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The lattice-dynamic method is applied to a supercell to study the defect modes of Si in a Ge host
crystal. The Keating potential is used to characterize the interaction between the atoms. Model cal-
culations are performed first to compare with previous one-dimensional and Green's-function ap-
proaches. Realistic calculations of local modes for Si impurities are then carried out. Reasonable
quantitative agreement with measured infrared and Raman spectra is obtained.

I. INTRODUCTION

The lattice vibrations of pure covalent crystals are now
reasonably well understood. ' The introduction of defects
into perfect group-IV crystals has two major effects:
Firstly, because the translational and the inversion sym-
metries are broken by the presence of the defects, infrared
(ir) absorption by all phonons in the diamond lattice can
be induced, and the study of the one-phonon frequency
spectrum by infrared measurements is then possible.
Careful measurements of such impurity induced one-
phonon absorption spectra therefore should yield the
features of the critical points in the Brillouin zone of the
host crystal. Secondly, the defects may create new modes
which are localized around the defect sites with frequen-
cies split away from the bulk band of vibrational modes
and which may exist either in the gap or above the max-
imum vibration frequency of the host system. Experi-
mental studies on such localized modes have been per-
formed by ir absorption and Raman scattering spectros-
copies. Our present theoretical study will focus on the
defect-induced localized vibrational modes only.

Theoretical studies of the localized modes are relatively
scarce so far. The simplest theoretical approach to the de-
fect problem is to use the linear-chain model and to cal-
culate the local vibrational modes induced by mass defects
or changes of force constants. This approach can only
characterize the bond stretching modes in group-IV ele-
mental semiconductors. The bond-bending modes involv-
ing noncentral forces cannot be accounted for in this way.
The generalization to n-dimensional chains has been given
by Rosenstock and Newell. However, these results fre-
quently have unphysical features because of the lack of
coupling between the vibrations along different directions.
A more realistic approach is the Green's-function
method. It is especially convenient to treat mass defects
using this method. However, the effects of the changes in
the force constants due to the presence of impurity some-
times are considered in an ad hoc fashion. Therefore,
these two methods are useful if one is interested only in
the qualitative features of the vibrational modes induced
by the defects. Because theoretical studies of local modes

hold special promise complementary to the electronic
studies as probes of the defects, both the types and actual
locations in the lattice, it is worthwhile to develop a more
quantitative approach to study the local mode problems.

Recently the lattice-dynamics method combined with
the supercell idea has been applied with reasonable success
to amorphous silicon and hydrogenated amorphous sil-
icon. ' Based on those works, a new and useful approach
is developed by us to investigate the vibrational modes of
defects in tetrahedral crystals. The method prescribed
here makes use of the supercell technique and the simple
Keating Hamiltonian to extract quantitative results re-
vealing both the vibrational frequencies and the details of
the associated atomic motions. The Keating potential is
chosen because it is short ranged and it is expected to pro-
duce the high-frequency localized modes in the same de-
gree of accuracy as the bulk optical phonons and longitu-
dinal acoustic phonons. In contrast to previous ap-
proaches, this method provides a more realistic model of
the effects of introducing defects in tetrahedral crystals
because of the proper inclusion of the angular forces and
the atomic relaxations.

In this calculation, a large unit cell with 50—60 atoms
is constructed from unit cells of the host crystal. Some of
the host atoms are substituted by impurity atoms. Distor-
tions induced by the introduction of the defects are deter-
mined by a realistic potential energy. After the new
equilibrium positions of the atoms are determined, the
same potential then is used to calculate the eigenvalues
and eigenvectors of the normal vibrational modes. The
advantages of using this scheme as compared to the linear
chain and the Green's-function method are the following:
(i) Both mass defects and the changes of force constants
can be incorporated easily. (ii) Local distortions around
the defects are included. This is a unique feature for this
scheme. (iii) Detailed information such as the eigenvec-
tors enables us to identify the symmetries of the local
modes and to determine the selection rules for ir or Ra-
man transitions. (iv) The effects of individual defects and
the effects of the interactions between defects can be in-
vestigated if the supercell is large enough. (v) Atoms
away from the defects retain the motions in the normal
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modes similar to those in host crystal because of the
periodicity. This makes the analysis of the resonance
modes and the local modes relative to the normal modes
of the perfect system more meaningful.

