALUATION OF MATRIX ELEMENTS

In this section we want to compute the matrix elements
which appear in Eq. (36) for the determination of the vari-
ational parameters mrJ. Because the Bloch state A k, can
be expressed in terms of the antibonding functions Ar
[see Eq. (22)] we have to calculate the various matrix ele-
ments with respect to the Ar . In the following all matrix
elements will be expressed in terms of the bonding and an-
tibonding functions. The corresponding interaction ma-
trix elements are denoted by VA B A B, etc. If necessaryI J K L

they can be transformed back to the hybrid representation
by using Eq. (10).

Minimizing with respect to ~IJ we obtain the equation

7r
& Akco res IJAkco )c

+(Ak, oS [H —E,o(k)]SIJAk, o ), =0 (36)

for the determination of these parameters. Note that the
exact quasiparticle energy e, (k) appears on the right-
hand side of Eq. (36). Due to the fact that A k, is an
eigenstate of the Hamiltonian HHF, only the residual
Hamiltonian H„, appears on the left-hand side of this
equation. Using the aIJ from Eq. (36) and the parameters
gIJ from the ground-state calculation, the quasiparticle
correlation energy finally can be written as

s,'"'(k)=s, (k)+s," (k) .

Here

One finds for J&I
1

& AT oH-.SIJAT ).=&TT &TI( I A, A, A, B, —T I A,B,A, A, )

P
=&TT&TI V lr J

~

. (40)

D
~TT'~TI V

~

I —J
~

(41)

V
~

I J
~

represents the van der Waals interaction between
electron-hole pairs in bonds I and J&I. ' For I =J the
corresponding interaction parameter V0 for the interac-
tion of two electron-hole pairs (of opposite spin) within
the same bond is'

D
VO VA IBlA IBI

= &@HF
l Hres

l
AIo&IoAI, o&I, —o+HF)—

= —,(U —K) . (42)

Due to the missing spin summation V0 appears with a
prefactor —,

' in Eq. (41).
The evaluation of the various matrix elements is facili-

tated by the use of diagrams which can be associated with
them. The diagrams are shown in Fig. 3. Solid lines run-
ning up correspond to antibonding states while solid lines
running down correspond to bonding states. A wavy line
denotes the operator SIJ if one of the incoming lines
comes from below [see, e.g., diagram (la)]. It corresponds
to SpJ if both incoming lines come from above [see, e.g. ,
diagram (lc)]. A dashed line denotes the interaction ma-
triy. element VIJxL, where the indices I,J,K,L refer hereby
to bonding or antibonding states. A cross represents the
Fock matrix element fIJ. For a detailed description of the
diagrammatic rules we refer to Ref. 16.

Using the identifications given above each expectation

Equation (40) represents the interaction of a charge in
bond I with an induced-dipole in bond J&I of the polar-
ized medium. There is no contribution for I =J because
VA A A B =0 due to symmetry.

The corresponding matrix element for the operator Szz
is given by

1

( AT'oHresSIJATo )c — oTT'~TI(+AIBIAJBJ r. AIBJAJBI)
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is the mean energy of the extra conduction electron. Simi-
larly

EB ——(BJrrHHFBJrr ) = fp
——Tp (44b)

( la) ( lb ) ( lc ) ( ld )

is the mean energy or center of gravity of the valence
bands. The HF bonding-antibonding splitting 2 To is
given by

(2a } {2b }

(3a) (3b )

K

I

K ~L
ll 1) il

}(

(2c }

(4a ) (4b }

2Tp =2( I p + tp ) =EA —EB (44c)

Furthermore CT&T denotes all those contributions to
the expectation value which are not diagonal in T, T'.
They correspond to hopping processes between different
bonds and lead to an explicit momentum dependence of
the correlation energy. ' In the following we will neglect
the term CT&T. This approximation is the better, the
larger the energy difference 2Tp between the centers of
the conduction and valence bands is as compared to the
energy dispersion within the bands (see Sec. VII). The di-
agrams corresponding to Eq. (43) are (2a)—(2c) of Fig. 3.
The corresponding exchange diagrams vanish due to sym-
metry if we keep only the diagonal terms T=T' in Eq.
(43).

