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Exact solution of a transport equation for hot-electron effects in semiconductors and metals
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We present and solve a Boltzmann equation for hot-electron transport where the elastic and in-

elastic collision terms are characterized by separate relaxation times ~,&
and r;„, respectively. The

model is solved exactly for metals and semiconductors as a function of R =~;„/~,~. The exact solu-
tion is compared to two standard approximation schemes: the sp (or diffusive) approximation in
which the Legendre expansion is truncated after the second term, and the effective-temperature
model. For large R, the sp approximation becomes exact. In metals, both the effective-temperature
model and the sp approximation are qualitatively correct for all R. In semiconductors, a strong
dimensionality dependence is seen; in one dimension the approximations are valid, but in three di-
mensions they in general are not. The longitudinal (parallel to the field) and transverse projections
of the exact distribution functions are calculated for semiconductors, and in a regime where the sp
approximation is poor, the longitudinal function is seen to be approximated well by the one-
dimensional solution with renormalized R.

I. INTRODUCTION

In semiconductor devices, substantial electron heating
occurs' because of the existence of large electric fields
( —10 V/cm). Heating has also been observed in metals
at low temperatures. While most device designs are
based on the drift diffusion or the conservation equa-
tions, a proper theoretical treatment of hot-electron trans-
port would require solving the Boltzmann-type equation
for arbitrary field strength. The Monte Carlo method
(equivalent to the Boltzmann equation) has been success-
fully employed in both nondegenerate and degenerate
semiconductors, but the lack of simplicity of this method
could make it difficult to predict trends in the distribution
function of the electrons, and hence the behavior of semi-
conductor devices. Solving the Boltzmann equation could
supply a qualitative understanding of the underlying
physics; however, this is, in general, difficult to do, and
one often has to resort to approximate methods.

We are therefore interested in the validity of approxi-
mate methods. In this paper we shall look at two approx-
imation schemes that are frequently used when the elec-
tric field E is assumed to be constant in space: the effec-
tive temperature model and the sp or diffusive approxima-
tion. In the effective temperature model the electrons are
assumed to be thermally distributed with an effective tem-
perature T,~f which is a function of both the lattice tern-
perature and the applied field. This approximation is ad-
mittedly extremely crude and thus has limited applicabili-
ty, but it has the advantage of being extremely simple. In
the sp approximation, the electron distribution function is
first expanded in terms of Legendre polynomials

f(p) = g ft(p)Pt(cos8)
l

where 0 is the angle between p and E. The Boltzrnann

equation is then converted into an infinite set of coupled
differential equations ' for fi(p). These equations are
then truncated after l =1, leaving only two equations in-
volving only fo and f, . This truncation procedure is ex-
pected to be valid when the main scattering mechanism is
low-energy acoustic phonon scattering. Then the scatter-
ing is quasielastic; the main effect of collisions is to ran-
domize the momentum of the electrons gained from the
field so that the spherically symmetric part of the distri-
bution function fo(p) should dominate all other Legendre
components fi(p). This randomization effect would be
enhanced when either impurity scattering (as in metals at
low temperature) or carrier-carrier collisions (as in highly
doped semiconductors) is important. The question
remains, given the complexity of the Boltzmann equation,
how can we verify if the effective temperature model and
the sp approximation are valid approximations? In addi-
tion there are more general questions that deserve an
answer. For example, how does nonlinear transport differ
in metals as compared to semiconductors? Are there any
dimensional effects? Often, in desperation, one-
dimensional transport equations are used for three-
dimensional systems —is this approximation justified?

In this paper we address some of these issues, utilizing
a transport equation which is sufficiently simple to be
solved exactly, yet which contains much of the relevant
physics. We assume throughout the entire paper that the
energy band of the semiconductor is parabolic and that
the Fermi surface of the metal is spherical. Within the
relaxation-time approximation, we treat the quasielastic
and inelastic collisions separately. For a constant field E
in the negative z direction the transport equation for elec-
trons (charge —e) reads

[f(p) —fo(p)l — tf(p) —f. (p) j
t)f (p) 1 1

~pz +in
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where r, ~
and ~;„are the relaxation times for elastic and

inelastic scattering, respectively. Eq. (2) was used by
Arai' and by Tremblay and Vidal" to study electron
heating and noise in metals. The first term on the right-
hand side reflects the fact that in a quasielastic collision
electrons lose very little energy, and thus they relax to the
spherically symmetric (angular averaged) part fo of the
unknown distribution function. For hot electrons this
term includes not only impurity scattering but also low-
energy acoustic phonon processes scattering as well since
such a process can be considered essentially elastic when
the characteristic electron energy is large compared to the
energy lost. The second term represents inelastic col-
lisions in which electrons are assumed to relax to the
equilibrium distribution function f,q(p). For hot elec-
trons, this term includes not only single-phonon processes
(acoustic and optical emission), but also multiphonon
emission cascades as discussed by Mahan. ' Here we ig-
nore electron-electron collisions although, in principle,
one could include a term describing such collisions within
the relaxation-time approximation. '