The present work utilizes the above scheme to study in
general defect-induced vibrational modes. We separate
the effects of changes in the defect mass, in bond-
stretching force, in bond-bending force constant, and in
the bond length in our model investigations. We then
study the local modes induced by introducing Si impuri-
ties in Ge crystal. In Sec. II the method will be presented.
Results for local modes and resonance modes induced by
different defects in the model studies and the results of
realistic single substitutional Si and Si-Si complex defects
in Ge crystal will be discussed in Sec. III.

II. METHOD OF CALCULATION

In order to study the diamond lattice with defects, we
construct a supercell which is a simple cubic unit cell con-
taining 64 basis atoms. The lattice constant of the super-
cell is 2a where a is the lattice constant of the host crys-
tal. If no defect is present, this cell is identical to a corn-
bination of eight unit cells of a diamond lattice. Defects
are situated near the center of the supercell. Such a super-
cell extends periodically to form the perturbed crystal. As
will be shown later, with such a large unit cell, the separa-
tion between defects in different cells is greater than the
extent of the local mode wave functions so that interac-
tions between the defects in separate cells may be neglect-
ed. Thus the present supercell approach is adequate for
studies of defects.

The Keating potential has been used widely to study
the elastic and static properties of covalent semiconduc-
tors because it involves only two parameters yet it
preserves the rotational invariant condition of the crys-
tal. ' This potential is closely related to the valence-
force-field potentials which have been used for the calcu-
lations of the phonon-dispersion relations in group-IV
crystals. " ' The results have shown good agreement
with experiments except for the transverse acoustic (TA)
branches which lie at too high frequencies. Because the
Keating potential is short-ranged it dominates the optical
phonons (LO and TO) and longitudinal acoustic phonons
(LA), we choose to use this simple potential here to inves-
tigate the high-frequency localized modes induced by im-
purity defects.

The Keating potential at an atom "0" is expressed in
the following form.

3cxo.Uo=g, t(x o x o) —d 1
i 8d;

2
313oi) d;j+ g g, (x;o x,o)+

i j (&i) ij

where ao,. is the bond-stretching force constant between
atoms 0 and i. d; is the equilibrium bond length between
the two atoms. x;o is the bond vector from atom 0 to
atom i Po,z is th. e bond-bending force constant between
the bonds centered at the atom 0. d;~ is the product of d;
and d~.

When impurity atoms are present, the force-constant
parameters and the equilibrium bond lengths between a
given pair of atoms are allowed to change and are deter-
mined by the following procedure: (i) If i, j, and 0 are
atoms of the same species, we use the corresponding
values of a, and d given by Martin in his work of elastic
properties of group-IV materials. (ii) If 0 and i are atoms
of the same kind while atom j is of different kind, we first
average the P and d values of Martin for the bond 0 j.
Then we average again for the Po;; and Po~~ values to get
Po;J. (iii) If 0 and i are atoms of different kind, we aver-
age the values for 0-0 and i ito -get ao; and Po;; and then
follow the same procedure in (ii) to get Po J.

Initially, the impurity atoms are assumed to be separat-
ed from their neighbors by the ideal bond length of the
pure crystal which may not be the equilibrium separation
between them. Due to the fact that the force on the
nearest neighbors of the impurity are not zero for such a
separation, relaxation of atomic positions occurs. We use
the Keating potential to relax the lattice until the total
strain energy ealeulated from the potential is a minimum.
The relaxation becomes more pronounced and has more
profound effects on the local modes when the size of the
impurity deviates more from that of the host atoms.
With these new relaxed atomic positions, we then set up
the dynamical matrix for the vibrational-mode calcula-
tion.

