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Strong-perturbation theory for impurities in semiconductors
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An improved version of the perturbation theory has been proposed. Expressions for the wave

functions and energies of both degenerate and nondegenerate cases are derived. This method pro-
vides a simple way to treat problems involving more than one potential in the Hamiltonian and the
case when the perturbations are comparable with or larger than the unperturbed Hamiltonian. We
use this method to study the ground state of a hydrogenic atom in a uniform magnetic field of arbi-

trary strength in which the usual perturbation treatment is limited for most semiconductors to a
small range of magnetic field.

I. INTRODUCTION

There are only a few types of problems which can be
solved exactly by using the Schrodinger equation. Usually
many approximation methods are introduced to solve ap-
propriate problems. The most common methods are per-
turbation and variational methods. Perturbation theory is
applicable when the perturbation is small compared to the
unperturbed Hamiltonian and in general it is hard to find
a proper variational trial wave function for use in the
variational method.

More generally, if we consider a system involving more
than one potential in the Hamiltonian (or the case where
the perturbations are comparable with or larger than the
unperturbed Hamiltonian), the problem becomes very
complicated. First, it is hard to find proper approxima-
tion methods and second, even if one does find approxi-
mate solutions, it is difficult to justify the physical results.
It is always possible to find solutions using numerical
methods for such problems, but usually it is not possible
to provide a good physical perspective especially for the
wave functions.

Recently, the problem of a shallow impurity in a quan-
tum well has been intensively investigated. There are two
potentials involved in such problems; one is the Coulomb
potential and the other is the quantum-well potential.
The variational method has been widely used' to treat
these problems. For the variational wave function, one
takes the product of the wave functions corresponding to
the quantum-well and Coulomb potentials, and treats this
as a trial wave function. The variational method has been
also used to treat more complex problems, such as a shal-
low impurity in a quantum well or in a superlattice in the
presence of an electric or magnetic field. It has also
been used by Liu and Lin' to solve the hydrogenic atom
in a semi-infinite space.

In this paper, we propose a new approximation method
to deal with the above problems. Many of these can be
solved simply to a certain degree of accuracy. Expres-
sions for the wave functions and energies of both degen-
erate and nondegenerate cases are derived. We only dis-
cuss the case of two potentials here. The same method

can easily be applied to other problems. As an example,
we use this method to solve the ground state of the hydro-
genic atom in a uniform magnetic field of arbitrary
strength. This problem is of interest in semiconductor
physics where typical values of the effective mass m * and
dielectric constant e make the effective rydberg, R ' about
10 times smaller than for the free hydrogen atom. In
particular, the magnetoabsorption of semiconductors has
received great attention because it can provide important
information about the electronic band structure of these
materials. Our solutions, to the first-order approxima-
tion, are in good agreement with those obtained in Refs.
11 and 12 where very complicated methods have been
used.

II. THE FORMALISM

Consider the Hamiltonian

H =Hp+ V',

where

Hg=Ef .

Assume that Hp has an exact solution

Hpg=Epg .

(3)

(4)

We introduce a factor f=e g in the wave function t)'t and
write ll as

Substituting Eq. (5) into (3), we get

Hf=flHpd'+4(v'
I

trg
I

'+~'g)+2—~g ~4] .

We chose g in such way that

I
vg I

' —v'g = v',
then from Eqs. (3), (5), and (6), we have

(6)

Hp ———7' +Vp .

V is a perturbation of another potential which is compar-
able to Hp. We want to solve the Schrodinger equation
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and

H =Ho+H'

fHQ=Efg,
where

(8)

(9)

Nevertheless, it still gives good results as we will see.
Before we give a detailed discussion, let us examine

which kinds of common and useful potential forms of V'

ensure that g can be solved exactly and analytically.
Writing g=r and substituting g into Eq. (7), we find for
three dimensions

H'=2Vg. V . (10)

Notice that H' only operates on P. The function g can
be solved from Eq. (7) with the initial conditions

V'=0, g =0, and Vg =0 .

The Eq. (11) is deduced from the condition that
H1/J —HQP when V' =0. From Eqs. (7) and ( 1 1 ), we have
two independent solutions, and we can always determine
which one is suitable for the real problems.