Assuming r,i«r;„, Arai has solved Eq. (2) for metals
within the sp approximation, and found that the angular
averaged distribution function fo closely resembles a
Fermi-Dirac distribution function at an effective electron
temperature T,ff which is higher than the lattice tempera-
ture T and that for high fields, T,f~ ~ E . Furthermore,

Arai showed that even when a more realistic energy-
dependent inelastic collision rate was introduced into the
model, within the sp approximation both the power law
and the effective temperature model remain valid. The —,

'
power law has been confirmed by recent experiments. '
This remarkable result suggests that despite the crudeness
of the relaxation-time approximation, the apparently sim-
ple Eq. (2) retains much of the physics of real metals.

In this paper we present an exact solution of Eq. (2).
This allows us to test the validity of the sp approximation
and of the effective-temperature model, and to make a
comparative study of hot-electron effects in metals and
nondegenerate semiconductors. We do so mainly by look-
ing at fo, the angular averaged part of the distribution
function. To start with, we introduce a few momentum
scales (or equivalently energy or time scales) that appear
frequently in the analysis and which characterize the dis-
tribution function (see Table I). In the absence of the field
the only scale is the thermal momentum p, h

——(2mkz T)'
(and the Fermi momentum pF in the case of metals). The
field introduces two more relevant momentum scales: the
drift momentum pD, which is the average momentum of
the distribution function, and a momentum scale pE
which is associated with the average excess energy over
the thermal energy that the field provides (exact defini-
tions are given in Sec. II).

An important parameter is the ratio of the elastic to in-

TABLE I. Frequently used symbols in this paper.

Time scales

relaxation time for inelastic scattering
relaxation time for elastic scattering

1/&=1/~;„+1/w, ~ (total scattering rate)
7 p = (7 7; )

' (energy relaxation time)
R =~;„/~,l (ratio of elastic to inelastic scattering rates)

Momentum scales

p, h
——(2mkz T)' (thermal momentum)

pF ——(2m cF )' (Fermi momentum)

pp =kg TpF /2cF (momentum spread at Fermi surface due to temperature T)
pD ——eE~ (average drift momentum)

ps eEro/V d (mom——entum associated with energy due to the field)
k =p/pth

Energy scales

c/k~ T ff (semiconductors, c. measured with respect to the band edge)

l(e e )/k&Tft(meta, ls)

T lattice temperature

Temperature scales

1/2
6

eE~p ——
~2

1/2
PEPF (metals)

m

12cF

77 md

2 2 2pE
2

(eE7p) = (semiconductors)
ml m

kgTE ——.

T+ TE (semiconductors)

( T + TE )
'~ (metals)
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II. SOLUTION IN FOURIER SPACE

In this section we obtain expressions for the Fourier
transforms of f(p) and its angular average fp(p) in terms
of the Fourier transform of f,q(p), the equilibrium distri-
bution. We also introduce some time, momentum, and
temperature scales that will be useful in discussions in
later sections.

Define g(r) as the fourier transform of f(p)

d~pg(r)= J &e '~'f(p),
(2m. )" (3)

where d is the spatial dimensionality. Then, by Fourier
transforming Eq. (2), we obtain

1 1g(r)= . gp(r)+ g,q(r)1+ieEz~ +in

where ~ '=~
I '+~;„' is the total scattering rate, and g0

and g~ are Fourier transforms offp and f,q, respectively.
We first average Eq. (4) over the angles to find gp(r).
This gives

gp(r) =g, (r)l[(1+R)X(r)—R],
where R =~;„/~,&, and

elastic scattering rates R =r;„/r, i. Arai expected that in
metals the sp approximation is valid for large values of R
(i.e., when elastic scattering dominates). We find that for
metals the spherically averaged part of the distribution
function fp(p) varies rather weakly with R, and both the
sp approximation and effective-temperature model remain
qualitatively correct over a large range of R. This does
not hold for semiconductors, for which a considerably
stronger dependence is found. In particular as far as Eq.
(2) is concerned the effective-temperature model is not a
good approximation for semiconductors. In addition, the
exact spherical part of the distribution function fp(p) is
seen to be strongly dependent on spatial dimensionality in
semiconductors, but essentially independent of spatial
dimensionality in metals. We also considered the longitu-
dinal (parallel to the field) and transverse (perpendicular
to the field) projections of the full distribution function
for three-dimensional semiconductors. In contrast to
fp(p) the projected longitudinal distribution function is
found to agree fairly well with the one-dimensional distri-
bution function provided the value of R is properly renor-
malized. This suggests that for qualitative studies one-
dimensional models are quite useful, provided that
translational symmetry exists.