Next we have to calculate the expectation value with
respect to H„,. It is

—(WT..S H„„.S;J4,.),
=&TT GATI[ ~IJV,.+ V'I J (

—gp+6)] {45)

Here the first term on the right-hand side is represented
by the diagrams (3a) and (3b). If in diagrams (3a) and (3b)
only the contribution with L =J is taken into account if
follows that

{5a )

}

Vsc ——( VAIBIAIBI
—Y VAI AIBIBI )

= —, (K —Vp ) (46)

Due to the fact that the induced dipoles (or electron-hole
pairs) point into different directions the diagrams with
L~J enter with different signs and therefore give only a
negligible contribution. The first term in V„, i.e.,

Vz z z z, represents the electron-hole pair interactionI I I I
while the exchange term Vz z epresents the

electron-hole at traction. These terms also enter the
Careen's-function theory. ' '

The second term on the right-hand side of Eq. (45) cor-
responds to the diagrams (4a) and (4b). It represents the
influence of the ground-state correlations. A detailed dis-
cussion is given in Sec. VI. go is the variational parame-
ter for the ground-state correlations within a bond (see
also Ref. 17). It represents the contributions of diagrams
(4a) and (4b) with L =J. The parameter 6 represents the
contributions from the same diagrams but with L &J and
was found to be numerically approximately equal to the
variational parameter g& which describes the ground-state
correlations between neighboring bonds. '

We finally have

value can be represented in terms of diagrams and is
thereby easily interpreted. In Fig. 3 those diagrams are
shown which correspond to the nonvanishing expectation
values we have to calculate. The expectation value Eq.
(40) has associated with it the two diagrams, (la) and (lb),
where the first one is the direct term and the second one is
the exchange diagram. Similarly diagrams (lc) and (1d)
correspond to Eq. (41).

In order to calculate the expectation value

( JIT+ HSIJAT ),
which enters Eq. (36) we use the fact that

H =HHF+H„, .

We first find

(3T'rrS HHFSIJATrr )c =5TT'6TI7rIJ p (EA +2TP )
1

(43)+CT~T

FIG. 3. Diagrams contributing to the quasiparticle energy.
An upward running solid line symbolizes an electron in an anti-
bonding state and a downward running line a hole in a bonding
state. A cross stands for a Fock matrix element fIJ Dashed.
lines denote interaction matrix elements VIJ~L, while wavy lines
denote operators SIJ or SIJ, depending on whether the incoming
lines come from below or above, respectively.

Here ( ~T'rrS Eccr(k)SIJ~Trr r c 6TT'6TI~IJ 2 eccr(k) (47)

EA ( ~JaHHF~Jrr ~ fP+ TP (44a) which corresponds to diagram (5) in Fig. 3. The exchange
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term vanishes in the T =T' approximation. This com-
pletes the evaluation of the expectation values.

VI. PHYSICAL INTERPRETATION

We are now able to evaluate the correlation contribu-
tion s,'(k) to the quasiparticle energy of an extra elec-
tron with the help of Eqs. (37)—(39). The variational pa-
rameters ~rJ have to be determined from Eq. (36). Using
all the expectation values calculated in the last section in
the T = T' approximation we find from Eq (3.6)

V r J='—rrrJ[ z (E„+2Tp)—V„——,'e«(k)]
P 1

+V~r J~(~~p+nr) (48)

or

2V~ r J (1——,
'

gp —q)
~IJ

Eg +2Tp 2 VS& E& (k)
(49)

=s„(k)+e„(k)+e„"(k) . (50)

For an extra electron in the conduction band (n =c) we
obtain finally

Note that ~zJ depends on the exact quasiparticle energy
c, (k).

The energy of an additional electron in the conduction
band or an additional hole in the valence band, i.e., the
quasiparticle energy, is given by

s„(k)=e„(k)+c,'„"'(k)

is the ground-state correlation energy per unit cell of the
N-particle system which was calculated within the same
model in Ref. 17. The factor 4 follows from the fact that
there are four bonds in a unit cell. Note that r.," (k) is in-
dependent of the wave vector k. This is due to the short-
range nature of the van der Waals interactions which
represent the physical origin of E„„(N). Because s," (k)
is positive it will lead to an upward shift (in energy) of the
conduction bands and therefore to an increase of the ener-

gy gap. Because Vp rip=(U K) —l2tp, ' Tp being the
bare hopping matrix element between two hybrids within
a bond, the onsite Coulomb interaction U will lead to a
larger band gap when only c," (k) is taken into account.