A few remarks should be made here. First, the wave
function g already includes the term f=e, which con-
nects V' through Eq. (7); after this transformation, the
perturbation theory is applicable even if the perturbation
is very large. Second, we can treat H' either by the per-
turbation or the variational method. In this paper, we
treat H' as a perturbation. Third, if Eq. (7) cannot be
solved analytically, we can always take

H'=2Vg. V+ V' —
I
Vg

I

—V g

as a perturbation, but one must choose the function g
such that V' —

I
Vg

I

—V g is minimum. Fourth, the
wave functions for different excited states are not orthog-
onal as is the case for the usual perturbation method. '

A. Nondegenerate case

Starting from Eq. (8), following the usual perturbation
procedure, ' we get

f(H E„' ')P„'"—= f(H' E„"')(—5„'
' . —

Because H is Hermitian, we have

f Q)(HQ2)*«= f $2HQ)«,

(12)

(13)

where g;= fP; (i =1,2). From Eqs. (5), (8), (9), and (13),
we get

(a) m =2, V'=r, g =r
(b) m =1, V'=r ', g=r,
(c) m = —1, V'=r, g=r

This method provides most accurate solutions if it is
used to solve problems involving more than one potential
with one of the potentials being of Coulomb, harmonic-
oscillator, or r form. We now derive the wave func-
tions and energies for both degenerate and nondegenerate
cases.

2 Ho 1dr= ) HO 2*dr+ )
H' 2*—2H' I dr.

Multiplying both sides of Eq. (12) by (fP„' ')*, integrating over the whole space and using Eq (14), w. e have

E'"f If I

'
I 0" I

'«= f If I'e'" H'0'."«+f I f I

'[0'."(H'y(.'))*—y.")*(H'y~")]«.

(14)

(15)

(l~ )
I

(17)

substituting Eq. (17) into Eq. (12), and using the same
procedure for obtaining Eq. (15), we have

For the first-order approximation to the energy, we can
neglect the second term on the right-hand side of the
above equation. So we have

2 (0)eH (0)d
Pl n

(16)
I f I

2
I

P(0)
I

2dr

For the first-order wave function, we write

I

where

f(H E(0) )P(2) +f(H' E(1))P(1) fE(2)P(0) (19)

( m
I

n ) = f (fP )*fP„' 'dr .

We can always solve Eq. (18) be choosing a finite set of l
depending on the accuracy we desire. Combining Eq. (18)
with Eq. (15), the wave function to the first order can be
determined.

For the second-order energy of the nondegenerate case,
we have

g (E,'" E„") (m
I
l—)a,'"

I

=E„"'(m
I

n ) H' „, (m&n), —(18)
I

Multiply the above equation by (fP„' ')* on both sides and
integrating, from Eq. (14) we have

f (fP„')*fH'cb'„"dr E„'"f (fP'„')*feb„"—'dr+ f I f I [P '(H' P' ')* P' '*(H' P' '))dr=E„' '(n —
I
n) .

For the energy to the second order, the third term on the left-hand side of the above equation can be neglected and we
have



35 BRIEF REPORTS 9289

E' =((n
I
n)) ' f (fP ')*fH'P'„"dr E—„"f (fP'„')*fP„''d (20)

where P'„" and E„'" can be obtained from Eqs. (15) and
(18).

B. Degenerate case

Suppose there are k degenerate wave functions for ener-

gy E„given by P„; (i =1, . . . , k). We write the wave
functions P'„' as the linear combinations of
(i =1, . . . , k), i.e.,

Using Eq. (14), and retaining only the first-order term,
i.e., neglecting the term

f I f I

2[y(0)(Hip(1 j)e yI1) (Hip(DI )1d

we get

k

g (H/; E„"—(I
I

i ))C =0, (l=1,2, . . . , k) . (22)

k
y(0) y C(OiyIO) (21) Here

Substituting Eq. (21) into Eq. (12), and multiplying both
sides by (fP'„~ )* and integrating, we get

(P) e H E(0) (1)d

k

(fy( )o)e(H~ Ej&)) y C(o)y(0)d

HI'; —— '„ I*H' '„,'dr,

(I
I
') =j If I

'O'I*4'„!,dr .

