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A density-functional approach for the calculation of the density of particles adsorbed on the sur-
face of a solid is explored including the adparticle two-body interaction. The coverages and effective
surface potentials so obtained compare very well with those of previous Hartree-Fock calculations

for the system Ar/Ag.

I. INTRODUCTION

A gas is said to physisorb onto the surface of a solid if
the net interaction between a gas particle and the solid is
accounted for by an effective surface potential, V,(r), the
long-range part of which is essentially the interaction en-
ergy between the mutually induced fluctuating dipole mo-
ments in the adparticle and in the solid. The strong
short-range repulsion is largely due to increasing charge
fluctuations as the adsorbing particle gets confined close
to the surface. At very low coverages ©, one may neglect
interactions between the adparticles. However, as their
average separation in the adsorbate approaches that of a
liquid, this interaction plays a crucial role in determining
the properties of the adsorbate. Two-dimensional lattice-
gas models have been conceived in which this interaction
is incorporated via hopping matrix elements between sites.
To treat the dynamics of adsorption and desorption ap-
propriately a fully three-dimensional theory was
developed within the temperature-dependent Hartree-Fock
approximation.! It yields such single-particle information
as coverage-dependent bound-state energies and wave
functions from which the adparticle density can be con-
structed as well as an effective, coverage-dependent sur-
face potential

V,(r,0)="V,(r)+ Vue(r,0) . (1)

Here V,(r) is the bare surface potential between a single
particle and the substrate and Vyg(r,0) is the mean-field
potential experienced by one gas particle in the presence
of all others. The theory was successfully applied to a
study of the thermodynamics and the desorption kinetics
of mobile helium adsorbates up to about two monolayers.
For adsorbates heavier than helium much of the infor-
mation obtained in the Hartree-Fock approximation is
redundant. It is the purpose of this paper to show that
considerable simplification can be achieved, with little sa-
crifice of accuracy, by employing a density-functional ap-
proach? to the calculation of the adparticle density n (r)
and the effective surface potential V (r,0). Specifically,
we use the statistical Thomas-Fermi model and its exten-
sion to include some nonlocal density corrections,>* the
formalism of which is outlined in the next section. To al-
low a comparison with the Hartree-Fock results we shall

35

assume an effective two-body potential identical to that
derived by SSTK;' also, our formalism will be applicable
to a mobile adsorbate only, at this stage. Results are
presented for the relatively heavy adsorbate system, Ar on
Ag. This will facilitate the calculation of n(r) in
density-functional theory, as the semiclassical limit and
subsequent simplifications enter into the calculation. The
method is not confined to this limit, however. This is in
contrast to recent work also employing the density-
functional method:>® there the adsorbate interaction is
treated by way of a classical fluid analysis. Moreover, the
fluid is assumed two dimensional (submonolayer cover-
age). It is already known that the three-dimensional char-
acter of the potential, (1), has important consequences for
physisorption kinetics.’

II. FORMALISM

We first outline the application of the density-
functional formalism to an inhomogeneous system of neu-
tral interacting fermions at finite temperature and intro-
duce a number of justifiable simplifications, given the
hindsight of the quantum-mechanical calculations of
SSTK.

Consider the grand-canonical potential, which is a
functional of the particle density n (r):2—*

Qn]= [ Vio)n(r)dr
1 ’ ’ ’
+5 f fdrdr Vo(|r—r1' | )n(r)n(r’)
+Fi[n]+Fy[n]—p [ drn(o). @)

The contributions here are from, respectively, the (sub-
strate) surface potential, the two-body Hartree interaction,
the (kinetic) free-energy functional of noninteracting par-
ticles Fi[n], the exchange and correlation functional
F,.[n], and the chemical potential per particle, u. All
contributions are implicitly temperature dependent. The
density of the system at equilibrium is that which mini-
mizes Q[n], namely the solution of 8Q[n]/6n(r)=0.
The form of V,(r) is prescribed. Also, far from the sub-
strate, the fermionic gas phase is assumed large and di-
lute, and will determine u. However, some approxima-
tions to F; and F,. are required. One can include the
nonlocal effects of density inhomogeneities in the kinetic
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energy functional rather simply by an expansion in powers
of the density gradient