One of the important features of the supercell scheme is
that it can provide the eigenvector of each vibrational
mode by diagonalizing the dynamical matrix. To com-
pare with the ir and Raman spectra, only the zone center
(k =0) modes are considered. From these eigenvectors it
is possible to identify the symmetry of each mode and to
obtain the detailed vibrational amplitudes of the local
modes at each atomic position. Based upon the sym-
metries of the modes, a comparison of the calculated re-
sults with the features in the infrared and the Raman
spectra can be made.

III. RESULTS AND DISCUSSIONS

We first made model calculations to examine in detail
the effects of variations in the mass, m', in the bond
stretching force constant n', and in the bond-bending pa-
rameter, P', of the defect on the vibrational spectrum of
Ge crystal. For convenience, we define c =1—m'/m,
E =1—a'/a, and Ep= 1 —/3'/P. Then we carried out cal-
culations of the local vibrational modes associated with a
substitution Si impurity and pairs of substitutional Si
atoms in Ge. For the case of the pair complex, both con-
figurations in which the atoms are situated at first-
nearest-neighbor (1NN) sites and at second-near-neighbor
(2NN) positions were considered.

A. Pure Ge and Si crystals

In order to check the supercell scheme and the parame-
ters used, we first examine the cases of pure Ge and Si
crystals. The force constants for Ge and Si are taken
from Martin's calculations. Our calculated phonon spec-
trum for pure Ge and Si give good agreement with experi-
ment' except for the transverse acoustic mode near the
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zone boundary as expected. The zone-center optical pho-
nons are at 304 and 518 cm ' as compared with the mea-
sured value of 304 and 520 cm ' for Ge and Si, respec-
tively. The TA mode frequencies are high (the TA mode
at point X for Ge is 137 instead of 80 cm ') because the
shear force has not been properly accounted for in the
Keating potential. However, this is not expected to have a
significant effect on the high-frequency local modes
which are the focus of our study.

Previously, several theoretical calculations for the
phonon-dispersion relations of Ge have been carried out
employing lattice-dynamical models' ' which combined
the bond charge effect with the valence force field and
which introduced more disposable parameters. Although
those models produce better agreement with the observed
TA modes, they become extremely difficult to handle in
the supercell calculation. This difficulty arises in the
presence of defects or defect complexes because, in addi-
tion to the changes in the bond lengths, the charges have
also redistributed among the impurities and the nearby
host atoms. As a result, the scheme to scale the force
constants becomes more complicated than the one provid-
ed in Ref. 17 in order to obtain better agreement with the
TA modes. Fortunately in comparison with those
theoretical calculations, the simple two-parameter model
used here produces comparably reasonable results in pure
Ge crystal for the high-frequency vibrational modes
which are in the spectra region of our interest. A compar-
ison of our calculated values of phonon frequencies at
high-symmetry points with the measured values given in
Ref. 14 is made in Table I.

Our calculated phonon spectrum histogram for Ge in

Fig. 1(a) resembles the results given by Nilin and
Nilsson. ' The TA branch, however, again occurs at
higher position than the experimental results. Since later
on we will study defect-induced vibrational modes which
are related to the critical points of the phonon spectrum
of pure crystal, we also display in Fig. 1(b) the contribu-
tion to the spectrum from the k =0 eigenvalues of the su-
percell. The k =0 of the Brillouin zone (BZ) of the super-
cell involves the high-symmetry points I, L, X, W, 6,
and X of the diamond Brillouin zone (DBZ) folded into
the new BZ. Critical points often occur at high-symmetry
points of the DBZ. These eigenvalues of the high-
symmetry points have been listed in Table I, and several
of them are indicated by arrows in Fig. 1(b).

