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Electron-energy-loss rates in Al, Ga;_, As/GaAs heterostructures at low temperatures
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We have measured the energy-loss rates of electrons in modulation-doped Al,Ga,_,As/GaAs
heterojunctions at low temperatures. At the temperatures of this experiment, the energy loss is due
to acoustic-phonon scattering, mostly through the deformation-potential interaction. We describe a
theory of the energy-loss rate to acoustic phonons, discuss the effects of static screening, and deter-
mine a value of the deformation-potential constant by matching the theory to our experimental data.
We show how the temperature dependence of the energy-loss rate can be used to determine the ef-
fectiveness of screening. In agreement with previous studies, we find that an anomalously large
deformation-potential constant of 16.0 or 11.5 eV, for the screened or unscreened theory, respective-
ly, is necessary to explain the data. However, in contrast with previous studies, we do not interpret
this result as indicating some error in previous measurements of the deformation potential in bulk
GaAs. Rather, we suggest that it results from some inadequacy in the model used to represent
acoustic-phonon scattering in heterojunctions, or from some additional scattering mechanism not

present in bulk material.

I. INTRODUCTION

Recent studies of acoustic-phonon scattering in
Al,Ga,;_,As/GaAs heterojunctions have led to contro-
versial conclusions regarding acoustic deformation-
potential scattering.!~* In a modulation-doped hetero-
structure the electronic wave function is largely confined
to the GaAs, and we therefore expect the deformation-
potential constant Z to be that of bulk GaAs. However, a
number of studies of transport properties in
Al,Ga;_,As/GaAs heterostructures have led to the sug-
gestion that the deformation-potential constant is 11—16
eV,>~7 considerably larger than the commonly accepted
bulk value of 7—8 eV.%° Because transition rates calculat-
ed in the deformation-potential formalism are proportion-
al to Z?, this is a significant discrepancy.

Most previous studies of the deformation-potential in-
teraction in heterojunctions have inferred a value for Z
from the temperature dependence of the mobility. It is
known that the absolute mobility is limited mainly by ion-
ized impurity scattering, even in samples with mobilities
of the order of 10® cm?/V sec, but it is not clear which
scattering mechanism dominates the temperature depen-
dence of the mobility. These studies assumed that, at
temperatures below ~40 K, the temperature dependence
of the mobility is due solely to acoustic-phonon scattering.
However, it has been shown that the temperature depen-
dence of ionized impurity scattering is significant in sam-
ples which are not highly degenerate.* Lin, Tsui, and
Weimann have found that ionized impurity scattering
dominates the temperature dependence of the mobility in
samples with mobilities less than approximately 10°
cm?/Vsec at 4.2 K.> The effect of ionized impurity
scattering is reduced in samples with high electron con-
centration and high mobility, but may still be important.
Other scattering mechanisms, such as surface roughness
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or surface charge scattering, may also affect the mobility.
These contributions to the mobility can mask the effect of
phonons and complicate the determination of Z. This
possibility is of special concern because of the discrepancy
between the value of Z necessary to fit data from bulk
material and the value necessary to fit data from hetero-
junctions.

A recent study by Hirakawa and Sakaki’ has used the
electronic-energy-loss rate at a lattice temperature of 4.2
K to determine Z. The energy-loss rate is unaffected by
elastic scattering mechanisms, such as ionized impurity
scattering, and the results are therefore more reliably in-
terpreted. At temperatures below ~40 K, where polar
optical-phonon scattering is negligible, acoustic phonons
provide the only known inelastic scattering mechanism.
They determined that a deformation potential constant of
11 eV was necessary to fit their energy loss data to a
theory which included screening of the electron-phonon
interaction.

In this study we measure the energy-loss rate at various
lattice temperatures, present a theory of the energy-loss
rate to acoustic phonons, including a discussion of screen-
ing effects, and suggest possible reasons for the discrepan-
cy between the value of the deformation potential neces-
sary to fit data from bulk and from heterostructures.