Fk[n]zfdr[fo(n(r))—i—fz(n(r))IVn |24 17. (3)

The coefficients f and f, functions of the local densi-
ty, are known,> and while the coefficients of O((Vn)*)
terms at finite temperature are now available,* it will be
sufficient, and practical, for our purposes to truncate the
expansion at second order.

For our approximation of the two-body interaction
terms in (2) we necessarily follow SSTK in order to allow
a comparison between their method and ours. In particu-
lar, they considered the mean-field part of (2) (Hartree
plus exchange) and introduced an effective potential
Veg(r) to replace V,(r).! Their reasons for this were two-
fold: firstly, the short-range singularity of V,(r) (as in,
for example, a Lennard-Jones potential) leads to an infin-
ite energy contribution, implying that the core of the po-
tential must be softened; secondly, typical particle densi-
ties directly over the substrate can approach liquid densi-
ties, implying that two-body correlations must be account-
ed for. By extending the Hartree-Fock theory to
Brueckner-Hartree-Fock (BHF) theory, involving the con-
struction of a nonlocal K matrix, {r|K | '), which par-
tially includes correlations, both requirements are met.
Further, by approximating the matrix by a local effective
interaction, {r| K |r') =V 4(r)8(r—r'), a manageable an-
alytic form results. (The reader is referred to Ref. 1 for
details.)

Thus, with the assumption that the exchange functional
in (2) can be represented by the Fock contribution of
mean-field theory, and the subsequent replacement of
V,(r) by Veg(r), the hard-core correlation contribution to
F,. is partly accounted for, in a first approximation, and
we let F,,—F,. One then hopes that the corresponding
Euler equation gives an accurate representation of the par-
ticle density as calculated from the standard Hartree-Fock
equations, with an interaction potential Vg(r) [see Eq.
(15) of SSTK].

Concerning the particle statistics: the above formalism
should also be applicable to a boson system, provided the
exchange term can be neglected. For heavy adsorbates
and typical temperature and densities, the statistics are
essentially Maxwell-Boltzmann and we may set F,=0
with safety. This conjecture is borne out both by the re-
sults below and the calculations of SSTK for Ar/Ag.
Calculated quantities are independent, to within a few
percent, of the choice of statistics for Ar. (We shall con-
tinue our development assuming a fermion system, how-
ever.) Thus all quantum effects are removed from our
calculation.

Gathering these approximations to (2), one derives the
following Euler equation, which serves as the basis for our
calculations:

Vs(r)—,u+fdr’n(r’)Veff(r——r’)
afo , 9f2
+an(r)_lvn | an(r)

The nonlocal corrections enter via the kinetic energy func-
tional only. Finally, and in keeping with the work of

2/,Vn=0. (4)

SSTK, we shall restrict our attention to mobile (fluid) ad-
sorbates, in which case V (r)—V,(z), where z is the
height above the substrate surface, and the problem be-
comes one-dimensional: the effective Hartree term in (4)
is replaced by

o'zfdz'n(z')?(z -z'),

where

V=02 [ dxdy Vex(x,9,2) , (5)

and o is the range of the interaction. SSTK have given a
suitable parametrization of the screening of the short-
range correlations which ensure V(r=0) and hence

V(z =0) is finite, based upon the Lennard-Jones potential
for V,(r),
—1
10 a
_|Z

Viz)=2me {1+ 4 exp

g
z

(6)

2
X 5

NS

The parameters z; and a in the screening factor are
chosen such that the attractive well of the remaining un-
screened potential is unaffected; A4, which determines
V(0), becomes the adjustable parameter and may be fixed
by fitting thermodynamic quantities to experimental
data.® For our prototypical heavy adsorbate, Ar, we take
e/kg=119.8 K, 0=3.42 A, z;,=2.85 A, a=15, and
A =0.133.

