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Exciton binding energy in quantum-well wires
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The binding energies of excitons in quantum-well wires of GaAs surrounded by Gal —„Al„As
are calculated with the use of variational solutions to the eff'ective-mass equation. The results we

obtained show that the energies are dramatically dependent on the sizes of the wire, and also that
their magnitudes are greater than those in comparable quasi-two-dimensional quantum-well struc-
tures.

With the recent advances in the technique of
molecular-beam epitaxy, it has been possible to confine
electrons in extremely thin semiconducting wires, namely,
quantum-well wires, with submicron dimensions. In these
quasi-one-dimensional structures the electron motion
along the length of the wire is free but it is quantized in
the two dimensions perpendicular to the wire. A great
deal of theoretical and experimental interest has been de-
voted to the study of the electronic properties of these
one-dimensional semiconductor systems. Sakaki first in-
vestigated the electron transport of ultrathin GaAs-
Ga& —„Al„As quantum wires and showed that a high-
mobility effect would be expected. Petroff, Gossard, Lo-
gan, and Wiegmann fabricated and studied some of the
optical properties of GaAs quantum wires. They have ob-
served cathodoluminescence which was attributed to tran-
sitions involving exciton states. The emission line was ob-
served to be two to three times broader than that of the
two-dimensional quantum wells and occurred at 6-10
meV higher binding energy. More recently several au-
thors have reported calculations of the mobility of elec-
trons scattered by ionized donors and also by optical and
acoustic phonons. The optical absorption due to direct
intersubband transitions as well as the free-carrier absorp-
tion in quasi-one-dimensional semiconducting structures
for the case where the electrons are scattered by acoustic
phonons have also been investigated. The binding ener-
gies for the bound states of hydrogenic impurity placed in
a quantum-well wire of GaAs surrounded by Ga~ „Al„As
have been calculated and the results are 2 to 3 times
greater than those in comparable two-dimensional wells. s

One of the important features of these new one-
dimensional structures already observed but not addressed

I

by any theoretical calculations until now is the presence of
excitons which play a fundamental role in the catho-
doluminescence spectra of these systems. Because of the
energy-band discontinuity at the interface between the
two semiconductors the degeneracy of the valence band of
GaAs is removed enough that these may be treated as iso-
lated bands, leading as a consequence to two-exciton sys-
tems, namely, a heavy-hole exciton and a light-hole exci-
ton.

The purpose of this paper is to report a first calculation
of the exciton binding energies associated with the lowest
electron and hole subbands in a quantum-well wire of
GaAs surrounded by Ga~ „Al„As. We have also calcu-
lated the effects of the electron- and hole-optical-phonon
interaction on the exciton binding energies and showed
that the corrections are quite significant. For the phonon
system we have used the so-called bulk-phonon approxi-
mation instead of the confined phonon modes as discussed
by Babiker and Babiker and Ridley' for the cases of
quantum wells and superlattices. Inclusion of the confined
phonons would certainly alter the binding-energy values in

comparison with that of the bulk-phonon model. The cal-
culation is performed following a variational approach by
retaining only the diagonal term of the Luttinger-Kohn
Hamiltonian. We find that the binding energies of two
excitons as a function of the size of the GaAs wires show
the same qualitative behavior as those in comparable
two-dimensional wells but with much higher magnitudes.

In the effective-mass approximation the Hamiltonian of
an exciton associated with either the heavy-hole band or
the light-hole band in a GaAs quantum-well wire sur-
rounded by Ga& Al As and interacting with the optical
phonons of the GaAs can be written in the following form:

2+ 2 2+ 2 p2 2
& + pxe pye+ pxh pyh+ Z + p. e + V(x,y)2m, 2mt, 2M~ 2@~ e~[(x, —xt, ) +(y, —

yt, ) +z ]'
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and momentum; M ~ =m, +mh ~ is the total mass along
the z direction; and p~ are the heavy-hole (+) and
light-hole ( —) reduced masses for the z motion. V(x,y)
is the confined potential well for the electron and hole and
will betaken tobe V(x,y) 0 for ~x ~