This paper is organized as follows. In Sec. II Eq. (2) is
solved in Fourier space and relevant momentum scales are
identified. In Sec. III the spherically symmetric part of
the distribution function is calculated exactly and a com-
parative analysis of metals and semiconductors is present-
ed. In Sec. IV we calculate the longitudinal and trans-
verse distribution function exactly and compare the for-
mer with the one-dimensional case. Sec. V contains our
conclusions.

[1+(pDr )'I

X(r) = [1+(pDr) ]', d =2
(pDr)/tan '(pDr), d =3,

(6a)

(6b)

(6c)

where pa is the average momentum of the distribution
function

pD =eE~ .

Substituting gp(r) from Eq. (5) in Eq. (4) we obtain

2ej= i —Vg(r)
~ „

mA'

ne &E nepD
Z 7

m

where m is the effective mass. This shows that the aver-
age drift momentum of the distribution is in fact equal to
pD, as asserted previously. The energy per particle w is
given by

w = V g(r)
~

p=w q(T)+(eE&p) /m
g,q(0) 2m

(10)

where 7 p = (7 r; ) . rp is associated with the typical
length with which a particle diffuses before undergoing
an inelastic collision' and w,q(T) is the average energy
per particle when the system is at thermal equilibrium at
temperature T. Note that the excess energy due to the
field enters additively in Eq. (10). We define a moinen-
tum scale

p~ =eE~p/v d—
associated with the excess energy acquired from the field.
The definition implies that the excess energy acquired
from the field is equal to p~d/m, so that pz is a measure
of the broadening of the distribution in each direction in
momentum space due to the application of the field. In
general, pz is quite different from the drift momentum

pa =—eE~, which determines the current,
]/2

1+R
PE =PD

d
(12)

Thus, if R is large, PE, and hence the excess energy of the
distribution over the thermal energy, can be large even if
the drift momentum (and hence the current) is small.
This is because a large R means that elastic scattering
dominates over inelastic scattering, and elastic scattering
degrades the current but not the energy of the distribu-
tion.

We now define an effective temperature T,~~ for a non-
equilibrium distribution of electrons in an electric field as
follows: The energy of the nonequilibrium distribution of

g,q(r) X(r)
g(r) =

I +ipiiz ( I+R)X(r) R—

Once g(r) is known, f(p) can be obtained by Fourier
inverting Eq. (8). However, g(r) itself contains consider-
able information. For example, the particle density is
n =2g(0)/A' . The current density j is given by
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w=weq(Terr) . (13)

In semiconductors, w, q( T) =dkrr T/2 which leads to
T ff—T + TE, where TE, the excess electron temperature
is given by

d = 2

2
—k&Tr; (eE——&o) /m .

For metals, since the Fermi energy EF is much greater
than all other energy scales (i.e., EF &&krr TF, krr T) we use
the Sommerfeld expansion' for an expression to obtain
the total energy of an equilibrium distribution as a func-
tion of temperature T,~~

——T + TE, where
1/2

12m@

7T md
k~ TE —— (eE~o)

(6 p) ( r2 pFpF
(15)

electrons is equal, by definition, to the energy these same
electrons would have in thermal equilibrium with tem-
perature T,ff,

whether or not these approximations are adequate. A
necessary condition for an approximate distribution func-
tion to be valid is that the spherically symmetric part fo
of the approximate distribution function be nearly the
same as the fo of the exact distribution function. If it is
not, then the approximate function is clearly inadequate.
Even if the fo's do match, we are not assured that the full
distribution function is necessarily adequately described
by the approximation. Nevertheless, knowing that fo is a
good approximation is useful. For example, Arai' has
shown that in the case of R &&I the magnitude of the
Legendre components fi-R ', and so we would only
be interested in fo since the other components would be
negligibly small, and also that in this case, the noise spec-
trum of the current fluctuations can be calculated with
the knowledge of fo

Sr(ro) ~ f dE fo(e)[1—fo(e —fuu)l+(co~ —co) . (16)

This underscores the significance of fo.
From Eq. (5), the Fourier transform of fo(p) can be

written as

with the Fermi momentum pF —
(2meF )'

The physical properties of an electron distribution can
roughly be characterized by the momentum scales we
have described above. In the absence of an electric field,
the only momentum scales are the thermal momentum
p, h ——(2mk&T)' and the Fermi momentum pF= (2m eF ) . Because there are two independent time
scales in the transport equation Eq. (2), r;„and r,~, the in-
troduction of an electric field introduces two independent
momentum scales: pD which is a measure of the current,
and p~ which is a measure of the additional spread of the
distribution function (and hence the increase in the ener-

gy) that the field has produced.
Despite the fact that Eqs. (9) and (10) are similar to the

semiclassical expression for j and w the electron tempera-
ture does not have a simple field dependence. This is be-
cause ~;„depends on the field, since as the average elec-
tron energy increases the collision rate must increase. For
metals at low temperature, r;„~ T and r=r

