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Self-energy of an electron in a gap between two metals and near a metallic slab
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Using the formalism of Manson and Ritchie, we have calculated the self-energy of an electron
located in the gap between two similar metals and near a metallic slab. The electron is described
in terms of a plane-wave basis set. Numerical work indicates that for gap separations <4 A,
quantal corrections to the classical image potential are not large in the case of a zero-momentum

electron.

The study of the self-energy of a charged particle locat-
ed in a gap between two metals or near a metallic slab is
of great interest in order to understand a number of exper-
imental techniques frequently used in surface physics.
The charge-slab interaction plays an important role in the
analysis of thin films by means of particle-beam spectros-
copies.!"® As another example, the image potential ex-
perienced by a tunneling electron is of paramount impor-
tance in determining the /-V response of a junction.”-
This problem has recently received a great deal of atten-
tion in connection with the scanning tunneling micro-
scope. 10

We present here a theoretical analysis of the interaction
between a charged particle and the polarization modes of
both a metallic slab and a metal-metal gap. We benefit
from the similarity between these two physical systems by
employing a common approach. We are particularly in-
terested in studying the recoil effects associated with the
charge’s finite mass. This physical effect has so far been
neglected in the literature, and we think it is of interest to
estimate its importance in the total potential experienced
by an electron. Manson and Ritchie!' have proposed a
projected local self-energy formalism that accounts for the
particle’s recoil accompanying the virtual excitation of po-
larization modes. Along the same line, Mahanty, Pathak,
and Paranjape,'? using the Manson-Ritchie approach,
have recently studied the combined effects of recoil and
plasmon dispersion in the charge-metal-surface interac-
tion, and Sols and Ritchie!3 have extended this method to
calculate the self-energy of a charge near an interface. To
calculate the effective polarization potential experienced
by a charge near a slab or in a gap, we must first know the
dispersion relation of the surfacelike plasmons and their
coupling to a charge. Since we are concerned with parti-
cles exterior to the metal, we will not consider the bulk po-
larization.

We idealize our physical system by considering two
media described by dielectric functions ¢, (w) and e ().
We assume that medium 1 fills the space defined by
| z| > a and medium 2 lies in the region |z | <a, where
d =2a is the width of either the gap or the slab. If we take
a local dielectric function for the metal’s response, the me-
tallic slab will correspond to the case e;{w)=1 and
e2(w) =1—wp/w?, and a gap between two metals will be
described by the reversed case.

The frequencies of the plasma oscillations which satisfy
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the matching condition are given implicitly by the disper-
sion relation’
e1(w) — e(w) _
61(60)+62(w)
where a can take the values 1 (symmetric mode) or — 1
(antisymmetric mode), and Q is the modulus of the

surface-plasmon wave vector. The frequencies satisfying
Eq. (1) are

wg,=w;(1+ cae ~20a)1/2 | 2)
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where o; =w,/~/2 and 6=1 (—1) for a slab (gap).
If we assume the two media to be described by dielec-
tric functions
Q}

elw)=1—-Y ——,
| >}

i=1,2, 3)

where index j is summed over the effective oscillators of
medium /, then it can be shown that the interaction be-
tween a charge and the boundary modes is given by the
Hamiltonian

I}=ZI“Q,,gQ,,(z)eiQ'P(aQu+a"_Qa) , (4a)
Q,a

(1+ae??)e?, 2 < —a
g0a(z) =1e%+ae %, —a<z<a, (4b)
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Fé},)=2(eQ"+ae —Qa)2, Fé%)=4sinh(2Qa) ,  (4e)

where r={(p,z) is the vector position of the charge, A is
the interface area, and a&a and aq, are the creation and
annihilation operators of the surfacelike plasmons. It may
be noted that Eq. (4) can also be applied to the case where
one or both media are insulators. In the particular cases
of a metallic slab or a metal-metal gap, the coupling pa-
rameter Ag, becomes
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Thus the electric potential created by a boundary plasmon
of momentum AQ and parity a is the same in either the
gap or the slab. Differences in the interaction energy with
a charge will come from the value of o in the plasmon
dispersion relation (2). The charge-slab interaction given
by Eq. (4) is equivalent to the Hamiltonian used by previ-
ous authors. >