II. THEORY

The theory of scattering in quasi-two-dimensional sys-
tems was first developed to explain mobility and energy
loss in the inversion layer formed in Si metal-oxide-
semiconductor field-effect transistors (MOSFET’s).!0—13
It has been shown that, at low temperatures, deviations
from equipartition result in an energy-loss rate with a T}
dependence determined by the Q dependence of | M(Q) |,
where T is the lattice temperature, Q is the phonon wave
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vector, and M (Q) is the scattering matrix element (in-
cluding the screening factor, but not the phonon occupa-
tion number). With the simplifying assumption of strictly
two-dimensional (2D) phonons, | M (Q)|?« QP leads to
(9e/3t) « (T, —T,;)T}*P, where (de/3dt) is the average
energy-loss rate per electron, and T, is the electron tem-
perature.' If we assume 3D phonons, we find
(3e/3t) < (T,—T;)T}*?. The dependence of the
energy-loss rate on the Q dependence of the scattering
matrix element provides an important method of distin-
guishing experimentally between different scattering
mechanisms. In particular, as we will discuss later, the ef-
fect of screening can be deduced from the T, dependence
of the energy loss because the screening introduces an ex-
tra factor of Q% into | M(Q) |2 These early studies of
scattering assumed that the electrons were purely 2D.
This leads to results which are quantitatively incorrect.

More recent work has assumed that the electrons are
quasi-2D. That is, the electronic envelope wave function
is given by

V¥ < explik'1))¢(z2) , (1)

where the wave function is separable into plane waves
parallel to the confining interface, and a narrowly local-
ized function ¢(z) perpendicular to the interface. At the
temperatures and electron densities of our experiment,
only the first subband is occupied, and all electrons have
the same perpendicular wave function.

Price has shown that the use of quasi-2D wave func-
tions leads to matrix elements which are proportional to
the overlap integral'*

1@ = [ ¢X2)expliQ,2)dz , 2)

where Q) is the perpendicular component of the wave
vector of the phonon with which the electron interacts.
The overlap integral is 1 for small Q,, and falls off to 0
as Q, becomes large. How fast it falls off depends on the
electron wave function. For the self-consistent wave func-
tion used in this study, I(Q,)=0.9 at Q, ~6x 10° cm ™},
and decreases to 0.1 at Q, ~4x10® cm~!. At low tem-
peratures the results are less sensitive to the exact form of
the wave function because the overlap integral is 1 for all
phonon modes with significant occupation numbers. For
a typical wave function in an Al,Ga,_, As/GaAs hetero-
junction, the lattice temperature must be below 1 K for
the approximation I%(Q,)=1 to be accurate. At the tem-
peratures of our experiments (1.4—9 K), the results are
still sensitive to the specific wave function used.

The exact form of the wave function can have a strong
effect on I(Q,) and therefore on the average scattering
rates. In our study, the wave function perpendicular to
the interface is calculated using a self-consistent interface
potential, including exchange-correlation effects. We as-
sume a conduction-band offset of 300 meV. For compar-
ison, we have also used the approximate Fang-Howard
variational wave function, with somewhat different re-
sults. We will discuss this later.

Price has suggested that screening of the deformation
potential must be included.!® Static screening in the
random-phase approximation is accounted for by multi-
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plying the unscreened matrix element by a screening fac-
tor, S, given by

Q)
S=——"—— (3)
Q,+PH(Q))
where
HQ )= [ [ dzidz;¢%z))¢%z;) exp(—Q |z, —2, ),
(4)

and

P =(e?/e,e0)2m* /#?) . (5)

For GaAs, P~2x10% cm~".

It is desirable to verify the accuracy of this screening
theory experimentally. The theory of screening in an an-
isotropic system is complicated and requires the use of
untested approximations. It is also unclear how accurate-
ly the static (instead of dynamic) screening theory de-
scribes the electron-phonon interaction.

In the limit of strong screening, the static screening fac-
tor reduces to

_2
-

As noted earlier, the extra factor of Q changes the T;
dependence of the energy-loss rate at low lattice tempera-
tures. (In the approximations that allow for an analytic
solution, the parallel and perpendicular components of Q
contribute to the power of the T dependence in the same
way as the full 3D component.) We find that for
(T,—T;) < T; the deformation-potential interaction leads
to (de/dt) « (T, — T))T} if screening is not included, and
to {de/dt) o< (T, — T}) T} if screening is included.'®'® At
high lattice temperatures, the energy loss is proportional
to (T, —T;) for both the screened and the unscreened in-
teractions. Although these temperature dependences give
a qualitative understanding of the energy-loss rate, they
depend on approximations, and only apply over limited
temperature ranges. The experiments reported in this
study have been done in an intermediate-temperature
range where there is no simple relationship between the
energy-loss rate and the lattice temperature.