&
is tempera-

ture independent. This means that rocc T,&r which gives
T,ff ~E . This result has been obtained independently
by Anderson, Abrahams, and Ramakrishnan' and by
Arai' and has been confirmed by experiments. '

Note that the field dependence of the current Eq. (9) is
much weaker since current depends on ~, not 1"p. As long
as ~;„yy~,&, the current is ohmic. However, when ~;„be-
comes comparable to ~,&

the mobility begins to decrease.
Such a decrease is a standard feature in hot-electron trans-
port.

III. THE SPHERICALLY SYMMETRIC
DISTRIBUTION FUNCTION fo(p)

In obtaining the Fourier transform of the exact distri-
bution function g(r) we have obtained in principle the ex-
act function. However, comparing the exact distribution
function to the two approximation schemes described in
the introduction is no trivial matter. We would like a
simple litmus test to provide us with an indication of

go(r):g,q(r)P(r—),
with

f(r) = 1

(1+R)X(r)—R
(18)

where X(r) is given by Eqs. (6). Thus, g(r) gives an indi-
cation of how the field distorts the distribution function
from the equilibrium configuration.

Using the method of Arai' it can be shown that the sp
approximation corresponds to expanding the denomina-
tion in (18) to order r so that

f,z(r) =
1+(p~r)'

(19)

fo = '(p)= J dp'~f, q(p')+(p —p'), (20)

This works best when R && 1, since P(r) will be negligibly
small when the expansion of X(r) starts to break down.
Note that the sp approximation is essentially independent
of dimension, apart from a simple dependence through
Pz. Furthermore lt,~(r) and hence fo'~' are functions of ~o
alone. While this is correct for one dimension (the sp ap-
proximation is exact for d =1 since substituting the exact
expression for X(r) [Eq. (6a)] into Eq. (18) yields Eq.
(19)) for d & 1 the true distribution function will depend
on ~,~

and ~;„separately. The parameter R =~;„/w, ~
is a

convenient measure of the deviations from the sp approxi-
mation, which is expected to be good when R is large, i.e.,
when elastic scattering dominates. Note also that g,z(r)
in Eq. (19) decays with a characteristic length of I/p~, in
all dimensions. This can be shown to be true even when
the sp approximation is not expected to hold (i.e., when R
is not very much greater than 1).

The distribution function fo may be expressed as a
one-dimensional integral in two ways. The first exploits
the fact that the inverse fourier transform of a product is
a convolution, and so the d =3 distribution function is
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where

4(p —p)= f e'P P 'P(r)dr . (21)

For d = 1 the expression is the same as (20), except that it
lacks the factor p'/p

one and three dimensions. Then,

(p(p —p')=(vr/PE) exp( —
I p —p'

I /pE) .

If we specialize to the T =0 case, the integral in Eq. (22)
can be done analytically

f()"= (p)= J dp'f q(p')4(p —p') ~ (22)

Since the characteristic decay length of g(r) is 1/pE, the
characteristic decay length of its Fourier transform 4(p)
is pE. An inspection of Eqs. (20) and (22) indicates that (11

serves to smear out the equilibrium distribution function
over the rnornentum scale pE.

In the second way, fp(p) is found by directly inverse
Fourier transforming go(r), a step for which g,q(r) is
needed. For semiconductors we have

f($P) (p)

—(p —pF)xpE
2e ~ P&PF

—(pF —p)/p&
1 —2e p &p'F .

(26)

Obviously fp(p) in the sp approximation differs from the
Fermi function. For a comparison, we linearize the
single-particle energy cp =p /2m about the Fermi level
EF=pF2/2m. Then using the definition of the effective
temperature and defining the reduced energy variable

p1Q —mk&Tr /2
g,q(r) = e

2 we have

( Ep EF ) /kB Teff (P PF )PF™BTeff

For metals it is difficult to obtain an exact analytic ex-
pression for g,q. However at low temperatures if we
linearize cp about the chemical potential cF——pF/2m we
have

f($P) (u )
—,e ", u)0

le —a~u~ 0
(27)

( sp EF ) /kB T=—(p pF ) /po ~—
where the momentum scale pp ——(kB Tm /pF) is the
momentum over which the Fermi distribution is smeared
due to the temperature T. Then in one dimension

where a=~6/m =0.78. For
I

u
I

&&1, fp(u)
——,(1—au). The Fermi function fF(u)=(e "+1) ', on
the other hand, behaves as

g,q(r) = sin(ppr) 7Tfpo

sinh(vrrpp )
(24)

e ", u))1
fF(u)- —,'(1 ——,u), Iu I

«1
(28a)

