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Analytic relation between bulk moduli and lattice constants
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An analytic relation between the bulk modulus of a solid and its equilibrium lattice constant is
sought by examining how the various components of the total structural energy scale with distance.
Simple formulas are obtained for the bulk modulus and its pressure derivative. A comparison is
made with an empirical scaling approach for diamond and zinc-blende materials.

I. INTRODUCTION

A simple formula for the bulk moduli of diamond and
zinc-blende solids was obtained by one of us using scaling
arguments for the relevant energy and volume. It was ar-
gued that the dominant effect in these materials is the de-
gree of covalency characterized by the Phillips homopolar
gap Eh and the volume of the bond charge, m.(2az) d,
where d is the nearest-neighbor distance. Using the
empirical relation' E& ~d, the resulting formula for
the bulk modulus is

Bo——(1971—220K, )d

where A, is an empirical parameter which accounts for the
effect of ionicity; A, =0, 1,2 for group-IV, III-V, and II-VI
semiconductors respectively. The units are GPa and A
for Bo and d in Eq. (1). The accuracy of the above for-
mula in predicting the bulk modulus is remarkably good
with only a few percent error for most of the materials ex-
amined. '

In this paper, we explore the microscopic origin of the
simple relation between the bulk modulus and nearest-
neighbor distance. Starting with the pseudopotential
total-energy formalism, we examine how the various ener-

gy components of the total energy scale with the lattice
constant or Wigner-Seitz radius. From the total energy,
an analytic expression for the bulk modulus is derived.
The expression is different in structure from the empirical
formula but gives similar numerical results. We also ob-
tain an analytic expression for the pressure derivative of
the bulk modulus, Bp.

II. THE BULK MODULUS
AND ITS PRESSURE DERIVATIVE

momentum-space representation:

E/atom =ZE+E„,(G=O)+.yF„,~d+Za

——,0 g' VH(G)p(G)
G(~0)

+Q g' [E„,(G) —V„,(G)]p(G),
G(~0)

(2)

where V;,„(r) is the ionic pseudopotential. The a term
represents only the integrated effect of the pseudopoten-
tial. Higher-order effects of the pseudopotential are im-
plicitly contained in E and p(G). For systems where the
band structure is not too far from the free-electron disper-
sion, it is useful to write E=Fp+E where cp is the aver-
age eigenvalue from the free-electron dispersion and c ' is
the correction term. The unprime quantities in Eq. (2),
Zeo+E„,(G=O)+yF„,~d+Za, correspond to the energy
of a uniform electron density interacting with a periodic
array of pseudoions. The prime quantities, including E',
are called the band-structure term, Ezs. For semicon-
ductors, c ' contains both effects which can be described
by perturbation theory and the fundamental gap which
cannot be described by perturbation.

The uniform density term has the following explicit
dependence on the Wigner-Seitz radius R:

where Z is the number of valence electrons, c is the mean
eigenvalue averaged over a11 the occupied states; the eigen-
values are calculated with the average potential set to
zero. II is the atomic volume, VH(G) is the Hartree po-
tential, p(G) is the charge density, and yF„,~d is the Ewald
energy. The pseudopotential term a is defined to be

Ze2 3 Vp, (G=O)a= —J V;,„(r)+ d r—:

Within the local-density formalism and the pseudopo-
tential approach, the crystal energy can be written in a

B 2 CE/atom =
R

(4)
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where V(Cx) is the screened pseudopotential form factor,
S(Cx) is the structure factor, and X(G) is the susceptibility
which is defined as

1 1
X(Cx)=-

&,p,
.„k k k —(k+ Cx)

(6)

where N is the number of atoms in the crystal. The ana-
lytic expression for X(Cx) is

where the first term is ZE0 and 8= —', (9m. /
4) ~ Z ~ =2.21Z ~ . The second term includes both the
exchange and the Ewald energies and

2 =(3/2m )(9m /4)' Z +F,=0.916Z +F, ,

where F, is the structure-dependent Ewald constant. For
the diamond structure F, =1.671Z . The correlation en-

ergy has a very weak dependence on R and hence it is
neglected. The third term is Za and C=(3/
4~)V~, (G=O)Z. The numerical values for A, 8, and C
are in rydberg atomic units. The uniform density term
was used previously to examine the bulk moduli of sp
metals. It was found that this term alone is adequate to
describe metals with small valency but the agreement wor-
sens with increasing valency. The reason is that the
charge density is far from uniform for high-valency ma-
terials. The uniform density term overestimates the bulk
modulus for high-valency materials. One can view the ef-
fect of increasing valency both in real space and momen-
tum space. As the valency increases, the pseudopotential
becomes more attractive and pulls the charge more toward
the core region, hence reducing the number of electrons
available for bonding. The modulus generally increases
with the valency but not as fast as predicted by the uni-
form density term. This situation manifests itself in a less
transparent but equivalent way in momentum space. As
the valency increases, the band-structure term becomes
important. It will be shown that the band-structure term
has a negative curvature as a function of R, hence it
reduces the bulk modulus from the uniform density value.

