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The restricted Hartree-Fock equations for a crystal with at least one partially filled band are writ-

ten in terms of Wannier functions. The orbital energy then contains lattice sums, whose conver-

gence properties are of decisive importance for the analytic properties of the energy bands. In par-
ticular it is shown how the particular form of the restricted Hartree-Fock exchange operator, when

applied to an extended system with Coulombic forces, leads to the well-known singularity at the Fer-
mi energy. Our analysis makes it possible to trace the sources of this singularity for a realistic sys-

tem, thus leading to a better understanding of the background for systematic improvements.

I. INTRODUCTION

Hartree-Fock calculations for metals have an inherent
drawback. The orbital energy of the uppermost partially
filled bands has an infinite derivative at the Fermi energy.
This implies that the density of states at the Fermi energy
vanishes —an unreasonable situation for a metal. For this
reason band calculations for metals are usually carried out
with other one-electron methods.

This singularity is easily seen if one applies the
Hartree-Fock method to the homogeneous electron gas, in
which case the doubly filled plane waves form exact solu-
tions. ' With that result for the electron gas the problem
is usually dismissed and it is taken for granted that the re-
sult can be taken over to more realistic systems.

The infinity in the slope of the orbital energy at the
Fermi surface is indeed a characteristic feature of the
Hartree-Fock method when applied to an extended metal-
lic system. As we will show in the present paper the
singularity is the result of a combination of the long-range
Coulombic force and the particular form of the exchange
operator in the Hartree-Fock method. It is of definite in-
terest to trace the sources of this singularity for a realistic
system, both in order to understand it better and in order
to find systematic procedures for avoiding it as well as for
constructing more realistic models.

Band theory traditionally works with concepts defined
in reciprocal space. The complementary view in direct
space has however proven valuable in several respects in
recent years. If the system under consideration has
translational symmetry one should ideally consider the
possibility of treating a problem from both points of view.
This means that one needs the properties of both Bloch
and Wannier functions. The former are calculated in
practically all band computations, whereas the latter ones
have so far been treated more at the formal level, al-
though we now also have the possibility of calculating

Wannier functions directly, without getting first the cor-
responding Bloch functions.

The vanishing of the density of states at the Fermi level
for an extended metallic system has been treated in
momentum space by Monkhorst. He located the singu-
larity in the gradient of the exchange contribution, and
traced its source in the step function which describes the
occupation of a partially filled band. He discussed lattices
in one, two, and three dimensions.

We have studied the corresponding problem as one as-
pect of the convergence properties of direct-space ex-
change lattice sums in one-dimensional lattices. The
long-range behavior of the many center integrals com-
bined with the cutoff in the occupation function indeed
leads to an infinite derivative of the band at the Fermi en-
ergy.

Both the previous investigations were carried out within
the framework of a linear combination of atomic orbitals
(LCAO) approximation. This is indeed how most of the
corresponding calculations are actually carried out. It is,
however, desirable to study the singularity also at a for-
mal level independent of any approximation.

The purpose of the present paper is thus to study the
analyticity properties of a partially filled band of a realis-
tic extended system, as they follow from direct-space
properties. Visualization and therefore interpretation is
normally easier in direct space and this will make the
analysis more transparent. We express the relevant quan-
tities in terms of Wannier functions and use their localiza-
tion to analyze in detail why and how the singularity ap-
pears.

The paper is organized as follows. In Sec. II we intro-
duce the basic equations and discuss the convergence as-
pects of the various lattice sums which appear when band
theory is expressed in terms of Wannier functions. We
concentrate on the exchange part of the orbital energy and
in Sec. III we calculate its gradient with respect to the
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wave vector and analyze the reasons for its singularity at
the Fermi energy. Some special aspects of the derivation
are discussed in the concluding section.

A ff(1)= ——, V& —QQZg ~
r~ —(sg+m)

m g

(2—W",2)p(r2, rz)+ dr2
12

(6)

II. RESTRICTED HARTREE-FOCK EQUATIONS
FOR CRYSTALLINE SOLIDS AND CONVERGENCE

OF THEIR DIRECT LATTICE SUMS

In this section we summarize the basic formulas of the
restricted Hartree-Fock method for crystalline solids
(RHF-CO) and then briefly establish the convergence
characteristics of the various lattice sums occurring in
these equations.

