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Critical electronic wave functions on quasiperiodic lattices:
Exact calculation of fractal measures
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We examine two wave functions which have recently been found for electrons in quasiperiodic
systems, and which can be shown to satisfy an exact self-similarity relation —closely related to the
self-similarity of the quasiperiodic lattice itself. The first wave function is for the ground state of an
electron on a two-dimensional Penrose lattice, and the second is for the center of the spectrum of the
Hamiltonian for an electron on a one-dimensional Fibonacci lattice. We calculate exactly the fractal
measure of the singularities of these wave functions, as reflected in the exponent a(y), defined by
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I. INTRODUCTION

There has been much recent interest in the electronic
properties of quasiperiodic systems. These systems are in-
termediate between the completely periodic perfect crys-
tals, and the random or disordered amorphous solids. In
particular, one tries to answer delicate questions about the
spectrum and eigenstates. Is the spectrum absolutely con-
tinuous, pointlike or singular continuous; or equivalently,
are the states extended, localized or critical?

Of special interest are the critical states. A solid-state
physicist is familiar with extended and localized states,
but the critical states represent a new phenomena. One
way of characterizing the states is by their growth
through an exponent a(y), defined by
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(This quantity is closely related to the participation ra-
tios. ) If the state were extended, we would expect a(y) =d,
where d is the dimensionality of the lattice, while if the
state were exponentially localized, we would expect
ct(y) =0. On the other hand, if the wave function should
grow as a power, so that
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-R, then we would ex-
pect a(y) =A,y+d, i.e., a linear dependence. [In any case,
we have a(0) =d.]

In this context then, two recent papers' which present
exact results for electronic wave functions or quasiperiod-
ic lattices are of special interest. Both systems are tight-
binding models, in which the electrons sit on the sites of a
quasiperiodic lattice with some local potential energy,
hopping along bonds to nearest-neighbor sites. The first
paper' is by Sutherland, and he finds exactly the ground
state of an electron on a Penrose lattice (d =2). The
second paper is by Kohmoto, Sutherland, and Tang, and
they examine the state at the center of the spectrum for an
electron on a Fibonacci lattice (d = I ).

Both wave functions are critical, and exhibit scaling or
self-similarity of the following sort: If we consider the
wave function over two identical regions of the lattice-
and by a theorem of Conway identical regions do occur

with a spacing of the order of the diameter of the
region —then these two portions of the wave function are
identical up to normalization, or equivalently a multipli-
cative scale factor. Further, since both lattices exhibit
self-similarity through the so-called inflation transforma-
tion, the wave functions also exhibit self-similarity. This
self-similarity was exploited in the two papers to set up an
equation whose solution gives the scaling limit of the
wave function, and hence the exponent a(y). Although in
the two papers the equations were only investigated nu-
merically, the results were quite accurate, and clearly
ruled out a linear dependence for a(y). However, certain
important qualitative features, such as the existence of
singularities, were not resolved by the numerical investiga-
tions.

It is the purpose of the present paper to present an ex-
act analytic calculation of the exponent a(y). We refer to
Refs. 1 and 2 for the original derivation of the equations
used as a starting point in this investigation, as well as for
references to earlier work.

Before we begin the calculations, however, we wish to
place the exponent a(y) and the whole calculation in a
more general framework. Such a framework has been
supplied by the paper of Halsey, Jensen, Kadanoff, Pro-
caccia, and Shraiman on fractal measures and their singu-
larities. There, the authors consider the measure p on a
fractal set, which is expected to scale as

y I yx

for small I. On the other hand, the number of times x
takes a value between x' and x'+dx' is expected to be of
the form

dx' p(x')I

where f ( x ') is a continuous function.
The correspondence with our work is simply that we

consider the wave function
~

4
~

as such a measure on the
region

~

x
~

(R, and thus p =
i

'P
i
. It was found that for

a region inflated k times, where R -P and P is the gol-
den mean equal to ( I+v 5)/2, the wave function scales as

. This gives the identification 1=/
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Halsey et al. then proceed to evaluate a quantity X(y),
defined as