The band-structure term will be investigated using per-
turbation theory following Heine and Weaire. The con-
tribution from the fundamental gap is discussed later. Up
to second order in perturbation theory, the band-structure
term is given by

correlation effect. We must examine the R dependence of
V(G), X(G), and e(G) in order to determine the R depen-
dence of the band-structure term. Since X(Cx) approaches
zero rapidly for large G, it is convenient to consider a
one-G model. For example, the first Cx in the diamond or
zinc-blende structure is G=(1,1, 1)2n/a .

T. he potential
form factor is defined as

(10)

where v(q) is the Fourier transform of the potential. The
potential form factor depends on R through both the ex-
plicit volume dependence and through its argument. A
typical v(q) is shown in Fig. 1. For the Cx=(1, 1, 1)2~/a,
the two dependence nearly cancel each other; if the
volume is decreased the 0 ' factor increases but v(q) de-
creases. Hence, V(G) is nearly R independent for the
Cx=(1, 1, 1)2~/a. The susceptibility X(Cx) is proportional
to R which is evident from its definition. The dielectric
function is proportional to 1+PR where P is usually a
very small number, hence e(G) is nearly R independent.
In conclusion, the R dependence of the band-structure
term comes mainly from X(G) and it is proportional to
R . The total energy therefore has the following analytic
form:

E/atom = ——+ —DRB 3 C

where D0C
I

V(G)
I

is a positive number. It should be
pointed out that the R dependence of the band-structure
term is valid only for small deviations from the equilibri-
um volume; otherwise, the energy approaches negative in-
finity at large R. Furthermore, a weak pseudopotential is
assumed such that second-order perturbation theory is
adequate. The validity of the second-order perturbation
theory for the structural energy was addressed by Heine
and Weaire. They examined the band-structure term
when both the lower and upper states were filled. Since
both the lower and upper states are summed, the diver-
gences from the second-order perturbation theory cancel.
The perturbative result differs from the exact result in the
fourth order of the pseudopotential.

We examined the contribution to the band-structure
term from the fundamental gap where only the lower state
is occupied. The energy of the highest occupied valence
band is lowered by V(2, 2,0) through degenerate perturba-
tion in addition to contributions given by second-order

X(G)= ——Z( Ef ) 'F-
2kf

where

u (2,2,0)—
t
—u(311)

1.0
I

1.5 q/2k)

F(x)=—+ ln
1 1 —x 1+x
2 4x 1 —x

The dielectric function e(G) is related to X(G),

e(G) = 1—,—X(G)[1—f„,(G)],4m.e 2

where f„,(Cx) is a factor which includes the exchange-

2Q Ef3

FICx. 1. Typical Fourier transform of screened pseudopoten-
tial. The first few Cs vectors for the zinc-blende structure are
indicated.
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1 2A

9Qp Rp
—10DR 0

0
(12a)

or

perturbation. However, V(2, 2,0) is usually nearly zero
for most materials in the diamond and zinc-blende struc-
ture; therefore, the major effect of the pseudopotential is
contained in the perturbation term even for semiconduc-
tors.

Using Eq. (11) for the total energy, the bulk modulus
can readily be calculated

1 178

0 p

98 166(RO —l. 14)
47000 GPa .