(L„and ~y ~ (L~
and V(x,y) =+~ otherwise. az is the creation operator

where Fg is the GaAs band gap; m, and mh are the band
masses of the electron and the hole, respectively;
R; =(x;,y;) and p;=(p„;,p~;), i =e,h are the in-plane
projection of the electron and hole coordinates and mo-
menta; Z, PZ are the center-of-mass coordinate and
momentum; z,p, are the electron-hole relative position
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for the optical phonons of wave vector q =(Q,q, ) and fre-
quency mp. I & is the Fourier coeScient of the electron-
and hole-phonon interaction given by

product ansatz state,
4 7txey(r„r„)= cos

LxLy Lx
cos

Ly

l 6Mp e 2

Ep A COp

-
f/2

(2)
R'Xp

&icos cos p(z)U2 i 0), (3)
L Ly

0 is the volume of the system, and

P, =m, /M~, Pp, =mi, ~/M~

In order to calculate the exciton binding energy, we first
eliminate the coordinate Z of the center of mass from the
Hamiltonian H, through the canonical transformation

H'=U, 'HU, ,

where

Ul =exp —i gq, Za»a»
q

Then, the binding energy of the exciton formed between
the ground electron subband and the ground heavy- or
light-hole subband will be obtained by choosing the sim-
plest approximation for the trial wave function that is a

I

E =Eg+Ekin+Egouf+Eppf (6)

in which E~f is the polaronic contribution to the binding
energy and can be easily obtained in a standard way and is
given by

where p(z) is a variational wave function depending on
the electron-hole relative coordinate which we will choose
to be hydrogenic,

p(z) = (X/2) 'i exp( —X f z ) /2),
U2 is a unitary transformation which displaces the phonon
coordinates,

U2 =exp g (f»a» —f» a»)
'

(5)

and
~
0) is the phonon vacuum state. The variational pa-

rameter X and the function f» are to be determined by
minimizing the expectation value of the Hamiltonian, that
is, E =(y

~

H'
~ y). We then obtain the energy of the exci-

ton in the following form:

A COp 1 "d F(g) 1

eo ~ Acoo+(!rt Q /2M~) 1+(Ppg/X)
1

1+ (P,g/X) ' (7)

and

—2x'e'
dg F(g) (8)coul J ~z+ Q

2
'I

where F(Q) is the form factor for the quasi-one-
dimensional system which is given by

G(K)H(Q, K)
(Q'+K') 'i'

where

G(K) =

and"

2
sin (L„K/2)

L.K [1 —(L„K/2~) '] ' (10)

2+ 2

( )
2(u +8K ) (

—„) u

(u +4m ) u +4+2

+ —1
——(1 —e -")2 1

Q 9

with u =L&JQ +K . Ek;„ is the kinetic energy.
It is interesting to stress that this result for the energy,

Eq. (6), represents the interaction of an electron with a
hole in a quantum-well wire through a Coulomb potential
which is screened by the optical dielectric constant, while
each of them is interacting with the optical phonons of the
GaAs. In this sense, this result is a generalization of the

f

exciton, polaron, and impurity-bound polaron energies. In
the limit of mi, oo, that is, p, 0 and p~ 1, we ob-
tain the impurity-bound polaron problem in the same way
we have recently worked out for the case of a two-
dimensional quantum well. " In this limit the eAect of the
canonical transformation is to eliminate the electron coor-
dinate from the Hamiltonian and to replace 1/e by 1/eo
in the Coulomb term. '

The minimization of the energy given by Eq. (6) with
respect to the variational parameter X gives the ground-
state energy of the exciton. Then, the exciton binding en-

ergy is obtained as the difference between the total
ground-state energy of the electron and the hole and this
minimized value of E. We have then numerically mini-
mized the energy expression given by Eq. (6) with and
without the presence of the electron- and hole-optical-
phonon interactions for several values of the size of the
quantum-well wire. In the present calculations we have
used the following physical parameters: t. p

= 12.5,
m, =0.067mp, m~+ =0.45mp, mp —=0.08mp, and
6 cop =35.2 meV, where mp is the free-electron mass.

