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Effect of layer-thickness fluctuations on superlattice diffraction
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We investigate the effect of layer-thickness fluctuations on diffraction in compositionally modu-
lated materials. Two types of fluctuation distributions are considered: continuous random fluc-
tuations which result from disordered or amorphous interfaces and discrete fluctuations resulting
from coherent interfaces. We show that these two types of fluctuations produce identical super-
lattice diffraction structure at small scattering vector, but entirely different structure at large
scattering vector corresponding to the discrete fluctuation spacing. Both structures are observed
in experimental x-ray diffraction spectra.

There is much interest in the structure of superlattices
and compositionally modulated materials formed by im-
posing an atomic-scale artificial periodicity during growth
of a film. ' The structure of these materials covers the en-
tire spectrum from single crystals to completely amor-
phous materials depending on growth conditions and the
size and structure mismatch of the constituents.

The diffraction pattern of a perfect superlattice with a
precise composition-modulation wavelength may have su-
perlattice peaks in the growth direction at any scattering
vector Q that is a multiple of 2n over the wavelength.
Whenever a real superlattice possesses strong composition
modulation and a well-defined average composition-
modulation wavelength, its x-ray diffraction pattern ex-
hibits these superlattice peaks at small scattering vector
Q. However, at large scattering vector two qualitatively
different behaviors may occur. In one case, which is usu-
a11y observed when there is structural size mismatch of
10% or less, the superlattice peaks reappear in the vicinity
of the Q corresponding to a plane spacing in the growth
direction. These features have even been seen in cases
where there is a symmetry mismatch between mating
planes, such as in Nb-Cu (Refs. 2 and 3) and Mo-Ni
(Ref. 4). An example is shown in Fig. 1(a), which is the
diffraction pattern in the growth direction for a Mo-Ni
multilayer with a composition-modulation wavelength of 8
nm prepared by sputter deposition. The data are plotted
versus the scattering angle 28 which is related to the
scattering vector Q by Q 4xsin(e)/X, where k 0.154
nm is the x-ray wavelength.

In the other case, which tends to occur with more severe
structural size mismatch ()15%), no superlattice peaks
appear at large Q. This is illustrated in Fig. 1(b) which
shows the diffraction pattern from a Ni-Ti multilayer
structure with a composition-modulation wavelength of 8
nm prepared in exactly the same manner. 5 The broad
maxima observed in the high-angle (large-Q) region are
associated with scattering from individual Ti and Ni lay-
ers. This system nevertheless shows sharp superlattice
peaks at small Q indicating strong composition modula-
tion. This type of diffraction result is typical of systems
with large structural mismatch between the constituents,
such as Ti-Ni, Cu-Hf, and Ni-Zr, or in cases where
one constituent is amorphous or disordered such as Nb-Ge
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FIG. 1. X-ray diffraction pattern for compositionally modu-
lated films with a composition modulation-wavelength of 8 nm.
Shown are both low- and high-angle regions. (a) is Mo-Ni and
(b) is Ti-Ni. Both films were prepared by sputter deposition in
exactly the same manner.

(Ref. 7) or Co-Sb. s Nakayama et al. , and more recently
Sevenhans et al. have demonstrated that fiuctuations of
0. 1 nm in the spacing between the slabs of the crystalline
component will result in this effect. Layer-thickness Auc-
tuations of 0.1 nm are impossible to avoid in preparation
of multilayer samples, and one is left with the question of
why superlattice lines are ever observed in the high-angle
region.

The nature of the interface is central to this issue. In
cases where high-angle superlattice lines are observed, the
lattice mismatch between the constituents is small and in-
terfaces are coherent. Even in cases where there is a sym-
metry difference in the mating planes, such as exists be-
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tween the Ni (111)and Mo (110) planes, registry is possi-
ble due to a matching of the spacing between rows of
atoms. ' Crystalline coherency across an interface
confines fluctuations in layer thickness to be multiples of
the plane spacing of either constituent (or even some aver-
age plane spacing in the case where there is some alloy-
ing). However, in the presence of an amorphous phase
there can be a continuous distribution of layer thickness.
The amorphous phase can arise either from the structure
of one of the constituents or due to interfacial disorder (as
is seen in systems where the constituents are crystalline
but there is a large size mismatch ).