B. Effects of mass defects and of changes
in the force constants in Ge

We first consider an isotopic substitutional impurity
with a mass defect c bound to its neighbors by the same
force constants as the host Ge crystal. The c. =0 case is
the pure Ge case given in Fig. 1(b). For s (0, a negative
mass defect, no local mode exists. However, many reso-
nance modes appear. We show in Fig. 1(c) the corre-
sponding k =0 phonon histogram for a mass defect equal
to —2. The prominant resonance modes are indicated by
arrows there. The defect atom contributes significantly
only at these resonant modes. The appearance of these
resonance modes can be understood qualitatively. Because
the local contribution of the defect atom should be
characterized by the modes of short wavelengths, the
modes at I point are not influenced. Following Ref. 17,

TABLE I. Calculated phonon frequencies at high-symmetry points of the reduced Brillouin zone for
pure Ge crystal. (The numbers in parentheses represent the measured values reported in Ref. 14.)

( a /2)(k„, k~, k, )

r
(0,0,0)

I is
0

(0)
304

(304)

co (cm ')

X
(1,0,0)

X3
137.4
(80)

Xi
237.5
(240)

X4
268

(275)

L
(0.5,0.5,0.5)

L3
91

(63.33)

L2
228

(222)

LI
238.7
(245)

L3
289.7
(290)

(0.5,0,0) 95
(70)

145
(139)

286
(280.7)

291
(293)

8'
(1,0.5,0)

82
160

(114)

8'I
214.5
(207)

W2
278

(278.7)

X
(0.5,0.5,0)

X4
75

(78)

X3
103

(111)

Xl
153

(165)

X3
242

(247)

X2
287

(282)

Xl
289

(289)
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FIG. 4. The local model frequencies, cu(, solid curve, and
the vibrational amplitudes of the impurity, A, dashed curve, as
functions of bond-stretching defect parameters c, .

constants are not as significant as changes in the mass de-
fect. This may be due to our averaging process in getting
effective force constants. In fact, the actual change in the
averaged force constant is not as large as indicated by the
change of c . Qn the other hand, the mass defect does not
involve averaging.

C. Isolated Si impurity in Ge crystal

With an impurity Si atom present in the Ge crystal, the
force-constant parameters between the impurity and the
host atoms or between the impurities themselves are deter-
rnined using the parameters calculated by Martin for the
pure Si and pure Ge combined with our interpolation
scheme discussed in Sec. II. The final values we used in
this calculation are listed in Table II.

When an isolated Si impurity substitutes for a Ge atom,
the 1NN Ge atoms surrounding the Si are found to relax
inward and the bond lengths are shortened by 2.8%. The
second-nearest-neighbor (2NN) atoms relax less than
0.04%. The strain energy per supercell is reduced by
0.02%%uo after relaxation. As expected for a light mass de-

3
A

(a) Si in Ge

7
//,
// 7/

feet, a threefold degenerate vibrational mode appears at
412.8 cm '. It is a localized mode which characterizes
essentially the vibration of the Si atom against its 1NN
Ge atoms. The ratio of the vibrational amplitude of the
Si to the averaged amplitude of the 1NN atoms and to
that of the 2NN atoms is 0.9:0.2:0.02. The distant atoms
are essentially motionless. This is consistent with the pic-
ture that wavelike motions of the Ge atoms are not possi-
ble at frequencies which lie above the optic-phonon band
of pure Ge. It also justifies the fact that the defects in
different cells are effectively not interacting.

From symmetry arguments, the odd-symmetry modes
appear in the infrared absorption spectrum and the even-
symmetry modes appear in the Raman spectrum. Being
t&+ symmetry, the mode discussed above should be ob-
served by Raman scattering spectrum. The observed Ra-
man feature and the neutron scattering feature ' near
400 cm ' may correspond to this mode. Also Cosand
and Spitzer observed an optical-absorption band with a
small cross section at this frequency. They attributed
this absorption to possible small charges associated with
Si impurity which is determined by the short-range effect
in covalent crystals. As we shall point out, this ir struc-
ture may be associated with Si-Si complex defect.