Current theories of scattering in Al ,Ga,_,As/GaAs
heterojunctions assume that the phonon modes are the
same as those of bulk GaAs. This may be an oversimpli-
fication. It seems probable that long-wavelength phonons
will be affected by the proximity of the surface of the
crystal. Mendez, Price, and Heiblum justify the assump-
tion of bulk 3D phonon modes by citing magnetophonon
experiments which indicate that the energy of the polar
optical-phonon modes is relatively unchanged,' but this
energy is probably insensitive to the mode of the phonon,
and therefore a poor indicator of any disturbance in the
modes. Studies of the mobility in Si MOSFET inversion
layers have shown that interface modes can be important
in that system.!> Interface phonons have been clearly ob-
served in Al Ga,_,As/GaAs superlattices,'” but we
know of no conclusive work on single heterointerfaces.
We continue with the assumption of bulk 3D phonon

S (6)
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modes because there exists no definitive theory of inter-
face modes, but we caution that the results should not be
compared directly with those from bulk material.

In order to calculate the energy-loss rate it is necessary
to know how the applied electric field affects the form of
the electron distribution function. We assume that the
electrons have a Fermi-Dirac distribution f(g) with an
electron temperature 7, which is greater than the lattice
temperature T;.

It is convenient to calculate the average energy loss per
electron by calculating the energy gained by the phonons
from the electrons and dividing by the number of elec-
trons which participate.!® Using this approach, we write

de —1 dNq
<at>_ N, %ﬁw

2 3
where N, is the number of electrons participating, and
fiwg is the energy of a phonon mode. dNq /3t may be
written as
aNQ
ot

(7

212 0.)5%Q) IM(Q)|?
X8(8k+ﬁ(l)Q—Ek+Q”)
X [(NQ+1)f(€k+Q”)[l—f(Ek)]

_NQf(ek)[l_f(elH-Q“)]} N (8)

S (&)

_222(2m*)l/2 fwd
—_— o ek"/_

pep(2m)?

(30)=

where Q) nin=0 if eQ”<4z-:k or if (eQ|—2\/ske
ﬁuQ”) and

Q.min=I(eg, —21/eieq V' /#ul —Qf1'" (13)
otherwise. Q| .x is given by
leax=[(€QH+2\/Ek8Q”)2/ﬁ2u12—Q,2|]1/2 . (14)

The results for piezoelectric scattering are similar.
Over certain temperature ranges, approximations can be
made that lead to the simple temperature dependences dis-
cussed earlier.'®!® For the temperatures used in this
study, it was necessary to perform the integrations numer-
ically for given T,, T}, and &.
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where N is the Planck distribution function, oy is relat-
ed to Q by the dispersion relation wg=uQ
=u(Q}+0%)"2 and e,=(#/2m*) | x|% Here u is the
sound velocity, either longitudinal or transverse, £ is the
Fermi energy, and the remaining symbols have their usual
meanings. The sum is over the two-dimensional electron
wave vector k. S =1 corresponds to the unscreened case.
The matrix elements are given by

2
2779 )

2__
MQ =0

for deformation-potential scattering,

#ileh14)? 90107

2__
IMQ|P=— s

for longitudinal piezoelectric scattering, and

,_ fileh1s) 80107 +0f
2pu, 207
for transverse piezoelectric scattering.

For the deformation-potential interaction, these equa-
tions can be reduced to

IM(Q)| (11)

© Q max
[.7 40, fe;m dQ, {exp[(1/kT,—1/kT,Yiwg]—1}

X NoIXQ,)SHQ Q1 +07)
—172

(Fwp —eg )?
— 2 U | et Awg)] , (12)

X [1—
4sst”

III. EXPERIMENT

The theory gives the energy-loss rate as a function of
T, T,, and Z. We measure T, as a function of input
power at known T, and then adjust Z to produce the best
fit between the theory and the experimental data. T, is
measured by using the well-known temperature depen-
dence of the amplitudes of the Shubnikov—de Haas (SdH)
oscillations.!® The SdH oscillations occur when the mag-
netic field strength perpendicular to the plane of the 2D
electron gas (2DEG) is varied, causing Landau levels to
pass through the Fermi level, changing the density of fi-
nal states available for scattering, and resulting in oscilla-
tions in the sample resistance. Increasing temperatures
damp the oscillations through thermal broadening. This
effect has frequently been used to measure 7, in bulk
semiconductors and in Si inversion layers,2®?! and was the



9206

method used by Hirakawa and Sakaki in their study.

Although there is a theory to predict the amplitudes of
the SdH oscillations as a function of temperature, it in-
cludes a number of unknown parameters, and is not accu-
rate enough to be used directly. We therefore calibrate the
temperature dependence of the SdH oscillations experi-
mentally. This is done by measuring the amplitudes at a
sequence of lattice temperatures while using low input
powers to ensure that the electron heating is negligible.
The electron temperature at higher input powers can then
be determined by comparing the resulting amplitudes with
the calibration curve.