A. Basic RHF-CO equations

In Eq. (6) p(r, r') is the spatial part of the Fock-Dirac den-
sity matrix,

BZ

p(r, r') = g g B„(k)g„(k,r)g„*(k,r')
p k

NVp, f dk g B„(k)f„(k,r)g„"(k,r'),
8~

and H &2 is an operator which interchanges r& and r2.
Since we are interested in the shape of the density of

states (DOS) which derives from the form of the energy
bands, we now make the contents of the E„(k)'s more ex-
plicit,

Consider a crystalline solid with co electrons and Q
atoms per unit cell with nuclear charges Zg
(g =1,2, . . . , II) centered at position vectors sg relative
to the unit-cell origin. The unit-cell volume is Vp, and
the lattice vectors are indicated, by I, m', and I". The
Hartree-Fock (HF) Bloch states g„(k,r) are doubly occu-
pied up to the Fermi energy cF and orthonormal, i.e.,

f dr P„"(k',r)g„(k, r) =5kk6„ (1)

where k is the wave vector defined in the Brillouin zone
(BZ) whose volume is 8~ Vp& Indice. s p and v are used to
label the energy bands, e„(k). The following conventions
and ranges define the above quantities:

E„(k)= f dr g„*(k,r)A, tf(r)g„(k, r)

= T„(k)+C„(k)+X„(k),
where T„(k), C„(k), and X„(k) are

T„(k)= f dr/„*(k, r)[ ——, V' (r)]g„(k,r),
p(r2, r2)

C„(k)= f dr&P„"(k, r&) 2 f dr2
112

—gg ~r, —(s +m)
~

m g

(9)

a; b& ——5,J. , i,j =1,2, 3

m=a~m~+a2m2+a3m3, m; integer

(2a)

(2b)

Xg„(k,r, ), (10)

, p(r2, rz)
X„(k)=—f dr, P„'(k,r)) f dr2&;2 P„(k,r, ) .

k=b)k ) +b2k2+b3k3, 7T (ki + ~ (2c)

Vp, ——a~. (a2 X a3) = Vpg
—1 (2d)

The RHF-CO equations result from the minimization
of the total energy under the orthonormalization con-
straint in Eq. (1). In the case of extended systems the
charge neutrality condition,

Vp, 0
2 f dk+B„(k)= g Z =co, (3)

must be satisfied; B„(k) is the occupation function de-
fined as

B„(k)=
1 if E„(k)(eF
0 if E„(k)&EF . (4)

In this paper we discuss the properties of the restricted
Hartree-Fock approximation for which the equation has
the following form,

A,tf(1)p„(k,r) =E„(k)ltj„(k,r),
with ~,tf(l), the Fock operator, written in the restricted
scheme where the Bloch states are doubly filled,

(11)
Our aim is to disclose as transparently as possible the

mechanisms through which the characteristic properties
of the HF method arise. To do so we choose to represent
the Bloch states in terms of the Wannier functions which
play the role of a particularly simple set of basis func-
tions. They are defined as follows:

BZ

W„(r—m) = g P„(k,r)e
k

Vp, ~N f dkg„(k, r)e i™ (12)

g„(k,r) = g W„(r—m)e'
N

(13)

Expressed in terms of the Wannier functions Tz(k),
C„(k) and X„(k)become

T„(k)= g e'" T„„, (14)
m

with T„„defined as

T„„=f dr W„*(r)[——,V' (r)] W'„(r —m) .

The Coulombic contribution C„(k) becomes



9462 JOSEPH DELHALLE AND JEAN-LOUIS CALAIS 35

C„(k)= g e'"' 2Vp, f dk'QO„(k') g e'"'I '(W„w„~ W'„W„)—g gZ V„'„(s +m')
7T p' m' m" m g

ei k. m~0m
PP (16)

where a more compact notation has been introduced for the Wannier functions,

W@
——W„(r—m),

and matrix elements,

V»(ss+m')= f dr W„(r)
~

r —(sg+m')
~

'W„(r —m),

( W„W~ ~
W„w„)= f dr&drzw„*(r&)w„(rz —m')r&z'W„(r& —m)w„(rz —m") .