If we introduce the variable A=e', the inflation equa-
tions become

X(y) = f dx p(x)lr" (4) f(A,
~

0+1)=(3+A+A ')f(A,
~

k)+(2A+1)t(A,
~

k),

by the saddle-point method. It is seen that with the iden-
tifications we have made so far, this quantity is precisely t(A,
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(5) Let

T(A, )N+(A, ) =0+(A, )&b+(A, ), (13)
The authors then focus their attention on a set of dimen-
sions D~ introduced by Hentschel and Procaccia, where

Dr ——lim ([1/(y —1)][in[7(y)]/lnl} ) .
1~0

Then clearly we have the final correspondence

(6) 3+4+4 ' 2A+1
2 2A '+1

Now we can write

(14)

a(y)=(1 —y)Dr . (7)

[Our a(y) is identical to the —r(ci) of Ref. 4.]
In the following two sections, we calculate the exponent

a(y) exactly. Since we refer back to the original papers
for the derivation of the equations we use, we stay as close
as possible to the original notation, sacrificing, however,
some consistency in the process.

II. CsROUND STATE OF THE PENROSE LATTICE

The ground-state wave function of an electron on the
Penrose lattice is determined by F(n

~

k) and T(n
~

k),
the number of fat and thin tiles, respectively, at an arrow
distance of n after k (double) inflations, since the wave
function at a site with an arrow distance n is proportional
to e ". (The general form would be e ", but we take
the constant 9 to be unity. ) After these k inflations, the
lattice size is of order P ". The quantity we wish to even-
tually evaluate is

f (A,
i
k) =f+ (A, )4'+'0++f (A, )C&'"0"

t(k
i
k) =t+(A, )C '+'0++ t (A, )&b"'0" .

Then, we have that

det T(A ) =0+(A )Q (A ) = 1,
so

(k) =[0+(&)]
and

TrT(A. ) =0+(A, )+0 (A, )

=A+. A '+5=2cos(k)+5 & 3 .

The equation for the eigenvalues is then

f1'+ 1 —Q(A+ A
—'+ 5)=0,

with solutions

(15)
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This we will do by evaluating P(n
~
k), the number of

sites with wave function e " in a lattice inflated k times,
which is linearly related to F(n

~

k) and T(n
~

k).
The distribution functions F(n

~

k) and T(n
~

k) in
turn are determined by the two inflation equations,

(20)

We write these as

0+(X)=e ' '~ 1, real,

0& Q (A)=e ' I & 1, real, (21)

0 = IA+A —'+5+[(A+A '+7)(A+A '+3)]'"}/2
= cos(A, )+ —,

' + [ [ cos(A, )+ —', ][cos(A, )+ —,
'

] }
'

F(n
~

k+1)=F(n
~

k)+3F(n —1
~

k)+F(n —2
~

k)

+2T(n
~

k)+T(n —1~ k), (9)
where co(A, ), the logarithm of Q+(A. ), is determined by

cosh[co(A, )]= cos(A, )+ —,
' (22)

T(n
~

k+1)=2T(n —1
~

k)+F(n —1
~

k)+2F(n —2
~

k) .

These equations are linear and invariant if we translate
by either n or k, so we Fourier transform the equations by

F(n lk)=(1/2m) f exp[i'(n —k)]f(X
~

k)dX,
(10)

T(n
~

k)=(1/2m) f exp[i'(n k)]t(iL
~

k)dA. —.
Thus

f (A.
~
k)~f (+A, )V' A+",+

t(A,
~
k)~t+(A. )%'+'Q+ as kazoo .

As a consequence,

(23)

We see from the expansion of f (A,
~

k) and t (A,
t
k), that

for a large number of inflations k,

f(A,
~

k)= +exp[ —iA(n k)]F(n
~

k,), —

t (k
~

k) = g exp[ —iA(n —k)]T(n
~

k) .

F(n
~

k)~F+(n
~

k)

=(1/2m. ) f exp[i'(n —k)+keg(A, )]

xf (A, )O "dk, (24)
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x =n/k —1, —1&x &1 .