The SdH amplitudes are an excellent measure of 7, be-
cause they have no direct dependence on 7). A quantity
which is a direct function of both 7; and T, cannot be
used because its T, dependence cannot be calibrated. One
recent study has used the T dependence of the sample
resistance to determine T,.?> Resistance depends both on
the concentration and on the mobility, both of which can
depend differently on T, and T}, and this method must
therefore be used with care. If, for example, the mobility
is phonon limited, then it is virtually independent of T,
and cannot be used to measure 7,. In most cases, the mo-
bility will be a function of both T, and 7}, and it will be
difficult to calibrate the T, dependence of the resistance.
We do not believe resistance to be an accurate measure of
T, for our particular samples. We attempted to measure
T, using the sample resistance, but were unable to fit the
resulting data with a consistent value of Z2. Data taken
at the higher input powers required a value of Z? that
was an order of magnitude different from that required
for the lower input powers. This is to be compared with
the results obtained by using the SdH amplitudes as a
measure of T,, which required less than a 10% variation
in the value of Z? needed to fit the data over the same
range of input power.

A number of complications must be considered to en-
sure the accuracy of the results. The theoretical energy-
loss rate with which we compare our experiment was cal-
culated with the assumption that the density of states is
constant. However, the SdH oscillations occur because
the magnetic field has disturbed the density of states and
hence the scattering rate. We must minimize the distur-
bance if the comparison is to be accurate. By using mag-
netic fields low enough that the total change in the sample
resistance is small, we can be assured that the change in
the scattering rate is minimal. The total resistance change
for our samples over the range of magnetic field used (up
to 4 T) is approximately 10%. We are able to use what
would normally be considered a high magnetic field be-
cause we have used samples with relatively low mobility
(~2x%10* em?/V sec), and correspondingly broad Landau
levels.

It is also important to verify that the scattering theory
used is applicable to the experimental conditions. For a
degenerate semiconductor the use of the golden rule is not
justified unless #/er < 7, where 7 is the time between col-
lisions.!® The Fermi energy for our samples in 16.5 meV,
as determined from the period of the SdH oscillations,
and we infer a 7 of 810~ !® from the mobility, which
easily satisfies this inequality. Note also that the mean
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FIG. 1. (a) The structure of the sample used in this study.
The sample was grown by atmospheric pressure MOCVD. (b)
The mesa pattern for the devices measured.

free path of an electron is longer than its de Broglie wave-
length.

The samples used in this study were grown on Cr-doped
semi-insulating GaAs (100) substrates using atmospheric-
pressure  metal-organic  chemical-vapor  deposition
(MOCVD). The structure used was a modulation doped
single heterojunction, details of which are shown in Fig.
1(a). Photolithography was used to define mesas with a
large aspect ratio, as shown in Fig. 1(b), and Ohmic con-
tacts were made using AuGe/Ni/Au, alloyed at 430°C for
30 sec in a flowing hydrogen atmosphere.

A dc current source was used to measure p,,. The con-
tact resistance is minimal in comparison with the sample
resistance, which was approximately 2 kQ /0. Lattice
heating is expected to be unimportant at the input powers
used. A simple calculation assuming that a thin slab of
GaAs containing the conduction electrons is heated and
that the heat diffuses to the substrate which remains at
the temperature of the liquid He shows that the input
powers used (less than 120 W/m?) can support a tempera-
ture rise of less than 1 mK.
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FIG. 2. The measured electron temperature vs the power loss
at three different lattice temperatures. The solid lines are the
power loss computed from the screened theory with a deforma-
tion potential of 16 eV, and include the loss to piezoelectric
scattering.
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Preliminary measurements were made on devices from
across the sample wafer to ensure the consistency of the
results, and detailed measurements, at a number of dif-
ferent lattice temperatures, were made on a limited num-
ber of devices. Figure 2 shows the dependence of
(T, —T;) on the power loss per electron for one device at
various lattice temperatures.

IV. DISCUSSION

We determine the deformation potential by adjusting its
value to produce the best fit between the experimentally
determined energy-loss rate and the total (deformation po-
tential plus piezoelectric) theoretical energy-loss rate. At
the temperatures of our study, piezoelectric scattering
contributes only about 10% of the total energy-loss rate,
which minimizes any possible error arising from uncer-
tainties in the value of the piezoelectric constant.