The earlier results of Dawber and Elliott using a Debye
model yield a local mode at 392 crn ' when the Debye
frequency was set equal to the Ge zone-center optic-
phonon frequency. ' Our results agree reasonably well
with theirs.

Shen and Cardona reported the observation of several
mass defect quasibound vibrational states and impurity
induced one-phonon peaks in the far-infrared absorption
spectra of Ge samples which were lightly alloyed with
Si. They also interpreted their data with a mass defect
Green's-function calculation based on the density of pho-
non states of pure Ge from a bond charge model. ' In
Fig. 5(a) we display our k =0 phonon histogram for iso-
lated Si in Ge. In comparison with Fig. 1(b), two reso-
nances appear in the TA region and three resonances ap-
pear at higher frequencies. They are indicated by arrows.

I

50 100 150 200 250 300 w (cm iI

TABLE II. Force-constant parameters and equilibrium bond
lengths used in this calculation

oi Poj
(10 dyn/cm)

3
O

A

(bj Si-Si in Ge

Si
Cire

Si
Si
Ge
Ge

Si
Ge
Ge
Si
Si
Ge

Si
Ge
Ge
Ge
Si
Si

48.50
38.67
43.59
48.50
43.59
38.67

13.81
11.35
12.58
13.20
12.58
11.97

2.351
2.449
2.400
2.375
2.400
2.424

I

50
n-

100 150 200 250 w(cm )

FIG. 5. (a) k =0 phonon frequency histogram, Do(co), for a
Ge supercell with one Si impurity atom. (b) k =0 phonon fre-
quency histogram, Do(co), for Ge supercell with Si-Si (1NN) im-

purity complexes.
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The two resonances in the TA branch at 150 cm ' corre-
spond to the observed large peaks at 122 crn ' in Ref. 23.
The quantitative disagreement arises from the high TA
branch obtained in the calculation. The three resonances
at the LO (245 cm ') and TO (280 cm ') regions are con-
sistent with the structure observed at 244 and 280 cm ' in
Ref. 23. This suggests that the simple Keating's potential
works well except in the TA region. Si

Defect
Local model

(cm —')

412.8(389)

Symmetry

T]+ (R)

TABLE III. Calculated localized modes associated with de-
fects in the Ge crystal. (Numbers in parentheses represent ex-
perimentally observed values. R and ir denote Raman active or
infrared active. )

D. Si-Si (1NN) impurity complex in Ge crystal

As shown in Fig. 6(a), in this configuration the two Si
atoms are introduced substitutionally at 1NN distance
along [ill] direction. The symmetry is reduced to D3d.
More new modes localized about the pair of impurities
occur at frequencies above the vibrational spectrum of the
pure Ge crystal. The modes are listed in Table III. The
symmetry of each mode and the available data measured
by Raman (R) or infrared (ir) experiments are also listed
in this table.

We find that the two Si atoms relax and move toward
each other shortening the bond length by 3.05%%uo (i.e.,
shorter than the ideal bond length). The 1NN Ge atoms
follow the Si atoms and move toward the Si-Si complex.
New bond lengths between Si and 1NN Ge atom and be-
tween two 1NN Ge atoms decrease by 0.8% and 1.43%,
respectively, with respect to the unrelaxed bond length.
The displacements of the Ge atoms which are 2NN of the
Si atoms are negligible. Therefore, in effect, the bond
length between the 1NN and the 2NN Ge atoms has in-

{a)

4 Q
(b)

Q Ge

FIG. 6. The positions of the Si-Si defect complexes and their
neighboring Ge atoms in the Si-Si (1NN) configuration (a), and
in the Si-Si (2NN) configuration (b). The solid circles denote the
Si atoms. Open circles denote the Ge atoms. In (a), the line
joining 1 —+2 is in [111]direction, 3~5 and 8~4 are in [110]
direction. In (b), atoms 1, 2, 3, 4, and 5 are all on a (011) plane.
1~2 and 4~3~5 are in [011] direction; 1~3 and 2~5 are
along [111]direction.