We now come to the interpretation of e, (k) as given by
Eq. (51). It describes the energy gain due to the interac-
tion energy of the extra electron with the induced polari-
zation cloud (of electmn-hole pairs) which follows its
motion through the solid. The quantity H, in the
numerator is the sum of squared polarization matrix ele-
ments V~1 J ~. The polarizability of a bond is reduced
when ground-state correlations are taken into account.
This leads to the prefactor 1 —go/2 —

g& which comes
physically simply from the fact that it is more difficult to
polarize correlated electrons in bonds than uncorrelated
ones. In the denominator there appears first the mean HF
energy E~ of the extra electron [see Eq. (44a)]. The
bonding-antibonding splitting 2To ——Ez —Ez is the ener-

gy required to create a HF electron-hole pair. This ener-

gy, however, is reduced by the electron-hole attraction,
i.e., the second term in V„. It should be pointed out that

and

s, (k)=— H, (1 ——,g —rl, )
2

E„+2Tp—2V„—s, (k)
(51)

To —2V,„.=2to + Vo

From Eq. (6a) we obtain

H
to =—to —2V&221

(55)

(56)

s," (k)= ——,( —2Vpqp —24VPg, ) . (52)

=2 X (V»r~, ~, —2 V~,a, ~,~, )'
J(~I)

(53)

The factor 2 results from the fact that in every bond two
electron-hole pairs can be excited. Equations (50)—(52)
represent the final result of our correlation energy calcula-
tion. In order to calculate the quasiparticle energy of an
extra conduction electron these equations have to be
solved self-consistently because c, (k) appears in the
denominator on the right-hand side of Eq. (51).

The correlation contribution s," (k) describes the loss of
ground-state correlation energy in the presence of the ex-
tra electron. Physically this contribution results from the
blocking of two-particle excitations which were possible
without the extra electron. ' It is equal to
—E„„(N)/4& 0, where

E (N) = —2 Vp rip —24 V] (54)

Here V& is the van der Waals interaction between dipoles
(or electron-hole pairs) in neighboring bonds I and J [see
Eq. (41)]. Furthermore

II,'=2 g (V, , )

J(~I)

2 1Il„(1——,gp —g, )
e„" (k)=-

Err —2Tp +2 V& —EU~( k )
(57)

s„" (k) =
~ ( —2Vp gp —24V) rl)) . (58)

The sum H„of the polarization matrix elements squared
is given by

where 1 and 2 denote the two hybrids of a bond (see Sec.
III). In diamond it is t p = 10.7 eV, ' and therefore
tp ——10.1 eV. The final energy splitting 2tp + Vp (=25
eV in diamond) entering the denominator is comparable to
the experimental bonding-antibonding splitting but much
smaller than the HF value 2Tp(=35 eV in diamond).
This feature demonstrates that in our theory the polariza-
tion cloud is built up from interacting (correlated)
electron-hole pairs and not from bare HF electron-hole
pairs. The last term entering the denominator is the exact
quasiparticle energy e, (k). The form of the denominator
in Eq. (51) reminds one of self-consistent Brillouin-
Wigner perturbation theory.

The calculation which we have performed for the case
of an extra electron can be done in a completely analogous
way for the case of an extra hole in the valence bands. In-
stead of Eqs. (51) and (52) we obtain ( n =U)
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&.=2 g (Va, a, ~,a, —
~ Vs, a,~,a, ) .2 1 2

J(~I)
(59)

instead of Eq. (53). The sign changes in Eqs. (57) and
(58), as compared to Eqs. (51) and (52), are due to the fact
that in one case an additional hole in the valence band and
in the other case an additional electron in the conduction
band were considered.

In principle one can calculate H, and H„, provided all
required interaction matrix elements for the bonding and
antibonding functions are known. In the following, how-
ever, we will neglect the difference between these two
quantities and calculate classically H =H, = H, for a dia-
mond lattice. For that purpose we write for the interac-
tion for an elementary charge in bond 0 with a dipole pR
in bond R

VR —
VAOAOA~g~

—Ypg Eo(R )cos(p~ 'Eo(R) ) (60)

The dipole pz represents the electron-hole pair in bond R.
We set pz ——ep where p =kd can be considered as a classi-
cal effective dipole length when d denotes the bond length
and A, is a yet undetermined parameter. Furthermore,
Eo(R) is the size of the electric field generated by the
change e at a distance R, i.e., Eo(R) =e/R . Distances R
are measured with respect to the midpoints of the bonds.
The (negligible) exchange contributions have no classical
analogue. They will be absorbed in the effective dipole
length. With the given form for the monopole-dipole in-
teraction V~ one finds