(28b)

where the first factor on the right-hand side is the Fourier
transform at zero temperature. In general, the three-
dimensional form of g,q can be obtained from the one-
dimensional result from the relation

geq(r, d =3)=— geq(r, d = 1) .a
27Tf' BP

(25)

A. Metals

The major difference between metals and semiconduc-
tors is that there is an extra energy scale associated with
metals, namely, the Fermi energy cF which is much larger
than k&T or k&TE. To illustrate this point, we shall use
Eq. (20) to calculate fp(p) for p=pF. Here p'/p is essen-
tially unity in the region where the integrand is signifi-
cant, since 4(p —p') has a decay length of pE «pF.
Hence, the factor p'/p may be set equal to one, and the
resulting integral is seen to be of the same form as the
one-dimensional result [Eq. (22)]. Therefore, in metals,
essentially the only difference between the one-
dirnensional and three-dimensional results comes from the
difference in the factor P(r). Note also that because
f,q(p) has particle-hole symmetry about pF and because (II

is an even function, by Eq. (22), fo(p) must also have
particle-hole symmetry about pF,' i.e.,

fo(PF+ I
~p

I
)=1 fo(PF —

I ~p
I

) . —
In the sp approximation, p(r)=[1+(PEr) ] in both

1 —e-~" ~, u« —1. (28c)

Despite these differences, the sp approximation for
fp(p) is qualitatively similar to the Fermi function as seen

from Fig. 1(b). When the lattice temperature T&0 it is
difficult to obtain an analytic formula for fp(p). Howev-

er, linearizing about the Fermi energy, we obtain, in the sp

approximation,

f(sP)( )
2 sin(m. g)

1 )n nvlg-
for p &PF

1 (n /g)— (29)

where v=(p —pF)/pE and g=pp/PE aT/TE. At T=0-—
Eq. (29) reduces to Eq. (26), as it should.

The exact spherically symmetric distribution function
fp(p) for finite values R and for various values of T were
obtained numerically. These results are shown in Figs.
1(a) and 1(b) as functions of reduced energy u
= ( s —eF ) /kB T,ff along with the sp approximation re-
sults. As expected the sp approximation is quite good for
large R ( & 10). For smaller R, there is a deviation for the
sp results, but the dependence on R is not dramatic. It is
also interesting to note that even for smaller R the sp ap-
proxirnation becomes better as the lattice temperature T is
increased.

To test the effective temperature model we have plotted
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In(1/fo 1—) versus the reduced energy [Figs. 1(c) and (d)].
If fo ——(e"+1) ' we should obtain a straight line. Again
the agreement is quite good for large R and finite tem-
perature T= TF. For lower values of R and T the effec-
tive temperature model becomes worse, but the deviations
from the exact result are still not very large for u &4. If
an approximate function is to be used to perform a noise
calculation using Eq. (16), it is crucial that it must not de-
viate significantly from the exact result in the region

~

u
~

&4, since the major contribution to the integral
comes from this region.

less distribution function

fo(k) = ~ fo(p)
2 1th
n 2M

(30)

where the prefactor is chosen so that F(k) is normalized

Fp k d"k=1 . (31)

We obtain fo(k) by inverse Fourier transforming go(r).
Using Eq. (17) for go(r) and Eq. (23) for g,q(r), we have
in three-dimensions

B. Semiconductors

For semiconductors it is convenient to scale the
momentum by the thermal momentum by defining
k=p/p, h where p, h

——(2mk~T)' . Define the dimension-

b2x2/4 .
fo(k) = dx

b2 " xe " / sin(kbx)
2k' o (1+R)(x/tan 'x) —R

where the parameter

(32)

0.5 0.5

o 0.4 o 04

o
0.3

LL

o
u 03

lZ

o 0.2

O. I

o 02

o O. I

0.0 '

0
0.0

I 2 3
(E' —E'f) / kBT«f

I

O

2
I
O

2

0
0 I 2 3

(6 —E'F) / kBT«f
I 2

(6 —CF) / kBT«f

Flax. 1. The angular averaged distribution functions fo for metals vs the reduced energy u =(e eF)/k~T, ff for variou—s values of
R =7.;„/r, ) (solid lines), together with the distribution functions for the effective temperature model (dotted lines) and the sp approxi-
mation (dashed lines). (a) and (c) Tz/T=2W6/m=1. 56; (b) and (d) Ts/. T= ~. In (a) and (b), fo vs u is plotted, while in (c) and (d),
ln(1/fo —1) is plotted vs u to facilitate comparison of the results with the effective temperature model. For the case of Te/T = 1.56
[(a) and (c)], the R =0 and R = 1 curves are virtually identical, and the R = 10 curve is indistinguishable from the sp approximation
curve. At Tz/T=V 6/sr=0 78 all the curves are essential. ly indistinguishable. For e & EF, fo(u)=1 —fo( —u).
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b =pth/pD = 4(1+R) T
d TE