The exchange contribution Xz(k) is similarly obtained,

(18)

(19)

X„(k)=—ye'"- ", f dk pe„.(k ) g e'"'I-"--'~(W~W„~ W„W„) = —hei™X„'-„.
m 8w m

(20)

B. Convergence characteristics of the lattice sums

(21)

Theories for crystalline systems involve size-related aspects in the form of lattice sums. Hereafter we identify the con-
vergence properties of the lattice summations occurring in Eqs. (14), (16), and (20). In this discussion we assume an ex-
ponential decay with respect to

~

m
~

for the W„'s. However, we stress that this assumption will not affect the con-
clusions of this paper.

Equation (15) does not embody any particular convergence problem since the Wannier functions W& are localized in
direct space and the related matrix elements T„„decay exponentially with the distance

~

m
~

between the centers of W&
and 8 p.

Equation (16) requires more attention. It is more conveniently studied after a slight rewriting,

C (k)= hei™ o f dk'g B„(k') g e'" ( Ww„~ W„W„+ ) —g QZs V„„(sg+m')
m 8w m' g

(23)

= pe'" f dk'g 6„(k')g pe'" ( W„W„~ W„W„)—cu
' QZg Vz& (s~+m') . (22)

m 8~

The large parentheses in Eq. (22) enclose terms which, when taken individually, lead to divergent series with respect to
the index m'. However, when combined under the charge neutrality constraint, Eq. (3), and additional conditions on
first and second electric moments of the unit-cell charge distribution, these terms form the well-known conditionally
convergent Madelung series. This problem has been extensively discussed in the literature and since we assume that all
conditions for a proper convergence of the m series in Eq. (22) are met, we do not consider this problem any further.
The remaining two series over m and m" do not cause any problem since the terms are characterized by an exponential
decay with respect to both

~

m
~

and
~

m"
~

.
Equation (20) corresponds to the exchange energy contribution to E„(k) and will be our central point of interest in this

work. To make the analysis clearer we rewrite Eq. (20) as

X (k)= —ge'" dk'+8 (k') g e '" + '(W W + W ~ W )P P P P P
P m', m"

The indices m' and m" correspond to nonproblematic lat-
tice summations since their terms decay exponentially
with respect to

~

m ' and
~

m" ~, respectively. The sum-
mation over m is, however, not of the exponentially de-
caying character. The nature of the decay is best appre-
ciated by inserting the well-known

~

m
)

' asymp-
totic decay of ( W W'„+

~ W& W„). '' Indeed
( W&w&+

~
W& W„( corresponds to the electrostatic

energy of two interacting electron distributions,
W&(r, ) W& (r, —m") and W& (r2 —(m+m')) W&(rz —m).
At large values of

~

m
~

the overlap between the two dis-
tributions is negligible and the corresponding electrostatic
energy decays asymptotically like

~

m
~

( W„'W„+
[ W„W„)=a(„'„[„„')

f

m
[

-',

~

m
~

large (24)

I lt

where P(&& ~ && ) is the product of quantities related to
the charges associated with W„*(r,) W„(r& —m") and
W„*(r2—m') W„(r2).

Let us partition X„(k) into a contribution X„'(k),
which is the partial sum over

~

m
~

&
~

m" ~, and X&~(k),
the remaining contribution to X„(k) where the asymptotic
decay

~

m
~

' constitutes a reasonable approximation to
( Wz W„~ W„w„) in the range

~

m
~

& m' ~:
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Here, contrary to the filled-band case, there is no
Kronecker condition, Eq. (27), to assign limits to the m
summation whereas we still have exponential decay with
respect to the other two, i.e., rn' and m". Thus as a
consequence of the k' integration, the exchange contribu-
tions originating from the partially filled band will be ob-
tained from slowly convergent series. Taken in absolute
value, the terms of the m series decay like

~

m
~

which
is enough to guarantee an absolute convergence to this
series for each of its components, i.e., j= 1, 2, and 3. No-
tice that intermediate cases of partial occupation can easi-

ly be accounted for. For instance if the faces of FV in one
of the directions bj, e.g. , j= 1, coincide with those of BZ,
i.e., k~ r——r, it is easily found from Eq. (32) that a
Kronecker condition 6O 1s obtained in place of

O, m&+m
&

—ml'

sin[k~ (ml+mI+m I')]/ (m&+m I+m'&'). Then a de-

cay analogous to the one obtained in the case of the fully
occupied BZ prevails for the direction b1. Similarly if
two sets of faces, e.g., corresponding to directions b1 and
12, come into coincidence with those of BZ then5, „.5, „replaces

O, ml+m 1
—m'1' O, rng+m2 —my'

sin[kJ;, (ml+m'~ —m'&')]sin[kgb, (mz+mz —mz')]I[(m&+m', —m", ) ~ (m2+mz —m2')] .