For the surface potential, V(z), corresponding to the
inert-gas—metal interaction, a Morse potential is ade-
quate:

—2y(z—z4) —v(z—zg)

Vi(z)=Ugl(e ). (7)
We take Uy/kp =430 K and zo=y~'=0.594 A. A plot
of these two potentials is shown in Fig. 1. The range of
the Ar-Ar interaction is much larger than that of Ar-Ag;
furthermore, the former is strongly repulsive and essen-
tially constant over variations ~ ~! about the minimum
of V(z). One expects a significant shallowing of the bare
surface potential and the formation of a repulsive barrier
as the density of adatoms over the Ag surface increases.

—2e

III. LOCAL-DENSITY APPROXIMATION

We first examine the solution of (4) in the simplest case
of retaining the purely local-density terms. This local-
density approximation (LDA), which is equivalent to the
statistical Thomas-Fermi model, permits an investigation
of the major effects of the two-body interaction in pro-
ducing an effective surface potential. The latter then
serves as a useful starting point for the solution when the
gradient corrections are included [extended Thomas-
Fermi model (ETF)].

The one-dimensional form of (4) in the LDA is
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FIG. 1. Effective Ar-Ar potential V(z), calculated from (6)
with €/kp=119.9 K, 0=3.42 A, z,=2.85 A, a=15, and

A =0.133 [such that V(0)=—5V,]; Ar-Ag surface potential
(7) with Up/ky =430 K, zo=7~'=0.594 A.

3fo
on (z)

Vi(z) —p+a? fow dz'n(z")V(z —z')+ =0. (8)

fo and n are given by the expressions for a free uniform
gas evaluated at the local density,

Fo=@/VTIATB =215 ,,(n)+nI ()],  (9a)
n=@4/VaoA 3, 5(n), (9b)

where n=m(z), I,(7) is the standard Fermi integral, and
A=Q2w#*3/m)"/? is the thermal de Broglie wavelength.
One derives

o,

an (10)

n(z)=p

This result, together with (9b), transforms (8) into an in-
tegral equation to be solved for a self-consistent n(z). In
principle, the solution could be found for any tempera-
ture, as I;,;(n) has been given approximate analytic
forms for the whole range of 7.° However, we are in-
terested in the semiclassical limit (17— — « ) for which
Vi

11/2(7])=Te77

e e2n

1_23/2 33/2_'“

(11)

Indeed, for liquid Ar densities and temperatures ~20 K,
(9b) predicts 7 < —6, and we need only retain the leading
term in (11). Our self-consistent results confirm this. In
this case a convenient parametrization of the density is

n(z)=ngpel P =21"3ePre/ () (12)

Equation (9b), (11), and (12) imply n(z)=pu+ f(z), and
(8) becomes a nonlinear equation for f(z):

f(z)=—BV,(z2)—0o?n, fowdz’ef(z')[)’f/(z —z'y. (13)

Far from the substrate surface, V;—0—, the gas is very
dilute, approximating an ideal gas (the two-body term is
negligible) f(z)—0+, and n(z)—>ny =P, where P is the
pressure at the container wall. u is determined via (12).
We define the coverage © over the substrate as the ratio
N /N, where N is the excess areal density of particles,

N=no [ e/ @1z, (14

and N; is the areal density of available sites. Clearly, the
region of the minimum of the effective surface potential,
V.(2,0)=—B"!f(2), is of primary importance in deter-
mining O.