In this Communication we present for the first time
analytical diffraction pat terns for superlattices with
discrete layer-thickness fluctuations. These were obtained
using a generalized-Patterson-function approach which
can also give the diffraction when the layer fluctuations
are continuous. In addition, we have performed numerical
simulations of diffraction from multilayers constructed
with either type of fluctuation. Both approaches yield
similar results and show that the large-Q superlattice
structure only appears when the fluctuations are discrete.

The electron density of a superlattice layered in the z
direction is the convolution of the electron density of a sin-
gle layer with the distribution function of the layers
h(z). '' Consequently, when the scattering vector Q is
along z, the scattering amplitude is the product of the lay-
er structure factor, S(g), and the Fourier transform,
D(g) of the layer distribution function. " The scattering
intensity is therefore

I «g) I

'=
I &(g) I 'ID(g) I

',

where
I D(g) I

is the Fourier transform of the general-
ized Patterson function h (z ) *h ( —z ), the self-convolution
of the layer d&stribution function

Consider a superlattice in which the repeating layers
have identical electron distributions but in which the spac-
ing between adjacent layers has a Gaussian distribution of
half-width o. about the average spacing c. The nth-
neighbor distribution is an n-fold convolution of the first-
neighbor distribution. " Thus an N-layer superlattice will
have the generalized Patterson function

N —
1

h(z) «h( —z) = g (N —
I
n I )G„(z)

n —%+1

where

G„(z) =8(z —nc) «
exp( —z'/ n a')

d~lnla'

(2)

(3)

This generalized Patterson function reduces in the limit
of large N to the expression for an infinite superlattice
given on page 153 of Ref. 11. Its Fourier transform is

1V —
1

ID(g) I
=N+2 g (N —n)cos(ncg)exp( —na Q2/4) .

n 1

(4)

Consider now a different superlattice in which the first-
neighbor spacing is not continuously distributed about the
average, but in which the spacing differs from c by md,
where m is an integer and d is some plane spacing of the
layer. If the probability that the spacing is c+md is pro-
portional to exp( —m d /o ), the generalized Patterson
function is Eq. (2) with

(6)

G„(z)=Ã„g 8(z —nc —md) [8(z —nc)*exp( —z /I n
I
o )], (5)

where A'„ is a factor which normalizes the probability distribution. In Eq. (5), the convolution inside the brackets is to
be done before multiplication by the left 8 function. The Fourier transform of this generalized Patterson function is

r
N —

1 QO

I D(g) I
=N+2 g JV„(N —n)cos(ncg) 1+2 g exp( —m d /na )cos(mdg)

n 1 m 1

For small Q the transforms (4) and (6) differ only by
terms of order Q . Both have a maximum of N at Q =0
with additional superlattice maxima when Q is a multiple
of 2n/c, all of which diminish with I Q I at a rate which
depends on a. For

I Q I large compared to 1/o, (4) damps
to a constant value of N, whereas (6) contains images of
the small-Q superlattice structure centered about values
of Q which are a multiple of +' 2n/d. If c is a multiple of
d, (6), is, in fact, periodic in Q with period 2n/d.

In Fig. 2 we show the high-Q behavior of the scattering
intensity IF(g) I

and its two factors ID(g) I and
I S(g) I

for a superlattice composed of 10 layers each
consisting of 20 atomic planes of Ni(111) plus a non-
scattering component with an average thickness equal to
20 atomic planes of Ti(002). The Ti (002) d spacing was
used for the discrete fluctuation spacing d, and also for the
distribution half-width a. Solid lines are used for the
discrete case and dashed for continuous. The Fourier
transform of the generalized Patterson function in Fig.
2(a) shows the behavior described above. Scattering in-