—,
'

p& Ep(R )cos'(p~ .Eo(&) )
R(~0)

ep1' (61)

with

y= g cos (pz R) .
R(~0) R

(62a)

In order to obtain the accurate result

13.247
d4

(62b)

(63)

for the diamond lattice.
At this point we wish to comment on possible basis-set

effects. The above calculations were done by using a

for the diamond lattice it was necessary to include more
than 2&10 bonds even when convergence acceleration
was used. This slow convergence is of course connected
with the long-ranged nature of the polarization. The situ-
ation is completely different in the ground state. There
the electron correlations are short ranged. ' We finally
obtain

minimal basis set, i.e, by working with sp hybrid func-
tions. If one allows for larger basis sets by including d
functions and several different sets of s and p functions,
the correlation energy associated with an extra electron
(hole) added to the system will change. For example, the
polarizability of the bonds will increase and the loss of
ground-state correlations will decrease.

Previous investigations of the dielectric function and
optical properties' ' suggest that basis set effects are not
very large and in the 1—2 eV regime. Correlations which
cannot be described within a minimal basis set but require
a larger one are conventionally called "intra-atomic. " In
Ref. 17 it was shown how they can be reliably determined
for the ground state of an elemental semiconductor. A
similar estimate for excited states is more complex but has
been done on a molecular level. Instead of trying to car-
ry over these considerations to the present case we take
here a more pragmatic point of view. We shall assume
that their effect can be incorporated in the quantity A, , for
which we have to make an appropriate choice.

VII. NUMERICAL RESULTS

We want to apply the theory to diamond, silicon, ger-
manium and calculate the quasiparticle band structure
E„(k) for these materials. According to Eq. (50) e„(k)
consists of a HF part and a correlation part. The HF en-
ergies E„"(k)are taken from the recent HF calculations of
von der Linden and Horsch. They are shown for silicon
by the dashed lines in Fig. 5. The correlation energies
s'„""(k) are calculated according to Eqs. (51) and (52) and
Eqs. (57) and (58) for the conduction bands and valence
bands, respectively. By using the ab initio HF results and
inserting them into the denominators of Eqs. (51) and (57)
we go beyond the BOA. The parameters g0, qI, and
E„" (k) =E„„(N)I4are taken from the ground-state corre-
lation energy calculations of Ref. 17. The interaction ma-
trix element V„was calculated according to Eq. (46) with
V0 from Ref. 17 and assuming a 1/d scaling for the
Coulomb integral K.

The mean energies Ez and Ez of the HF valence and
conduction bands, respectively, have been chosen to be the
mean energies of the HF bands at the X point, e.g.,

Eg ———,
'

[E "(X4)+E "(X,)] . (64)

The zero of the energy is at the top of the HF valence
bands. Numerical values were obtained from the HF cal-
culations of Ref. 28.

The sum II of the polarization matrix elements
squared depends sensitively on the parameter A, which
determines the effective dipole length p =Ed [see Eq.
(63)]. As pointed out above, A. is supposed to contain also
the effects of intraatomic correlations which are not con-
tained in a minimal basis set. We set p =a0/4, where a0
is the lattice constant. This implies A, =3 ' . This
choice of k yields sensible results but is, of course, not free
of arbitrariness. The same value of p has been used in
Ref. 15.



35 EXCHANGE AND CORRELATION EFFECTS ON THE. . . 9577

TABLE I. Numerical values for various parameters entering
the theory. Energies are given in eV.

TABLE II. Comparison of the experimental direct gaps and
valence-band widths with results from HF calculations and our
theory (in eV).

Si

gp

II

E„„,(N)

Eg

V„
A.