(33)
fo"'(k) = s e "'[W(s —k) —W(s+k)],

2k~
(36)

Similarly, in one dimension one has
where s =(T/TE)' and 8'is related to the error func-
tion

b 2~2/4
b I"d e "'cos(kbx)

(1+R)(1+x ) —R
(34)

W(x) =e" [1—erf(x)] . (37)

Similarly doing the integral in Eq. (34) we have for one
dimension

The sp approximation corresponds to an x expansion in
the denomination of Eq. (32) to order x which gives
1+—,(1+R)x . Such an expansion is valid for x & 1.
The exponential cuts off the integral at x —4/b . There-
fore the small x expansion is good if b /4&~1, i.e., if

fo(k)= —,se "[W(s —k)+ W(s+k)]. (38)

The expression for the effective temperature distribution
function is

3T(1+R)/TE))1. (35)
[n.(1+I/s )] i S

Thus, in general, the sp approximation is valid for low
fields and large R.

For the sp approximation the integral (32) can be
evaluated analytically with the result

(39)

One feature of Eqs. (36) and (38) is the existence of hot-
electron tails. Since the error function approaches —1

)LF
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FIG. 2. The angular averaged distribution functions (Fo) for semiconductors vs reduced energy u =c/k~ T,fg for various values of
R —~;„/v;I (solid lines for d =3, dashed-dotted lines for d =1), together with the distribution functions for the effective temperature

model (dotted lines) and the sp approximation (dashed lines). We have plotted Fo ——[n(1+T~/T)] Fo so that the effective-

temperature models for both one and three dimensions are e ". (a) and (c) T~/T =1; (b) and (d) T~/T =10. In (a) and (b), the Fo is

plotted vs u, while in (c) and (d), —ln(FO) vs u is plotted to facilitate comparison of results with the effective-temperature model.
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when its argument approaches —ap, for large k we have

2 —2sk+s

Fo(k) — kit
, ~e

—2$k +s

(40a)

(40b)

Therefore the exponent falls off rather slowly (linearly) at
large k. Note also that fo falls off more slowly as s de-
creases, i.e., as the field increases, since s ~E '. These
tails may be suppressed if a more realistic scattering
mechanism than the constant relaxation-time approxima-
tion is used.

To compare the exact results with the sp approximation
and the effective-temperature model, Eq. (32) was evaluat-
ed numerically for various values of R. The distribution
functions are plotted versus reduced energy u =c./k&T, ff
in Figs. 2(a) and 2(b) for T/TE ——1 and T/TF ———,', ,
respectively. In these figures, the distributions have been
multiplied by a factor [m(1+1/s )]"~ so that the effec-
tive temperature model is given by e " for both one and
three dimensions. To test the effective temperature
model, we have plotted —ln(fo) versus u in Figs. 2(c) and
2(d). In these graphs, the effective-temperature distribu-
tion functions are straight lines of slope one.

The first feature to note is that the effective-
temperature model approximates the exact one-
dimensional result rather we11. However, this is certainly
not the case in three-dimensions —the approximation is
inadequate at low fields (T =Tz) and becomes worse
when the electric field increases to TE ——10T. The sp ap-
proximation is much better at the low electric fields, but
deviations from the exact results are large at high fields,
even at R = 10, when one would expect the sp approxima-
tion to be valid. These results differ significantly from
the case of metals where (a) exact results do not deviate
much from the effective temperature or the sp approxima-
tion, even at very large electric fields and (b) fo is essen-
tially independent of the dimensionality of the system.

Part of the reason for the discrepancy between the ef-
fective temperature model and the exact results may be at-
tributed to the use of a constant relaxation time in the in-
elastic term in Eq. (2). In some materials, there might be
a strong increase in the rate of scattering in the high-
energy region where our model predicts a significant num-
ber of electrons. Therefore the constant relaxation-time
approximation underestimates scattering of these high-
energy electrons, giving rise to a hot tail in the distribu-
tion. This tail contributes heavily to the second moment
of the distribution, and this results in an artificially high
electron temperature. An inspection of Figs. 2(c) and 2(d)
indicates that a lower effective temperature would fit the
exact distribution functions better.