1

tensities are shown in Fig. 2(c). Since the continuous
Fourier transform of the generalized Patterson function is
structureless, the scattering intensity for the continuous
case is just the square of the structure factor for the indi-
vidual nickel layers [Fig. 2(b)]. On the other hand, the
scattering intensity for the discrete case shows superlattice
peaks because the Ni structure factors overlap the super-
lattice structure image in the Fourier transform of the
generalized Patterson transform. This occurs because the
Ni (111)d and Ti (002) d spacings are sufficiently close.
The decay of this discrete transform away from the
scattering angle corresponding to the Ti (002) d spacing
will become more pronounced as a is increased. In a more
realistic calculation, the thickness of the Ni layers will
also fluctuate, with d equal to the Ni (111) d spacing.
The Fourier transform of the generalized Patterson func-
tion and thus the scattering intensity may then have su-
perlattice peaks in the regions corresponding to both the
Ti (002) and the Ni (111)d spacings.

As a check on the above analysis, numerical simula-
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FIG. 2. Theoretical results for diffraction quantities de-
scribed in the text for a superlattice comprised of 10 layers of 20
Ni (111) atomic planes separated by a nonscattering layer of
average thickness equal to 20 Ti (002) atomic planes. The
dashed line is for a continuous layer thickness fluctuation distri-
bution. The solid line is for a discrete fluctuation distribution
with the spacing equal to the Ti (002) d spacing. In both, the
half width of the distribution is equal to the Ti (002) d spacing.
(a) is the Fourier transform of the generalized Patterson func-
tion, (b) is the square of the structure factor for a single layer of
Ni (111) planes, (c) is the diffraction intensity, (d) is the
diffraction intensity calculated by numerical simulation as de-
scribed in the text.

tions were performed using one-dimensional kinematic
diffraction theory which predicts the diffracted intensity

Np 2

IF(g) I

'= g fn(g)exp(~gz. ) (7)

where f„(Q) is the scattering factor of the atoms of the
nth atomic plane, z„ is the position of this plane, and Nz is
the total number of atomic planes in the structure. We
simulated exactly the Ni/Ti superlattices modeled with
the generalized-Patterson-function approach. There were
10 layers with each layer consisting of 20 scattering Ni
(111)planes and 20 nonscattering Ti (002) planes. Thus,
N~ =400. The thickness of the Ti in a given layer was
sampled from a Gaussian distribution of half-width a
equal to the Ti (002) d spacing. The thicknesses were al-
lowed to remain continuous or were made discrete by
rounding to the nearest multiple of the Ti (002) d spacing.

In a real superlattice, the thickness of each layer will
fluctuate as a function of position within the layer, and
since the lateral coherence of the x-ray beam is about 10
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FIG. 3. Diffraction intensity calculated by the Patterson ap-
proach for superlattice structures as described in the text for
several layer thickness fluctuation distribution half widths. Re-
sults are shown for both continuous and discrete fluctuation dis-
tributions. d is the Ti (002) d spacing.

nm, the actual experiment is an averaging of many dis-
tinct superlattice structures. To simulate this effect, we
averaged over 500 examples of superlattices constructed
as described above. The results for both randotn and
discrete fluctuations are shown in Fig. 2(d) and are virtu-
ally indistinguishable from those calculated by the
generalized-Patterson-function method. We regard this
as convincing evidence that this method is correct and, in
particular, that the nth neighbor spacing is an n-fold con-
volution. "

A comparison of the effect of cr on random and discrete
high-angle fluctuation spectra is shown in Fig. 3. The su-
perlat tice peaks are quickly washed out in the case of con-
tinuous fluctuations, and disappear by the time a is equal
to the Ti (002) d spacing. On the other hand, for discrete
fluctuations there is only a slight reduction in intensity
and a washing out of the ringing between the superlattice
peaks. Since higher-order diffraction maxima are not de-
creased in intensity by discrete fluctuations, care must be
taken when using peak intensity ratios as a diagnostic for
layer-thickness uniformity.

In summary, the occurrence of superlattice peaks at
Q =2m/d, where 1 is an atomic plane spacing, is depen-
dent on the nature of the layer thickness fluctuations. A
continuous layer thickness distribution will wash out su-
perlattice lines in this region at very small values of a. If,
on the other hand, the layer thickness distribution is
discrete, we have shown that the superlattice lines will
survive for values of a that are easily realized experimen-
tally.
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