Si-Si (1NN)
D

495.24(476)
430.97(448)
400.97(389)
325.45

3]+ (R)
E+ (R)
E] (ir)

(ir)

Si-Si (2NN)
C2„

420.63
418.19
413.78
412.61
408.81
407.65

W, (ir)

3] (R)
A4 (ir)
A3 (R)
A& (ir)
A2 (ir)

creased by 0.67%. The strain energy after relaxation de-
creases by 0.06% per supercell.

The highest-frequency mode at 495.24 cm ' is a molec-
ular type of vibration. The two Si atoms vibrate with op-
posite phases along [111]direction while each of the 1NN
Ge atoms moves along one of the [110], [101],and [011]
directions with an amplitude an order of magnitude
smaller than that of the impurity atoms.

The 430.97-cm ' mode is twofold degenerate and is
also Rarnan active. The two Si atoms vibrate in opposite
directions but perpendicular to the [111]direction. As for
the three 1NN Ge atoms next to each Si atom, two of
them vibrate with amplitude one-fifth while the other has
amplitude one-tenth of that of the Si atoms. More distant
atoms do not participate in this mode. The 495.24 and
the 430.97 cm ' modes are compared favorably with the
measured lines at 476 and 448 cm ' in Ref. 20.

The 400.97-cm ' mode is twofold degenerate but is ir
active. Unlike the case of the 430.97 mode, the two Si
atoms move in the same direction which is perpendicular
to [111]direction. The amplitudes and the directions of
vibration of the 1NN Ge atoms, however, are the same as
the corresponding values for the 430.97 mode. The dipole
moment is mainly due to the asymmetry of the charges at
the Ge atoms. The asymmetry should not be large yet it
can couple weakly to the ir radiation. Therefore it is sug-
gested here that the experimentally observed ir absorption
near 389 cm ' (Ref. 22) may correspond to this mode.
Further experimental studies of the symmetry of this vi-
bration can provide a definitive assignment of this ob-
served peak as being either to the Si-Si complex or to the
isolated Si local mode.

Another ir active mode induced by the Si-Si complex is
at 325.45 cm '. This mode is less localized because the
vibration involves the 2NN Ge of the Si-Si pair. The arn-
plitude ratio of the vibrations of Si, 1NN Ge and 2NN Ge
is 1:0.7:0.1. The two Si atoms and the 2NN Ge atoms vi-
brate in the same direction along [111]. The three Ge
atoms at 1NN of each Si atom vibrate along [011],[101],
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TABLE IV. The relative vibration direction (D) and relative amplitude (A) of vibration of each atom in the local modes of Si-Si
(2NN) complex. [The labels of the atoms follow those given in Fig. 6(b).]

ocal
mode
m ') 420.63 418.19 413.78 412.61 408.81 407.65

[122]
[122]
[01 1]
[1 22]
[T2 2]
[415]
[45 1]
[45 1]
[415]

A

A

0.5 A

0.2 A

0.2A
0.1 A

0.1A
0.1A
0.1A

[211]
[2T1]
[100]
[11 1]
[111]
[321]
[312]
[312]
[321]

A

A

0.1 A

0.3 A

0.3 A

0.2 A

0.2A
0.2 A

0.2A

[011]
[011]
[OT1]
[OT1]
[011]
[1 11]
[I11]
[111]
[111]

A

A

0.2 A

0.1 A

0.1 A

0.3 A

0.3 A

0.3 A

0.3 A

[011]
[011]

[011]
[011]
[111]
[1 11]
[111]
[111]

0
0.1A
0.1 A

0.3 A

0.3 A

0.3 A

0.3 A

[1 11]
[111]
[100)
[011]
[01 1]
[101]
[110]
[110]
[101]

A

0.5 A

0.2A
0.2 A

0.2 A

0.2A
0.2 A

0.2 A

[4 1T]
[411]
[01 1]
[111]
[111]
[211]
[2 11]
[211]
[2 11]

A

A

0.05 A

0.2 A

0.2 A

0.2 A

0.2A
0.2 A

0.2 A

[110]directions, respectively. This mode has not been ob-
served experimentally yet.