In the region p /(2mk~ T,rr) ( 1, the effective-
temperature model and the sp approximation in three-
dimensional semiconductors are inadequate for a funda-
mentally different reason —namely, because the phase
space available for scattering in three-dimensional semi-
conductors is different from metals and one-dimensional
semiconductors. In semiconductors, the phase space

available for scattering increases dramatically with in-
creasing dimension. For metals this increase is suppressed
because the Fermi energy is so large that most of the
scattering occurs only on the Fermi sphere. Mathemati-
cally, this can be seen by observing the factors p'/p and
4(p —p') in Eq. (14). At low fields 'P(p —p') is essential-
ly a 6 function, so p'/p=1 and so is of no consequence.
However, for large fields t(p —p') decays over a longer
range and so the effect of the factor p'/p in semiconduc-
tors is to increase the number of low-energy electrons.
Moreover, the extent of this increase is sensitive to the ex-
act form of 4(p —p'). Hence in three-dimensional semi-
conductors, the sp approximation result differs signifi-
cantly from the exact results because different 4(p —p')
were used in each case. The effective-temperature model
simply lacks this increase in the number of low-energy
electrons, and so is the worst approximation.

For metals, p'/p=pF/pF ——1 in the region of interest so
this factor plays no role. In one-dimension semiconduc-
tors, (p'/p) is missing altogether. So for these cases, the
effective-temperature model and the sp approximation are
expected to be similar, and to give good approximations to
the exact results (of course, in one-dimension, the sp ap-
proximation is the exact result).

IV. LONCxITUDINAL AND TRANSVERSE PROJECTION
OF THE DISTRIBUTION FUNCTIONS

IN SEMICONDUCTORS

In the last section, we saw that the spherically sym-
metric part of the distribution function fo for three-
dimensional semiconductors was not accurately described
by either the effective temperature model or the sp ap-
proximation, particularly at small R. This is because the
full high field, low R distribution function is strongly
skewed in the field direction, and so angular averaging the
function cannot be expected to give a full description.
One could of course calculate functions for higher l
values, but a prohibitively large number Legendre com-
ponents may be needed to accurately describe the distribu-
tion function. (According to Hammar 100 1components
may be needed. )

This naturally leads us to attempt to find another
method of simply characterizing the distribution function.
To do this, we project the distribution function onto the
field direction by integrating out the transverse momenta.
We then compare the projected function with the full
one-dimensional distribution function. In the case R =0,
when separation of the variables p„and p~ from the dif-
ferential equation (2) leaves the one-dimensional version
of the equation, the longitudinal projected distribution
function is exactly equal to the one-dimensional distribu-
tion function. Similarities between the two functions per-
sist even when R is made nonzero, with best agreements
occurring with small R. This contrasts with the sp ap-
proximation, which works well with large R. We can also
project the distribution onto the transverse axis by in-
tegrating out p, and, say, p„. Together the longitudinal
and transverse distribution functions provide insight into
the actual shape of the full distribution.
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A. Longitudinal projected distribution function

It is convenient to scale momentum by p,h, defining
kll ——p, /p, h and kz ——p~/p, h. The longitudinal projected
distribution function is then defined as

F3 d kll)= 3 3 f dp„ f dp» f(p)
4nA ~

(41)

where, as before, the prefactor is chosen to normalize
F(k~~), i.e., f F3 d(kll)dklt=1.

Using the Fourier transform of f(p) as given by Eq. (8)
we can write (41) as

F3 d(k~~)= '3
3 f dp„ f dpi' f d rg(r)e' P'.

4nA ~
(42)

The integrals over p~ and p~ simply give 5 functions
which can be used to do the x and y integrals. Then, after
a change of variables pDz =x we have

ikIIbx —x b /4
b ~ 1 —ix e

F3 d(k~~ ) = dx
1+.x [1+R—(R tan 'x )/x]

(43)

k2
II 1Ft d(k~~) =

2
1+ &I+R W(s —

k ii )

1+ 1 — W(s+k~~) (45)

Comparing (43) with (44) we see that the only differ-
ence between the two equations is that (R tan 'x)/x ap-
pears in the denominator of Eq. (43), while in Eq. (44) the
term R /(1+x 2) appears in the corresponding place.
Thus we see mathematically that the two are equal when
R =0. For b ~&1, the exponential cuts off the integrand

where, as before, b =(p,h/pDl ——[—', (1+R)T/TE]'/2. For
a comparison, in terms of the same variables, the full
one-dimensional distribution function is given by

b kllbx —x b j4
1 —ix eFt d(kii)= dx
1+x [1+R —R/(1+x )]

(44)

Equation (44) can be integrated, and the result is
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at x «1 and so we can keep only the lowest-order terms
in an expansion in x. This expansion gives factors in the
denominator of 1+Rx for d =1, and 1+Rx /3 for
d =3; hence, we expect that for b ~&1, the distributions
will look very similar when R& d

——3R& d. Physically, a
larger Rz d is expected because elastic scattering is much
more efficient in back-scattering electrons in one dimen-
sion than in three dimensions.