Then F+ (n
~

k) takes the form

F+(n
~

k)= f exp[kG(A, ~x)]g(A)dA, ,

with

(25)

(26)

as k ~ co. We have a similar expression for T(n
~

k).
We now examine F+ (n

~

k) for large k. Since the func-
tion is nonzero only for n =k, we define a scaled variable
x by

x = —sinh(y) I [ cosh(y)+ —,][cosh(y}+ —', ] I (36)

In Fig. 1, we show G(AO(x)
~

x) =co( i y—(x))+xy(x) as a
function of x. As we shall see, it is more useful to leave
x(y) in parametric form, than to try to solve explicitly for
y(x).

Now, we proceed to evaluate the exponent a as a func-
tion of y, which was the original aim of Ref. 1. There is a
linear relation between the wave-function distribution
function P(n

~

k) and the tile distribution functions, so
that the leading term of P (n

~
k) is also given by

G(A,
~

x)=iM+co(X), g(A. )=f+(A, )4'+"/2~ . (27) P(n
~

k) —exp[kG(AO
~

x)] . (37)

We can evaluate this integral for large k by the saddle-
point method, as follows. The contour from k= —m. to m

along the real axis is deformed so that it passes over a sad-
dle point A,o of G(k

~

x) in a direction so that the in-
tegrand has a maximum at the saddle point. Therefore,
the saddle point A.0 is determined by

dG/dX
~

q q =0 or den/dk
~ q q ix —. ——(28)

Thus A p is a function of x.
To continue with the saddle-point method, for A, near

k0, we write

Thus, considering the quantity we wish to evaluate,
2k

D(k
~

y)= g V~= J P(n
~

k)e "rdn —R '~, (38)
0

Ixi &R

we have the expression
+1

k I exp[kG(x) —yk(x+1)]dx R= (39)

By the saddle-point method, where no deformation of
the contour is needed, the leading contribution to the in-
tegral comes from near a point x0 which maximizes the
integrand, and hence the exponent of the integrand. The
equation which determines this point x0 is then

, —~o ——pe', d A, =dp e'

G(A,
~
x) = G(AO

~

x)+(pe' ) G "(Ao
~

x)/2 .

We choose the direction 0 so that

(29) —y+dG/dx
~ „

=0= —y+d/dx[co( i y(x—) }+x y(x)]
~ „

= —y+y'+ Idk/dx(des/, dA+ix) I ~
„, (40)

F(n
~

k)~exp[kG(AO
~

x)]g(AO)e' J exp( —kI p /2)

=exp[kG(AO
~

x)][g(AO)e' (2'/kl )'~ ] . (30)

In fact, in this and in all later sections, we are only in-
terested in the leading terms of the distribution functions,
in the sense that

where I is real and positive. Therefore, we have the
asymptotic evaluation of F (n

~

k) for large k as

expIk[co( iy) —y]—I =R 'r'= exp[ka(y) in/] . (41)

[The constant P is the golden mean P=(1+v 5)/2. ] Our
final result for the exponent a(y) is then

But the quantity in parentheses vanishes, since it is exact-
ly the condition which determined the saddle point
A,o

——A,(x)= iy(x) T—hus we. arrive at the result y=y',
justifying the use of the same symbol for the two quanti-
ties, and

lim I ln[F(n
~
k)]/kI =G(AO ~x) .

k~ oo

This we write as

(31)

F(n
~

k)- exp[kG(Ao ~

x )] .

To return to the equation for the saddle point A,0, we see
from the expression for 0+(A, ), using

co(A, ) = in[A+(A, )],
that

des/ A,d= —sin(A ) I [ cos(X)+ —', ][cos(A)+ —, ]I

(33)

(34)

e,
te

A,0= —l g

and the final equation for the saddle point is

(35)

Thus the saddle point A,0 is on the imaginary axis, so we
write FIG. 1. We show the scaling function 6 as a function of the

scaled variable x, for both the exact result and the quadratic ap-
proximation. This is the ground-state wave function on the
Penrose lattice.
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lower curve,
appro&amate

upper curve,
exact

0, y) ln(P )

a(y)= 2[1—y/ln(4) )]2, in(P ))y) —1n(P )

—y/ln(P), —in(P )) y .