The numerical solution of (13) is straightforward. For
low densities, ng, f(z)= —BV,(z) suffices to initialize the
integrand of (13). One then exploits the relative constancy
of BV(z —z') for z~z'~z, and the sharpness of the in-
tegrand to accurately estimate f(z) at higher densities.
Equation (13) is transformed into a system of nonlinear
equations upon choosing some adaptive mesh {z;}, and
the above estimate used as a starter. We employed the
routine COSPCF to solve this system.!®

The results of such calculations are shown in Fig. 2
where V,(z,0) is plotted for P=10"2 Torr, and three
temperatures. The effects of the increasing admixture of
the two-body interaction as the temperature decreases, as
implied by (13), are obvious: the primary minimum shal-
lows, while a secondary minimum develops near o, corre-
sponding to that of the Lennard-Jones potential. The
depth and shape of these primary wells is in very good
agreement with results obtained by SSTK. We list the
corresponding coverages in Table I (we set N;=0.074
A~2). The coverages obtained when the Ar-Ar interac-
tion is ignored [f(z)— — BV (z)] are much larger, and
clearly unphysical at these densities. [For example, at
T =25 K, 6(V,=0)=0.81, with a rapid increase as T is
lowered.]

IV. EXTENDED THOMAS-FERMI MODEL

We now modify (13) by the inclusion of the density-
gradient terms present in (4). The function f,(n) has been
determined from the polarizability function of a nonin-
teflacting fermion gas at long wavelengths.> The result
is

foln)=— 1 A d |1
g 96vr B dn |I_150m) |-
TABLE 1. Comparison of coverages obtained via two

schemes within density-functional theory (lecal-density and ex-
tended Thomas-Fermi approximations), and the Brueckner-
Hartree-Fock method of Ref. 1; free gas density no=pP,
P =102 Torr.

T (K) GLDA eETF GBHF ho (1016 cm_3)
25 0.064 0.062 0.057 0.386
20 0.128 0.124 0.119 0.483
15 0.201 0.195 0.190 0.644
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Upon specializing (4) to the one-dimensional case, taking
the semiclassical limit for f, and (df,/0n) and retaining
leading terms, and using the parametric form (12), we
eventually arrive at the following nonlinear integro-
differential equation:

21"(2)+[f(2)]P=C | f(2)+BV,(z)

+0’ng fow dz'e/PBV(z —z') |=0, (15)

with f'=df/dz, C=487/A> The effective surface po-
tential is now defined by

V,(2,0)=V,(z)+0%n, fow dz'e® BV (z —z'), (16)

where g is the self-consistent solution of (15).

It is instructive to examine the form the solution must
take in the case of very low coverages for which we may
set V(z)=0. Equation (15) then implies that, in the vicin-
ity of its maximum, f(z) is reduced in magnitude and
shifted from the maximum of the LDA solution,
f(z)=—BV(z). The exact amount depends upon the
scale factor C~A~2~mT and will be least for heavy ad-
sorbates at high temperatures. For Ar at 20 K, this
reduction is found to be 22% of the LDA value, which is
not an insignificant reduction in spite of the nearly classi-
cal nature of the system. Incidentally, the particle density
obtained by solving Schrodinger’s equation directly for the
bound-state eigenfunctions in the Morse potential is in
close agreement with that obtained from this corrected
f(z); the coverage in the former case is reduced by 26%
from the LDA result. Such good agreement justifies, in
part, both the inclusion of the gradient corrections to
Fi[n] and their truncation at second order [cf. (3)]. In
the case where the two-body term is not negligible, we do
not expect so large a reduction in n(z), given the manner
in which a change in f(z ~z() drives a change in the ef-
fective potential in (15).