From the second-order energy shift, we can define the
following projected self-energy: !1:13
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where |0) and | wo) are the eigenvectors corresponding to
the initial states of the medium and the particle, respec-
tively; |n) and | wy) are those of the intermediate states;
wi (t) =(r| wi); & and & are the eigenenergies of the
particle’s motion; A wyo is the excitation energy of the nth
eigenstate of the medium; V is the particle-solid interac-
tion; and n— 0+.

If a plane-wave basis set is chosen for the unperturbed
motion of the particle, and expressions (2), (4), and (5)
are introduced in Eq. (6), the self-energy of a charge with
velocity V= (Ko,ko)/m interacting with the surfacelike
plasmons of a gap or a slab is given by

e 9 P3.80.(2)

Z(l')= —5 l/l()(l') £k—£0+ha),,0“in (6)|
2 —ikz( ,ika —ika
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where Pg, = (2mwg./h) 172 js the momentum associated with the recoil of the particle.
In the low-velocity limit, V— 0, the self-energy (7) can be neatly separated into a classical and a quantum recoil con-

tribution:

(z)=x.(z)+Z%,(z) .
The classical term is

e’ _ 1
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where y(x) =dInI'(x)/dx is the digamma function.
Since X, is symmetric about the plane z =0 we give only
the expression for z > 0. Equation (9a) gives the classical
image potential experienced by a charge between two
semi-infinite metals and can be obtained by summing the
infinite series resulting from the interaction of the external
charge with the effective image charges on both metals. !4
Analogously, Eq. (9b) gives the classical image potential
seen by a charge near a metallic slab. It is interesting to
note that such potential only depends on the distance be-
tween the charge and the boundary of the slab, and not on
the slab width. In particular, it coincides with the classi-
cal image potential between a charge and a semi-infinite
metal. This is what should be expected from a classical
approach to the electrodynamical boundary problem
where the implicit assumption is made that the width of
the slab is much greater than the Thomas-Fermi length of
the metal. It is in a region of such width near the metal
surface where the induced charge density giving rise to the
image charge is localized. These two cases further
confirm that the classical method of image charges is
equivalent to the use of a local dielectric function for the
metal interacting with a classical particle at rest.

Due to the difference in the dispersion relations of the
gap and the slab plasmons, the recoil term of the
boundary-plasmon contribution to the self-energy will be
given by different expressions in each case. For a particle
near a slab (z > a), we obtain

=e_2 °°_aLQ___Q_ —(S+Q)a
z,(z) 5 za:j; T o€
x {cosh[(S+Q)z]+acosh[(S —Q)z]} ,
(10a)

®)
,z<a , (9a)
(9b)
'and for a particle in the gap (z <a)
2 co
= -0c-0 @
5 =53 ) doe ¢
x{e —S(z—a)+ae —S(z+a)} , (IOb)
where, in both equations,
S2=Q2+P§a=Q2+—2—f;—n—wQa . (10¢)

It may be noted that, when S =Q is taken, Eqs. (10) be-
come identical to Egs. (9).

The self-energy [(8)-(10)], when evaluated at points
z=0 and z =aq, adopts simple analytical expressions in the
limits Q;a <1 and Q;a>1. For a very narrow gap, we
obtain

2
20 =s@=-2 ga«i, an
where Qp = 2mw,/h) 12 while for a wide gap,
e?In2 2 e %
=——=|1-—= >
>(0) 2 2 0 | Qsa>1 , (12a)
2
Sa)=—2% 2QS, Owa>1 . (12b)