For b &1, R& d
——3R& d does not give the best fit

anymore. We "empirically" fit F, d(k~~) «F, d(k~~) by
using functions with the same b (i.e., current) and by
picking the value Rt d so that the peak of Ft d(k~~)
matched that of Fq d(k~~). We used R& d

——1, and b was
chosen so that we reproduced the conditions TE ——T and
'rE ——10. The results are shown in Fig. 3(b) and 3(c).
Lastly, in Fig. 3(d) we show F& d(k~~) and F3 d(k~~) for
the case of R3 d —9 and its "empirical" fit R& d ——4. 1,
for b=0.5, to show that while similarities between the
two are less pronounced at higher R, they still persist.

B. Transverse projected distribution function

4(a) and 4(b) we have plotted Fq(k~ ) for the same param-
eters used in Figs. 3(a)—3(c).

We have seen that the projected distribution functions
look very much like the exact one-dimensional distribu-
tion functions. Accordingly, either in order to simplify
the problem or because of computer time and storage lim-
itations, it may be expedient to use a one-dimensional
Boltzmann equation to describe a three-dimensional sys-
tem. It is not entirely clear whether this is useful, particu-
larly since we have seen a strong dimensional dependence
in fo in the last section. Here, the strong resemblance be-
tween the one-dimensional and the projected three-
dimensional distribution functions can be used in some
cases to justify this simplification.

V. CONCLUSION AND SUMMARY

In this paper we have solved a transport equation exact-
ly to study hot-electron effects in metals and semiconduc-
tors. While the equation itself is approximate in that the
collisions are treated within the relaxation-time approxi-
mation, much of the important physics is considered by

ik~bx —x b l4
oo eFi(ki ) = dx

1+R —(R tan 'x)/x
(46)

The transverse projected distribution function Fj is de-
fined by integrating out p, and either px or pz. This pro-
jected distribution function gives a picture of the motion
of electrons transverse to the electric field. Should elec-
trons gain more and more transverse kinetic energy in a
semiconductor device, a possible consequence is that these
electrons will spill out of potential barriers, degrading the
performance of the device. For this reason, Fj is worth
looking at. In terms of k& ——p&/p, h, where p& is the
remaining transverse momentum
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When R =0, this gives a Gaussian: F~(k~, R =0)
—k~=(e ')/v tr. For R ~ 0, Fz(kz ) deviates from a Gauss-

ian as electrons are scattered elastically to the high
momentum region.

For b ~& 1 we can expand tan 'x /x in the denominator
to lowest order in x
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ik~bx —x b //4

F~(k~ )= I dx2' 1+—xR
3

2= —,'s'e '[W(s' —k~)+ W(s'+k~ )], (47)

where s ' = (b /2) v'3/R . Note the similarity with Eq.
(3g), which describes the angular averaged one-
dimensional distribution function. There, s = (b / 2)
&X 1/(1+R). If we compare the projected transverse
distribution function with an angular averaged one-
dimensional distribution function with the same b (i.e.,
current), we see that in order for these to be equal [within
the approximation made above to obtain Eq. (47)], we
must have Rq d

——3(Rq d+1). This again shows that
backscattering in the one-dimensional system is more effi-
cient than "side-scattering" in three dimensions. In Figs.
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FICx. 4. Projected (transverse) distribution functions Fj (k& )

vs reduced momentum p /(2mk~ T) ' . (a) R = 10 and
TE/T=1. The exact result is the solid line, while the approxi-
mate expression [Eq. (38)] is plotted with the dashed line (b)
R =1 with TE, /T =1 (solid line) and T~/T =10 (dotted line).
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using different relaxation times for inelastic and quasi-
elastic scattering. This equation was previously used and
solved approximately by Arai to study hot-electron effects
in metals, and his results have been confirmed by recent
experiments. Our results show that both the sp approxi-
mation scheme used by Arai and the effective temperature
model give qualitatively correct results for metals, and the
results are essentially independent of spatial dimensions.
In semiconductors, however, the distribution function de-
pends strongly on spatial dimensionality, with discrepan-
cies between the exact solution and both the effective tem-
perature and sp approximation growing with increasing
dimensionality. We concluded that such a dependence
(which does not depend on the relaxation time approxima-
tion) is attributed to the increase in phase space available
for scattering in semiconductors. We then investigated an
alternative means of simply characterizing the three-
dimensional semiconductor distribution function. We cal-
culated the longitudinal and transverse projections of the
distribution functions and found that both were quite well

approximated by the one-dimensional semiconductor dis-
tribution function with renormalized parameters. We
concluded that this might provide justification in some in-
stances of using a one-dimensional Boltzmann equation to
describe a three-dimensional system. However, there are
still other interesting questions to investigate, such as a
more thorough investigation of noise spectra, effects of in-

tervalley scattering and effects of electron-hole interac-
tions.
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