The k =0 phonon frequency histogram for Si-Si in Ge
is displayed in Fig. 5(b). In addition to the resonances
which also appear in Fig. 5(a), a localized mode at 325.45
cm ' occurs just above the coL of pure Ge. The other lo-
calized modes at frequencies higher than 350 cm ' are
not shown in Fig. 5.

E. Si-Si (2NN) impurity complex in Ge crystal

When the two Si impurities are separated by 2NN dis-
tance, [Fig. 6(b)], the impurities do not move during relax-
ation whereas the surrounding Ge atoms move toward the
Si atoms. The bond lengths between Si and two of the
1NN Ge atoms are shortened by 1.4% and those between
Si and other 1NN atoms are shortened by 0.9%. The
strain energy is decreased by 0.03% after relaxation. In
comparison with the Si-Si (1NN) configuration, the strain
energy in this configuration is lower by 1%.

Since in this defect configuration the interaction be-
tween the two Si atoms comes indirectly from the bond-
bending part, it is weaker than that in the previous config-
uration. The localized modes therefore can be thought of
as perturbed modes of isolated Si. Indeed, we find that
the calculated local modes in this configuration cluster
around the mode induced by an isolated Si impurity. The
six nondegenerate modes are summarized in Table III.
The vibrational patterns for the modes are quite different
from those in the previous cases because of the geometri-
cal difference in the environment. As shown in Fig. 6(b),
the two Si atoms have seven Ge atoms as their 1NN. One
of them is the common 1NN (Cnn) of both Si atoms. The
plane containing both Si atoms (nos. 1 and 2), the Cnn
(no. 3), and the two other 1NN (nos. 4 and 5) is the (011)
plane. Two 1NN atoms (nos. 6 and 7) lie one layer above
and the other two 1NN (nos. 8 and 9) lie one layer below
this plane.

The 413.78- and the 412.61-cm ' modes, which are the
splittings of the 412.8-cm isolated Si vibration mode,
involve the vibration of the no. l and the no. 2 Si atoms
perpendicular to the (011) plane in the same and opposite
directions, respectively. The vibration of the Si atoms in
the four other local modes are all in the (011) plane. The
detailed relative vibration direction and amplitude of each
atom labeled in Fig. 6(b) is listed in Table IV for each lo-
cal mode. The more distant atoms do not move in these
modes.

F. Summary

In summary, we have applied the scheme of combining
the lattice-dynamic method and the supercell approach to
investigate defect-induced vibrational modes in Ge crys-
tal. A Keating potential is used. Model calculations of
defect-induced modes due to mass defects or changes in
the force constants a or P were made. Results were com-
pared with those obtained by the Green's-function
method. Correlations of the changes in the TA, LA, LO,
and TO modes due to the mass defect have been dis-
cussed. We then specifically examined the Si impurity
and Si-Si pair defects in Ge. The modes induced by the
pair defect with Si-Si in 1NN agree well with experirnen-
tally measured Raman lines. The Raman-active modes
due to a single Si defect and the ir-active modes due to a
pair Si-Si 1NN are assigned tentatively to the measured
Raman line and a weak ir line. Further experiment is
needed to discriminate our assignments. There are six
lines due to Si-Si 2NN pair defect, but as yet there is no
experimental data relating to them. Better experimental
resolution is needed to find these lines.
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