We have calculated the heavy-hole and the light-hole
exciton binding energies as a function of the length of one
side L„of the GaAs quantum-well wire for several values
of the length of the other side Ly. The results we obtained
are plotted in Fig. 1 for the heavy-hole exciton and in Fig.
2 for the light-hole exciton. As we can see from these
figures, the exciton binding energies decrease monotoni-
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FIG. 1. Heavy-hole exciton binding energy of GaAs quantum
wires as a function of the size of the wires. The solid and dashed
curves represent the exciton binding energies with and without
the presence of phonons, respectively.

FIG. 2. Binding energies for the light-hole exciton in GaAs
quantum-well wires as a function of the size of the wires. The
solid and dashed curves represent the energies of the exciton
with and without the presence of the phonons, respectively.

cally as the wire expands in one direction while reinaining
fixed in the other direction. After sufficient expansion of
one side, the exciton binding energy approaches the value
expected for the binding energy of an exciton in a two-
dimensional quantum well. ' It should be noted that the
changes in the energy shown in Figs. 1 and 2 are similar
for comparable changes in the dimensions of the wire.
For example, the heavy-hole exciton binding energy for a
100X100 A wire changes by the same amount when one
side doubles or is reduced by one-half in length. In a very
close similarity with the impurity-state problem in quan-
tum wires as worked out by Bryant, the exciton binding
energies are correlated to the cross-sectional area of the
wire rather than to the sizes of the rectangular cross sec-
tion. This insensitivity to the shape of the wire is much
more evident for large wires which are less sensitive to the
boundary effects.

From Figs. 1 and 2 we may note that the values of the
exciton binding energies are larger than those in compara-
ble two-dimensional quantum wells. ' These results are
consistent with the cathodoluminescence observed by
Petroff' et al. in quantum-well wires, which was attribut-
ed to transitions involving exciton states. They observed
the value of the exciton binding energy at 8-10 meV
higher than that in two-dimensional quantum wells. We
also can see that the heavy-hole exciton in a GaAs
quantum-well wire is more strongly bound than the light-

hole exciton, in contrast to the two-dimensional analog.
The reason for this behavior is easy to understand. Both
the heavy-hole mass and the electron-heavy-hole reduced
mass are heavier than the light-hole mass and the
electron-light-hole reduced mass, respectively, leading
then to an enhancement of the binding energy.

In Figs. 1 and 2 are also included the contribution of
the electron- and hole-optical-phonon interaction to the
exciton binding energies in GaAs quantum-well wires as a
function of the sizes of the wires. The relative shift of the
exciton binding energies, i.e., &E~ (EIi —E~)/Eq,
where Eg and Eg are the binding energies with and
without the exciton-phonon coupling, respectively, de-
creases when one of the dimensions of the wire increases.
The polaronic contribution is larger for wires of small di-
mensions, and ranges from about 23% for a IOX50 A
wire, for the heavy-hole exciton, to 19% for a 200X 200 A
wire, for the light-hole exciton.

The importance of the electron- and hole-optical pho-
non interaction is more pronounced as the exciton binding
energy becomes larger. Then, for a given size of the wire,
the largest polaronic contribution to the exciton binding
energy comes from the heavy-hole exciton which is more
strongly bound.

In conclusion, we have calculated the binding energies
for the heavy-hole and the light-hole excitons in GaAs
quantum-well wires with rectangular cross section as a
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function of the size of the wires. We find that the binding
energies increase on decreasing one dimension of the wire.
The binding energies approach the value expected for
two-dimensional quantum wells of finite thickness by ex-
panding one side while keeping the other fixed. We find
that the exciton binding energies are more correlated to

the cross-sectional area of the wire than to the sizes of the
cross section. We have also investigated the efI'ects of the
electron- and hole-optical phonon interaction on the exci-
ton binding energies. Our results explicitly show the
quantitative importance of the polaronic contribution in

increasing substantially the exciton binding energies.
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