2

0.20
0.029

—2.6
21.8

—13.3
8.7

1

3

0.24

0.030
—1.6
12.8

—8.6
6.2

1

3

0.25

0.032
—1.6
11.7

—8.3
6.0

1

3

~HF
val

E,"„(I )

g~~theor"~ val
Etheor

( I )gap

~exit

E "& (I )

29.9'
14.2'

24.6
7.2

24. 2+1b

7.4'

18.9'
8.0'

15.2
3.0

12.5+0.6'
14.7+0.5

3 4' 3 3'

18.2'
5.1'

14.4
0.44

13.0+0 5

0.9'

Numerical results for the parameters which are re-
quired for the computation of E„(k) are given in Table I
for diamond, silicon and germanium. The calculated
correlation energy for diamond is plotted in Fig. 4 as a
function of the quasiparticle energy. One notices a con-
siderable energy dependence, which results in a reduction
of the band widths as compared with the HF band widths.
In agreement with general considerations given in Ref. 29
the correlation energy is found to be larger at the bottom
of the valence band than at the top. Because we have
neglected the CT&T terms in Eq. (43), the correlation en-
ergy depends on the energy only and does not differ for
different k values belonging to the same excitation energy.
The discontinuity of the correlation energy across the gap
has a simple reason. Due to the dominant correlation
contribution, i.e.,the build up of a polarization cloud
around an added electron or hole, the ionization energy
decreases while the electron affinity increases. Therefore
a discontinuity across the gap must exist. The quasiparti-
cle band structures for Si are shown in Fig. 5. They can
be compared for example with the ones of Ref. 10.

DIAMOND

10'-

'Reference 28.
Reference 33.

'Reference 31.
Reference 30.

'Reference 32.

The direct band gaps as well as the valence-band widths
for diamond, Si, and Ge are shown in Table II. For com-
parison also the corresponding HF values and the experi-
mental data are listed. The overall agreement with the ex-
periments is good. One notices that for Si and Ge the cal-
culated gaps are somewhat smaller, while the band widths
are somewhat larger than the experimental values. This is
due to the omission of the terms CT&r in Eq. (43). These
terms introduce an additional k dependence into the
denominators of Eqs. (51) and (57), which has the effect
of decreasing the band widths. Since the centers of gravi-
ty of the different bands remain unchanged, the gap in-
creases therefore. In any case it is seen how the correla-
tion effects described by the present theory reduce the

BAND STRUCTURE OF SILICON
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FIG. 4. Correlation contribution to the quasiparticle energy
as function of the quasiparticle energy for diamond.

FIG. 5. Quasiparticle band structure of Si. HF results of
Ref. 28 are shown by dashed lines. One notices that the correla-
tion energy contribution is larger for the bottom of the valence
band than for the top of it.
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gaps and band widths from the large HF values to the ob-
served size.

VIII. SUMMARY AND CONCLUSIONS

We have shown that the exchange and correlation con-
tributions to the quasiparticle energies of elemental semi-
conductors can be computed in a way which makes them
very transparent. This was made possible by the use of
the bond-orbital approximation. It enabled us to derive
simple expressions [see Eqs. (15) and (16)] for the ex-
change contribution to the quasiparticle energies. The
main part of the paper dealt with the discussion of corre-
lation energies. The main part of the paper dealt with the
discussion of correlation effects on the quasiparticle band
structure. For the calculation of the correlation energy
contribution a variational local ansatz was applied. Due
to the BOA the correlation-energy calculations could be
done analytically. It was pointed out that there are two
competing effects of correlations on the quasiparticle en-

ergy. One is the gain in polarization energy while the oth-
er is a loss in ground-state correlation energy. The energy
gain is of course dominant and results in a reduction of
the energy gaps and band widths as compared with the
HF values. When plotted against the quasiparticle energy
both the exchange energy and correlation energy contribu-
tions to the quasiparticle dispersions show a considerable
energy dependence and a discontinuity across the band
gap. The origin of the discontinuities was pointed out. It
is very instructive to add the exchange and correlation en-

ergy contributions. Thereby one must take into account
that both quantities are calculated with different accura-
cies. The exchange energy is certainly not very accurate

for the conduction bands, but it is reasonably reliable for
the valence bands. The correlation energy is based on ac-
curate HF calculations [they enter into Eqs. (51) and (57)]
and is quite reliable. One notices that, when the sum of
exchange and correlation energy is taken, the energy
dependence of the two contributions cancels almost com-
pletely for the valence bands. For the conduction bands
the cancellation is less good because of the poor accuracy
of the exchange part in that regime. Also the discontinui-
ty across the gap cancels to some extent. Therefore the
sum of exchange and correlation is only weakly dependent
on energy except for a discontinuity across the gap. The
local density approximation (LDA) to the density func-
tional theory replaces exchange and correlation by an en-
ergy independent quantity. It neglects therefore the
discontinuity across the gap and the remaining energy
dependence in the valence- and conduction-band regime.
For that reason energy gaps and band widths are inade-
quately described by the LDA. The present theory gives
good insight into which physical processes are responsible
for the large HF gaps and band widths and which correla-
tion effects result in their reductions to the experimental
values. When one is interested in the energy gap only and
not in more detailed quasiparticle dispersions the present
theory can be reduced even further (see Ref. 21).