The limit (11) shows that the self-energy for a charge be-
tween two metals that are very close to one another tends
to a uniform value equal to the bulk saturation value of a
charge within the metal.!>!3 In the opposite limit of a
very wide gap between two metals, the self-energy of the
middle of the gap tends to the classical value —e?1n2/d,
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FIG. 1. Self-energy of an electron between two metals FIG. 3. Self-energy of an electron in the middle of a gap be-

separated by d =2 A, plotted as a function of the distance from
the center of the gap. Solid line shows the quantum self-energy
as calculated from Egs. (8), (9a), and (10a) of the text. Dashed
line shows the classical image potential obtained by the image
charge method [see Eq. (9a) in the text]l. Dotted line represents
the image potential used in Ref. 9. For both metals r; =2.07 has
been taken to represent Al.

with exponential recoil corrections. As should be expect-
ed, in the same limit, the self-energy (12b) at the metal
surface (z =a) tends to the free-surface value.!!-!3

For a very thin slab, it can be shown that £(a)=0. In
the opposite limit of a very thick slab, Z(a) tends to the
free-surface value (12b).

In Fig. 1 we plot the self-energy of an electron between
two metals separated by d =2 A, as calculated from Eq.
(9a) (classical) and Egs. (8)-(10) (total quantum). The

) (V)

z (angstroms)

FIG. 2. Self-energy of an electron near an Al slab, plotted as
a function of the distance from the center of the slab. The solid
line shows the quantum self-energy as calculated from Egs. (8),
(9b), and (10b) of the text, and the dashed line represents the
classical image potential [Eq. (9b) of the text]. The dotted line
shows the quantum self-energy of an electron near a semi-
infinite medium whose surface is located at z =a. Thickness has
been taken d =2a =1 A for the finite width effects to be shown.

tween two metals, plotted as a function of the metal-metal dis-
tance d, for various metal electronic densities r; =2, 4, and 6
(solid lines). The dashed line shows the classical result
—e?In2/d.

approximate classical image potential proposed by Binnig
et al.® is also shown. For the recoil contribution we have
taken r; =2.07 to represent Al. Clearly, the presence of
recoil reduces everywhere the effective potential and
makes it saturate to a finite value at the surface.

In Fig. 2, both the classical and the quantum self-
energies of a charge near an Al slab are represented. The
quantum self-energy of a charge near a semi-infinite medi-
um''=13 is also plotted for comparison. Finite thickness
correc/iions are very small even for a slab of thickness
d=1A.

Figure 3 shows the value of the self-energy at the mid-
dle of the gap as a function of the gap width d for several
metallic densities. The classical value —e?In2/d is also
shown. Recoil effects become negligible for d =4 A, de-
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FIG. 4. Self-energy of an electron located at one metal sur-
face (z =a), as a function of the metal-metal gap width d =2a,
for various metal electronic densities: r;=2 (dotted line), 4
(dashed line), and 6 (solid line).
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FIG. 5. Self-energy of an electron located at the surface of a
metallic slab (z =a), as a function of the slab width d =2a. The
metal electronic densities are r; =2 (dotted line), 4 (dashed
line), and 6 (solid line).

pending on the density: The lower the density, the larger
the range where recoil corrections are important.

In Fig. 4, we plot the self-energy right at the surface as
a function of the gap width. Z(a) saturates rather quickly
to the free-surface limit, since the surface-surface cou-
pling effects are not very important at one extreme of the
gap.
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Figure 5 shows the self-energy at the edge of a slab, as a
function of the slab thickness. As in the case of the gap,
the self-energy at the surface soon saturates to the limit of
infinite thickness. This should be expected from the fact
that the recoil distances are not very large in the metallic
range: Typically, 0.5ASQ,7'S1.3A.

In conclusion, we have calculated the self-energy ex-
perienced by an electron near a metallic slab and between
two metal surfaces. We have studied the role played by
the particle’s recoil accompanying the virtual excitation of
plasmons. For the interaction Hamiltonian between a
charge and the slab or gap surfacelike modes, we have
given expressions that can account for the presence of in-
sulators. We have shown that quantal effects in the bar-
rier height of the potential experienced by an electron be-
tween two metals are important for d $4 A. For an elec-
tron at the edge of both a gap and a slab, finite width
corrections are negligible for physical systems of interest.
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