The solution of (15) is more difficult than may be ap-
parent, even in the case where V(z)=0. Equation (15) is
strictly an initial-value problem with f and f’ specified at
the right-hand boundary, well away from the substrate,
where V¥V (z) is slowly varying. However, initial-value
codes based on a variety of standard methods fail to give a
solution. This leaves two-point boundary-value codes.
Although the position of the left-hand boundary is arbi-
trary, to the extent that we require V;(z) to be large and
repulsive here, z =0 is a suitable choice. However, f(0)
and f7(0) are not known a priori. Our procedure in the
case of V(z)=0 has been to assume the limiting form
f(z)~—e " for z<0 and use (15) and (7) to estimate
f'(z <0); this and f’'(z >>z,) become the boundary values.
Once the solution, and f(0) in particular, ceases to alter
as the left-hand boundary is moved to more negative z
values, we deem this solution to be the required one. We
have used the code cOLSYS (Ref. 12) for our calculations
and find it to be extremely robust under these conditions.
At fixed temperature we may safely apply the same boun-
dary conditions to the case of V(z)s£0. The routine is
necessarily initialized with the LDA solution now, other-
wise the integral in (15) changes so dramatically as to
prohibit convergence with iteration upon the previous

solution. We have averaged the solutions at every second
iterate using

fm(Z)Zme(ZH‘

With a suitably chosen p, convergence to the self-
consistent f is achieved.

The coverages obtained by this method are listed in
Table I. As expected, there is a reduction in n(z), and
hence O, on the LDA results, but significantly less than in
the case of very low coverages. We have not plotted the
effective potential, (16), for comparison at each
temperature—the differences between the LDA and ETF
solutions are barely resolved on a reasonable scale. We
note, however, that as a result of f(z), and thus n(z), de-
creasing upon inclusion of the gradient terms, the primary
well of V,(z,0) actually deepens over the LDA results;
moreover, n(z) peaks at z =z,+8, with §=0.012 A here.
Thus the standard semiclassical result n(z)
=ng exp[ —BV;(2,0)] is not strictly valid.

What is gratifying concerning Table I is the remarkable
agreement between the coverages obtained via the solution
of the Hartree-Fock equations and the density-functional
approach—the differences amount to a few percent.
Indeed, one might anticipate that Ogtg > Opyr as a result
of removing the exchange contribution from the free-
energy functional in (2)—this has the effect of lessening
the two-body repulsion (for bosons). The agreement be-
tween the two schemes is not as satisfactory away from
the primary minima, as indicated in Fig. 2, where
V,(z,0), T =20 K, is also plotted from SSTK’s data.
The magnitudes of the barrier and the secondary

(1—p)fm —1(2), m even .

0.6

(BHF) T - 20K

Vs (2, 8)/U,

i 1 1 1 1 1 1
0 05 10 15 20 25 30 35 40 45 50 55 6.0

-1.2 1 1

z (A)

FIG. 2. Effective surface potentials, V(z,0), in LDA from
which O p, in Table I follows; the effect of gradient corrections
is barely apparent on this scale. For 7T'=20 K, we plot the re-
sult of the BHF method of Ref. 1 (— — —). The bare surface
potential V;(z) is included for comparison. The energies are
normalized with U.
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minimum are halved in the ETF case; of course, the cov-
erage is completely insensitive to such variations. Howev-
er, it should be noted that SSTK’s effective surface poten-
tial is an average over the state-dependent potentials,
V{9(2,0), which are to be employed in the Hartree-Fock
equations: their first bound-state potential, Vs(”(z,e),
agrees with our ETF result for T =20 K over the whole
domain. In addition, it is well known that the Thomas-
Fermi method can yield inaccurate results at very low
densities—in this case around the maxima of Fig. 2.

In conclusion, we observe that, as far as the calculation
of coverages is concerned, we may replace the detailed
computational method of SSTK with the density-
functional scheme outlined above and still obtain results
of high (comparative) accuracy, even in the local-density
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approximation. The accuracy is somewhat reduced for
the effective surface potential overall, but this is not
necessarily an important factor. The problem of calculat-
ing the temperature-dependent coverage in the case of lo-
calized physisorption, for example, which was beyond the
ability of SSTK, is certainly feasible within our present
scheme. We intend to address this problem in a future
publication.
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