The absolute convergence of the series secures bounded
contributions to X„(k) and thus to E„(k). However, in the
case of partial occupation, the slowly decaying series im-
part a peculiar behavior to the shape of the energy bands
which is dramatically reflected in the density-of-states
function at the Fermi energy EF. This forms the subject
of the next section.

Before proceeding to this analysis it is worthwhile to in-
dicate how to deal with more general shapes of the Fermi
surfaces. Just like in the integral calculus of functions of
several variables the volume of integration can be divided
into arbitrarily small parallelepipeds obtained by drawing
parallels to the b1, b2, and 13 axes. These elemental
volumes correspond to discontinuous fragments of the
continuous function B&(k'). Inside the Fermi surface
B„(k ) = 1, and the continuity of this function is restored
in FV by the side by-side assembly of these paral-
lelepipeds up to the Fermi surface. The analysis per-
formed above on a single large parallelepiped can be made
for each of the small ones, and the sum of a large number
of arbitrary small parallelepipeds will correspond to the
integration in Eq. (29) where FS can assume complicated
shapes. The basic conclusion obtained in the case of a
Fermi volume in the form of a single large parallelepiped
with its faces parallel to the faces of BZ thus holds true.

III. HARTREE-FOCK DENSITY OF STATES

o ns'd
n„(E)=

4~ V1c„k
(33)

The integral is carried out over isoenergetic surfaces S
with position vector ks so that e&(ks ) =E, ns is a unit
vector normal to S. The total density of states is obtained
by summing (33) over the bands,

The inverse of the absolute value of the orbital energy
gradient with respect to the wave vector k is a measure of
the availability of one-electron states contributed by the
band at the corresponding energy. It enters directly in the
expression of n&(E), the density-of-states function for en-

ergy band E&(k), which is found most convenient for our
analysis:

N(E)= gn~(E), (34)

and is such that

N EdE= Zg, (35)

VqT„(k) = g gimje' T„z bj, (36)

and

3

VgC„(k) = g gimme'" C„„b
j=1 m

The terms in the above series are exponentially decaying
due to T&„and Cz&. In the case of fully occupied bands
this also holds true for V&X„(k), but in the case of
partially-filled-band systems a different situation estab-
lishes. This is best illustrated starting from Eq. (25)
whose gradient we write as,

(37)

(38)VgX„(k)=VgX'„(k)+ VgX„(k) .

VqX'(k) yields finite trigonometric sums in each of the
components of the gradient and therefore no particular
problem arises. VqK„(k), the part of V&X„(k) corre-

bo b

sponding to the fully occupied bands is characterized by
an exponential decay due to the action of the Kronecker
condition in Eq. (27) and behaves qualitatively like

V~T&(k) and V~C&(k). The last part, V~K& (k), behaves
differently and is analyzed hereafter.

After differentiation, the expression for VI,K& (k) is

where cz is the Fermi energy.
To understand the peculiarities of the HF density of

states the gradient of the energy bands Vze„(k) and its
constituents [V&T„(k), V&C„(k), and VqX„(k)] will now
be analyzed.

The gradients of the kinetic, VqT„(k), and Coulombic
VqC„(k), contribution obtained by performing the partial
differentiations with respect to k on Eqs. (14) and (16),
respectively, can be expressed as well-behaved tri-
gonometric series, i.e.,

3



35 DIRECT-SPACE ANALYSIS OF THE HARTREE-FOCK ENERGY . . ~ 9465

VkK„(k)=~ g P(„„~„„) Jim&
~

m
~

'e™g(m,m', m", kF)b~+ gim2
~

m
~

'ei™g(m,m', m", kF)bz
m', m" m m

+ X im 3 I

m
I

'e '"
g (m, m', m", kF )b (39)

Since it is the modulus of VkE„(k) which enters the definition of n„(E) in Eq. (33) it is sufficient to concentrate on the
b

behavior of one component of V&K& (k) at k =kF to disclose the peculiar behavior of X(EF). To further simplify the

identification of the pathology we select m' and m" such that m' —m"=0. Thus consider the component of VkK„(k)
at k=kF along b&, i.e.,

'P(
~

)PPF PFP
m]