This function is also shown in Fig. 2.

(43)

I

-ln($ ) 0 ln($ ) III. SIX-CYCLE OF FIBONACCI LATTICE

a(y ) = ln( cosh(y ) + —,

+ I [ cosh(y)+ —', ][cosh(y)+ —', ] I
'

—y)/In(P') . (42)

FIG. 2. We show the exponent a as a function of the power

y of the wave function, for both the exact result and the quadra-
tic approximation. This is the ground-state wave function on
the Penrose lattice.

For the six-cycle of the one-dimensional Fibonacci lat-
tice, the evolution equations are more complicated. As
discussed in Ref. 2, the equations involve the distribution
function P(q, r, a

~
k), which is the number of times the

group element g (q, r )=B&A ", followed by the element
a =A or B, occurs in the lattice inflated k times, since the
wave function is iven by

~

4
~

=e —". For large k, this
lattice has n =P sites. (Again, P is the golden mean. )
The eventual aim is to calculate

~

%(m)
~

r= g g QP(q, r, a
~

k)e '"—"'r —n
m(n q r a

We show this function in Fig. 2; for very small y, a(y) in-
creases linearly to the left.

The previous approximation of Ref. 1, based on numer-
ical evidence, was

(44)

The evolution equations for the distribution functions
are

P(q, r, B
~

k +1)=P(q 2r 2, r——( —1)~ B—
~

k)+P(q —2r —2, r —( —1)~,A
~
k)+P(q —2r —l, r, A

~

k),
P(q, r, A

~

k + 1)=P(q 2r, r, A
~

k)+P(—q —2r + l, r —( —1)~,A
~

k)

+P(q 2r —2, r, A
~

k)+P—(q —2r, r,B
~
k)+P(q —2r + l, r —( —1)~,B

~

k) .

(45)

&&p„,(j,A,
~

k) . (46)

The index j for the Fourier transform of q only takes the
values 0, 1,2,3. However, we see that in the evaluation of
the exponent a(y), we perform a summation over q of
P(q, r, a

~

k), which selects the value j=0.
Upon substituting this expression into the evolution

equations, and projecting out the equations for j =0 and
X, we have the following matrix evolution equation for the
resulting eight Fourier coefficients p„,(O, X

~
k), where

s =+1, t =+1, and a =B,A, arranged as a column vector
rt(k):

Since the equations are different in form depending
upon whether q and r are even or odd, we must Fourier
transform each series independently. (Remember that q
takes only the values 0, 1,2,3, and so is to be interpreted as
modulo 4.) Let s =( —1)~ and t=( —1)" denote the pari-
ties of q and r; they will serve as labels for the four series
of Fourier coefficients. Then the distribution functions
are given as

P(q, r, a
~

k) =(1/8n) g J dA, exp[i(rX+rtqj /2)]

q(k+1)=Tq(k) . (47)

Once again, we introduce A=e', so that the evolution
matrix T can be written as

o
0 0 0

0 0
A 0

o
1 0

0
0

0
A

0
0

0
0

0 o
0 0 1

0
A 0

0
2 0

0
0

1

A

0
0
0
0

(48)

As seen previously, the behavior of all distribution
functions for large inflations k, and hence large lattices,
will be dominated by the maximum eigenvalue of the evo-
lution matrix T, which we once again denote as Sl(A. )

=e"' '. Then in fact, we wi11 have
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p„,(O, A.
~

k)-e" (49)

However, it is not so easy to explicitly diagonalize an
8&8 matrix. We first observe that the eigenvectors be-
long to one of two families; either the components are
a, b, a, b, c,d, c,d or a, b, —a, —b, c,d, —c, —d. The max-
imum eigenvalue corresponds to the first choice, and this
reduces the matrix T to a 4X4 size:

1omer curve,
approxlrnate

upper curve,
exact

-ln((t, )