The first-order energies E„"', E„'' (i=1,2, . . . , k) can
be obtained by solving Eq. (22), or equivalently the matrix

H', ) E„" (1
I

—1)

Hp) E„" (2—
I
1)

Hk) E„"'(k
I
1—)

H;2 E„"(1
I

2—)

H;, E„' (2I2—)

Hk2 E„' '(k
I
2—)

H'ik E„" ( 1
I

k—)

H2k E„"'(2
I

k—)

Hkk E„' '(k
I

k)—
(23)

The wave functions P'„can also be determined from
Eq. (23) in combination with the normalization condition.

III. APPLICATIONS TO A PHYSICAL PROBLEM

Now we apply the above method to the problem of a
hydrogenic atom in a uniform magnetic field of arbitrary
strength. Using the effective-mass approximation, the
Hamiltonian in cylindrical coordinates can be written as'

TABLE I. Energies of hydrogenic atom in a uniform rnag-
netic field.

Ea Eb Ec

IVgl —Vg=g p /4,
and, combining this with the initial conditions, g=O,
g =0, and Vg=O, we have g=gp /4. Note that a con-
stant g also contributes to Ho. The wave function 1( and

H =Hp+ V',

where

Hp ———V' —2/r —)
2 . a

(24)

~2 2/4

an«=(p'+~')' ', p=(x'+y')'~'. The units of energy
and length here are R*, the effective rydberg, a* the ef-
fective Bohr radius. R *=R p rn '/rn pe and
a*=apemp/m*, where e is the static dielectric constant,
m* and mp are the effective mass of the electron and the
free-electron mass, respectively; Rp and ap are the hydro-
gen rydberg and Bohr radius, respectively. g is a parame-
ter which represents a measure of the effect of the mag-
netic field on a particular substance. Also g=kco, /2R*
and co, =Be/m *. It is obvious that Hp has an exact solu-
tion, that for the hydrogen atom in the free space, P„& (r).
From Eq. (7), we have
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H' [see Eqs. (5) and (10)] are given by

e
—qP2/4y

H'=2Vg. V =gp
0p

We will now treat H' as a perturbation. The zeroth-order
wave function is tt =P„t (r, B,tp), the wave function of a
hydrogen atom in free space. So we have

results of the ground state here. The results for the excit-
ed states will be discussed elsewhere. ' For the ground
state, P&pp

——( I/Vtr)e ", the normalization condition is

oo m 2m'

N 2= —f f f e "t' ~ e "r sinBdr dBdcp .

To perform the integration, we change to the parabolic
coordinate' a& and a2, we have

N =( —,
'

) e " ' ' ' '(at+a2)da~daq
0 0

E„, = — +a+my,(0)

n
(25) = tl'[ I+zi'e" Ei( —tl')], (27)

4n&~ =N exp( W ~4)dntm(r B g) (26)

where N is a normalization constant. We only discuss the

where g'=2/ri and Ei( —x) is the exponential integral. '

The energy to first order in H' can be calculated as fol-
lows:

(0) P
2 —TH P]pp = —Nrl

r

E]00= —N e " r sinOdr dOd
0 0 0 r

—qa &a&/2 —a
1
—a2Nri f —f e ' ' ' 'a~azda~daq

=2+2e" Ei( —g')[I + ti'e" Ei( —g')]

Etpp ——EIpp+EIpp ———I+ rl+ 2+2e" Ei( tl')[I+ rl'e—"Ei( —tl')] (28)

In Table I, we list the results of our calculation and oth-
ers, all of which have been rounded to three decimals.

Notice that very complicated calculations have been
performed in order to get the results in Refs. 11 and 12.
Here we used a very simple calculation, only to the first
order of energy, and nevertheless the results are in very
good agreement with those in Refs. 11 and 12.

In conclusion, we have proposed an improved version
of the perturbation theory. It provides a method to treat
the problems involving more than one potential, or a very
large "perturbation" term in the Hamiltonian. The ex-
pressions for energies and wave functions for both degen-
erate and nondegenerate cases have been derived. This
method was used to study the ground state of a hydrogen-

ic atom in a uniform magnetic field of arbitrary strength.
The results for the ground-state energies, to the first-order
approximation, are in quantitative agreement with other
more elaborate calculations, which is quite encouraging,
thus pointing out the effectiveness of the present method.
Applications of this method to the problem of a shallow
impurity in the presence of both electric and magnetic
fields is under investigation.
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