Using the self-consistent wave function, the screened
theory requires a deformation-potential constant of
Z =16.0£0.5 eV, and the unscreened theory requires
Z =11.5+0.5 eV. Over the temperature range used in
this study, the difference in the temperature dependence
of the screened and unscreened theory was not great
enough to allow us to reliably choose one or the other
based on our data. This is contrary to what would be ex-
pected based on the analytic solution. The discrepancy
arises because the approximations necessary to solve the
integrals analytically are not applicable in the temperature
range of this study (and they remain inaccurate to tem-
peratures below 1 K). Hence, although the absolute value
of the energy-loss rate is reduced by screening, the T
dependence of the power loss is essentially unchanged,
and either theory fits the data equally well. Figure 2
shows the best simultaneous fit of the energy-loss rate at
three different lattice temperatures. Figure 3 shows how
the fit is changed by a variation in Z. The use of the
Fang-Howard variational wave function would reduce the
theoretical energy-loss rates by approximately 30%, and
required a corresponding increase in the value of Z?
necessary to fit the experimental data.

We note that our measured energy-loss rate is almost
twice that found by Hirakawa and Sakaki, and required a
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FIG. 3. This figure shows how a change in Z affects the ac-
curacy of the fit. The middle line is the screened power loss
chosen for the best fit (16 eV). The upper and lower lines are
the power loss for Z =15 and 17 eV, respectively.
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corresponding increase in Z2 It is not clear why the
energy-loss rates were different. If the phonon modes are
disturbed by the proximity of the surface of the crystal,
then the resulting energy-loss rates could depend sensitive-
ly on the distance between the electron sheet and the sur-
face. It may also be significant that Hirakawa used sam-
ples grown by molecular beam epitaxy (MBE), while we
used samples grown by MOCVD.

We have observed that repeated thermal cycling of a
sample between room temperature and liquid-helium tem-
peratures results in an increase in the energy-loss rate. It
is not clear what the origin of this increase is. One could
speculate that thermal cycling may generate some defects
which scatter carries inelastically. Excitation of electrons
in interface states and subsequent phonon-assisted recom-
bination is one possible process. For devices that had
been cycled many times, the energy-loss rate for a given
T, was as much as 20% more than the original energy-
loss rate. The data shown in Fig. 2 is from a device which
had been cooled only once, over a period of several hours.

In contrast to previous work,">~7 we do not interpret
our data as proving that earlier measurements of the
deformation-potential constant in bulk GaAs were in er-
ror. As Walukiewicz has pointed out,* the adoption of
the larger values of the deformation-potential constant
would limit the theoretical maximum of the 77 K mobili-
ty in bulk GaAs to less than the observed values. If we
consider polar optical, piezoelectric, and deformation-
potential scattering, but not ionized impurity scattering
(which is sample dependent), then a deformation potential
of 16 eV limits the mobility at 77 K to 1.37x10°
cm?/V sec. Even without the inclusion of ionized impuri-
ty scattering, which is significant, these values are consid-
erably below the observed mobilities in high purity ma-
terial, which have approached 2.10%x10° cm?/V sec.’
Without ionized impurity scattering, a deformation poten-
tial of 11 eV would limit the mobility to 2.10X 10°
cm?/Vsec. One study of the deformation-potential con-
stant in bulk GaAs, which is frequently cited to justify the
assertion that the larger values of Z are correct, used bulk
GaAs with impurity levels of 10'%/cm?® or more, and
found Z =16 eV.2* At this impurity level, deformation-
potential scattering is a small part of the total scattering,
and a small inaccuracy in the estimate of the impurity
scattering rates can result in a large error in the estimate
of the deformation-potential scattering. The study by
Wolfe, Stillman, and Lindley, which found Z =7 eV, was
done using material with an impurity level of less than
10'* cm?, which reduces this problem.?

Studies of the mobility in silicon inversion layers pro-
vide an additional indication that the current theories of
scattering in quasi-2D systems do not properly account
for the deformation-potential interaction at interfaces.
They have also found that the value of the deformation-
potential constant necessary to fit the data was
anomalously large.?*

In summary, we have measured the energy-loss rate of
electrons in a modulation-doped single heterojunction at
several lattice temperatures. The theoretical energy-loss
rates are found to depend sensitively on the wave function
perpendicular to the interface. Using a self-consistent
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wave function, we find that the data can be fit by either a
screened theory, which requires Z =16.0 eV, or by an un-
screened theory, which requires Z =11.5 eV. We suggest
that these values not be regarded as measures of the defor-
mation potential in bulk GaAs. Discrepancies between
the bulk value for Z and the value measured in hetero-
junctions may stem from additional scattering mecha-
nisms in heterojunctions which have not been accounted
for, or from the differences in the phonon modes, caused
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either by the Al.Ga,_,As/GaAs interface, or by the
proximity of the surface.
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