'
e ln($ )

0
I

A

(50)

If we examine the matrix T—I, we see that the fourth
row is A times the third, and thus the two rows are not in-
dependent, and T —I has a zero eigenvalue. Our original
matrix T has an eigenvalue 1, and for the other eigenvec-
tors, the last two components must be related by d =Ac.
This allows a final reduction of the matrix T to a 3X3
matrix:

a = [ ln(Q) —yO]/ in(P~),

yO= cosh '([A(Sl —1) (55)

FIG. 3. We show the exponent a as a function of the power

y of the wave function, for both the exact result and the quadra-
tic approximation. This is the wave function at the center of the
spectrum on the Fibonacci lattice.

A '+A
1+A

3

(51)

—(0 —6fl +130 —40+12)'~ ]/4),

with ft &2+~5. The result is shown in Fig. 3 along with
the approximation from Ref. 2,

This size is manageable.
Setting the determinant of T—OI equal to zero, we ob-

tain a third-order equation for 0,
0 —0~[3+2cos(A )]+f1[1+2 cos(A, )]

0, yO& 1n(P )

a(r)= '[1—yO/ln(P )], in(P ) &yO& —ln(P )

—4yO/1n(P), —ln(P ) & yO .

(56)

—[3—4 cos (iL) ]=0 . (52)

Although we could determine 0 as a function of A, , our
previous experience suggests that we instead leave it in
this parametric form, or even better determine cos(A, ) as a
function of A. This gives

cos(A. )=[A(Q —1)—(fl, —611 +. 136 —40+.12)' ]/4 .

As before, to evaluate the distribution function itself from
the Fourier transform, we employ the saddle-point
method. The saddle point is on the imaginary A, axis, and
at the saddle points Q&2+&5. The correct branch of
the square root in the expression for cos(A, ) has been
selected so that the saddle point is obtained for
n&2+~5.

And as before, evaluation of the exponent a(y)—a
second saddle-point evaluation —has the effect of selecting
the Fourier-transform variable to be imaginary and equal
to —iyO. Thus,

~

4(m)
~

~= g g g P(q, r, a
~

k)e

IV. CONCLUSION

P, (n
~

k + 1)= g g T„(n —n')P, (n'
~

k) .
n' a'

(57)

That the evolution matrix depends only on the differ-
ence n —n is a reflection of the self-similarity of the
wave function, where the wave functions over identical re-
gions differ only by a multiplicative normalization factor.
Because of this dependence, however, it is useful to
Fourier transform P, (n

~
k),

In conclusion, we review the general structure of the
calculations, because similar exact results probably can be
obtained for other physically interesting problems. The
object we seek to calculate is P, (n

~
k), the number of

times that the logarithm of the absolute value of the wave
function is —n, in a sample inflated k times with linear
dimensions P". The index a denotes other quantities that
must be specified. Then these distribution functions
evolve by an equation

m(n q r a

—expI k [co( iyO) —yO] I
—=n P, (n

~

k) =(1/2m. ) f e'" p, (A,
~

k)dk, (58)

(54) so that the evolution equation becomes a matrix equation

Thus, we have as our final expression for the exponent
a(y) the parametric form,

p, (A,
~

k +1)= g t„(A,)p, (A,
~

k) .
a'

(59)
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t(A, )@=0(A,)4, (60)

Here t„(k) is the Fourier transform of the evolution ma-
trix T„(n). The behavior of p, (A,

i
k) will be dominated

by the maximum eigenvalue Q(k) =e ' ' of the matrix
t(A. ),

dcoldk.
~ q q +in/k =0,

to find

p, (n
~

k) e~r+k~~ —~r t

We define an exponent a by

(62)

(63)

so that the asymptotic behavior is

(g~k) k (3) (6l)
g ~@~r ge ~r e"~'r~

In inverting the Fourier transform for P, (n
~

k), we can
perform a saddle-point evaluation at the saddle point
A.o ———i y, given as the solution to

—ny+ ny'+ ken( —i y' je

so a(y) =co( iy )—since y =y'.

(64)
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