(jm]/ & /m]+ /)

;kF ~, sin(k~ m
& )

1
1

im~e
m) m2, m3 m3

lkF m& lkF m3 sin(kF mq) sin(kz m3)
/m/ 'e ' e

m
(40)

Om' m'0 2
~, sin(kF m2) sin(kF m3)

P(„„—~„„) g sin (kF, m&) g ~

m
~

'e ' e

m &m* m2, f723
m3

1 1

m2

which owing to the parity of
~

m
~

with respect to positive and negative values of m
&

can be rewritten as

(4l)

The modulus
~

rn
~

' decays like m ~

' with respect to m
&

and, since kF is such that 0 & kF & m. for a partially filled

band along the direction b~, sin (kF m ~ ) is always a non-

vanishing positive quantity. The m
&

summation is thus
of the form g„„f(n)n ' where f(n) and u have posi-
tive values, and diverges logarithmically.

bF
This unbounded contribution of V~K& (k~) to

VkE„(k~) forces the density-of-states function to vanish
identically at the Fermi energy cF.

The treatment of more general Fermi surfaces can be
generalized by applying the above analysis to the infini-
tesimally small parallelepipeds constituting the Fermi
volume as indicated in the previous section.

Monkhorst was the first to prove, in reciprocal space,
the unphysical features of the RHF density of states for
extended systems with partially filled bands. Here, by
adopting a direct space perspective at a level independent
of representations by particular basis sets, e.g. , LCAO, we
have derived a companion proof to the one by Monkhorst.

An advantage of the direct-space approach is to provide
a particularly simple and clearcut disclosure of the mech-
anism through which the pathology arises. The vanishing
of the RHF DOS at the Fermi energy results from the
combination of two effects: the discontinuity in the popu-
lation function Bz(k) in BZ and the long-range nature of
the Coulomb interactions. They combine into slowly de-

caying series which vary quickly near kF and where their
derivatives (gradients) diverge logarithmically. These
series enter the expression for energy bands and are re-
sponsible for the huge broadening of the RHF bands in
metals.

Degeneracy and near-degeneracy between occupied and
unoccupied one-electron states can lead to various types of
instabilities. Such problems are presently subject to
numerous studies especially in the field of quasi-one-
dimensional systems. In that context a particularly in-
teresting advantage of the direct-space analysis is that it
relates naturally to large but finite clusters and chains
where such problems can gradually build up. "

IV. CONCLUDING REMARKS

For the electron gas the doubly filled plane waves form
exact—thus self-consistent —solutions to the RHF equa-
tions. The corresponding Wannier functions are not ex-
ponentially decaying and the Bloch functions are nonana-
lytic in k space. In the present paper we have studied the
implications of stronger analytic conditions. In spite of
using exponentially decaying Wannier functions (the most
favorable case), the conjunction of partial occupation and
Coulombic interaction yields a pathological density of
states. In cases when the Wannier functions decrease less
rapidly (e.g. , like E/~ m

~

) the two sums over m' and m"
in (26) will also converge less rapidly, but the analysis will
still yield the pathological density of states. The electron
gas treated by means of the Wannier functions corre-
sponding to the plane waves provides an illustration of
this case.

It should be noticed that we have not discussed the na-
ture of the self-consistent solutions of the original prob-
lem (5). Et can be anticipated that with appropriate con-
straints to prevent the system from undergoing symmetry
breaking (instabilities) the true Bloch states (Wannier
functions) for this system will not be analytic (exponen-
tially decaying). Thus the pathological behavior of the
bands and the density of states will —-a fortiori show up-
in this case too.

One puzzling result of this work is that the singular
behavior is not restricted to the partially filled band(s).
Thus unphysical features can in principle occur at ener-
gies lower than cF depending on the coupling between
outer and inner states. We are presently investigating this
problem both by model computations and formal analyses
since it suggests that distortions can be driven not only by
the uppermost electrons as traditionally believed but also
the inner ones, which can have important implications for
electron correlations and vibronic coupling.

By means of the analysis presented in the present paper
we have shown how the pathological aspects of the bands
at the Fermi level are inextricably connected with the re-
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stricted Hartree-Fock approximation. An important as-
pect of the correlation problem is thus to correct this
pathological behavior, and it will be an interesting task to
study how and to what extent various procedures which
take the correlation into account can alleviate the problem
by restoring the analyticity.
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