ACKNOWLEDGMENTS

We would like to thank Dr. P. Horsch, Dr. G. Stoll-
hoff, and Dr. W. von der Linden for a number of interest-
ing discussions. P. Horsch and W. von der Linden kindly
provided us with their HF results prior to publication.

D. Glotzel, S. Segall, and O. K. Andersen, Solid State Com-
mun. 36, 403 (1980).

R. A. Heaton and C. C. Lin, Phys. Rev. B 22, 3629 (1980).
3G. B. Bachelet and N. E. Christensen, Phys. Rev. B 31, 879

(1985).
4B. Holland, H. S. Greenside, and M. Schluter, Phys. Status

Solidi B 126, 511 (1984).
5W. E. Pickett, Comments Solid State Phys. 12, 1 (1985); 12, 57

(1985).
C. S. Wang and W. E. Pickett, Phys. Rev. Lett. 51, 597 (1983).

7J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).
8L. J. Sham and M. Schluter, Phys. Rev. Lett. 51, 1888 (1983).
P. A. Sterne and J. C. Inkson, J. Phys. C 17, 1497 (1984).
W. Hanke, Th. Golzer, and H. J. Mattausch, Solid State Com-
mun. 51, 23 (1984).

"M. S. Hybertsen and S. G. Louie, Phys. Rev. Lett. 55, 1418
(1985); Phys. Rev. B 32, 7005 {1985).
R. W. Godby, M. Schluter, and L. J. Sham, Phys. Rev. Lett.
56, 2415 (1986).

W. von der Linden, P. Horsch, and W.-D. Lukas, Solid State
Commun. 59, 485 (1986).
N. E. Brener, Phys. Rev. B 11, 929 (1974).

~5G. Strinati, H. J. Mattausch, and W. Hanke, Phys. Rev. B 25,
2867 (1982); W. Hanke, G. Strinati, and H. J. Mattausch, in
Recent Developments in Condensed Matter Physics, edited by

J. T. Devreese (Plenum, New York, 1981),Vol. 1 ~

' S. Horsch, P. Horsch, and P. Fulde, Phys. Rev. B 28, 5977
(1983); 29, 1870 (1984).

W. Borrmann and P. Fulde, Phys. Rev. B 31, 7800 (1985).
'sMethods of Electronic Structure Theory, edited by H. F.

Schaefer III (Plenum, New York, 1977).
'9A. A. Levin, Solid State Quantum Chemistry (McGraw-Hill,

New York 1974)
2oW. A. Harrison, Electronic Structure and the Properties of

Solids (Freeman, San Francisco, 1980).
W. Borrmann and P. Fulde, Europhys. Lett. 2, 471 (1986).
B. Kiel, G. Stollhoff, C. Weigel, P. Fulde, and H. Stoll, Z.
Phys. B 46, 1 (1982); Phys. Lett. 87A, 433 (1982); B. Kiel
(private communication).

W. von der Linden, P. Fulde, and K.-P. Bohnen, Phys. Rev. B
34, 1063 (1986).

24P. Horsch, Solid State Commun. 54, 741 (1985).
2~N. E. Brener, Phys. Rev. B 12, 1487 (1975).

R. D. Turner and J. C. Inkson, J. Phys. C 9, 3583 (1976).
S. Maier (private communication).
W. von der Linden and P. Horsch (unpublished).
S. T. Pantelides, D. J. Mickish, and A. B. Kunz, Phys. Rev. B
10, 2602 (1974).

L. Ley, S. Kowalczyk, R. Pollak, and D. A. Shirley, Phys.
Rev. Lett. 29, 1088 {1972)~



35 EXCHANGE AND CORRELATION EFFECTS ON THE. . . 9579

'Numerical Data and Functional Relationships, Group III, Vol.
17a of Landoldt-Bornstein, New Series (Springer, New York,
1982)~

D. Straub, L. Ley, and F. J. Himpsel, Phys. Rev. Lett. 54, 142

(1985).
F. R. McFeely, S. R. Kowalczyk, L. Ley, R. G. Cavell, R. A.
Pollak, and D. A. Shirley, Phys. Rev. B 9, 5268 (1974).