Rp Rp

Vz, (G=O)=4mZ r, or C=3Z r, .The Wigner-Seitz ra-
dius varies linearly with r„r,=a(RO b—). The coeffi-
cients a and b depend on the valency, a =0.5 and b =1 in
atomic units. The coefficient b is needed because Rp is fi-
nite even when r, is zero. For the group-IV materials, we
adjusted a and b to fit the bulk moduli and obtained
a =0.48 and b=1.14. Therefore, for Z=4, 3=32.6,
B=22.3, C =48r, = 1 1 (RO —1.14) . Substituting these
values in Eq. (12b) gives

1 8B 3A 15C
900 R2 Rp R 03

(12b) (14)

where Rp and Qp are the equilibrium Wigner-Seitz radius
and equilibrium atomic volume. The equilibrium condi-
tion is used either to eliminate the dependence on C [Eq.
(12a)] or the dependence on D [Eq. (12b)]. Equation (12)
is in Ry/(a. u. ) . The conversion to GPa is
Ry/(a. u. ) =14700 GPa. Equation (12a) reduces to the
uniform density result when D =0. The pressure deriva-
tive of Bo is given by

Bp=
dp

R E'"
0=1-

3E Ill

10 2 2 B

For most materials,

2 B 10
27@ R 2 9Q

10 +
Bp

(13)

III. ELEMENTS

The constants A and B are universal functions of the
valence charge. The two material parameters of this
model are C and D, which are derivable from the pseudo-
potential. The band-structure term D can be calculated
from empirical pseudopotential form factors. For exam-
ple, the empirical pseudopotential form factor for Si is
V(1, 1, 1)=—0.21 Ry, Ro is 3.18 a.u. , and D=0.077
Ry/(a. u. ) calculated within the one-G model [using Eqs.
(5), (7), (8), and (9) with f„,=0.5]. Using Eq. (12a) and
(13), we obtain Bo——100 GPa and B0=4.3 for Si while
the experimental values are 98 GPa and 4.24, respective-
ly. In principle, given a pseudopotential, we can obtain D
or C and hence calculate Bp and Bp. This is not the pro-
gram that we will follow here because we are interested in
trends and simple relationships between Bp and Rp.

In order to compare Eq. (12) with the empirical rela-
tion, Eq. (1), for the bulk modulus, we must examine how
the average pseudopotential term C or the band-structure
term D varies with materials. Empirically, for a given
valency, Bp depends only on Rp. This implies that C and
D can be expressed as functions of Rp. This turns out to
be so and it can be illustrated using the Ashcroft empty
core pseudopotential. ' For the Ashcroft potential,

IV. COMPOUNDS

It was argued' that the effect of ionicity is to reduce the
amount of bonding charge and hence reduce the bulk
modulus. This picture is essentially consistent with the
present results. The reduction of the bond charge is relat-
ed to the band-structure term. In an AB compounds, this
term gets larger because it is proportional to both the
symmetric and antisymmetric form factors

~
V, (G}

~

+
~

V, (G)
~

. To analyze the ionicity effect, it is useful to
write

A =Arv+A

C=Civ+C
D=Div+D'

(15)

where A&v, C&v, and D&v are the parameters for the co-
valent group-IV material and the prime quantities are ion-
ic parameters. The valency Z is the average valency of
atoms A and B. The difference between D and D' is the
asymmetric potential. The parameter

Although Eq. (14) does not resemble the simple power law
of the empirical formula, Eq. (1) with A, =O, it does give
similar numerical values for the bulk moduli, see Table I.
Equation (14) expresses the bulk modulus as a sum of
competing terms, the kinetic energy, the exchange and
Ewald energies, and the pseudopotential core-size term.
The magnitudes of these terms are comparable. Although
each term has an exponent greater than 3.5, the terms
nearly cancel each other to give a weaker exponent.

The pressure derivative of the bulk modulus can be cal-
culated from Eq. (13). The value for D can be obtained
from C through the equilibrium condition or from the
bulk modulus by inverting Eq. (12a). For the group-IV
materials, the band-structure correction to the bulk
modulus, 10/9QODRo, is of order of the bulk modulus,
therefore Bp is between 4 and 5, see Table I. One further
point worth noting is that the predicted bulk modulus for
Ge is quite a bit different from the experimental value in
comparison with the other group-IV materials. We are
not certain of the exact cause for this discrepancy at
present, but it is possible that the d states are affecting the
bulk modulus. On the other hand, the bulk modulus of
GaAs is well described by the present approach without
invoking the d states, see Sec. IV A and Table I.
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C'
E=EIv — + —D'R (16)

C =(3/4m)Z —,
'
[ Vp, (Cx=O)+ Vp, (Ca=0)] .

The difference between A and A' comes from the Ewald
energy. The Ewald energy of an AB compound is equal
to the Ewald energy of the group-IV plus a Madelung en-
ergy. A'=1. 1734(b.Z) for zinc-blende structure where
bZ =(Zz —Za)/2= 1 and 2 for III-V and II-VI semicon-
ductors, respectively. The total energy is then separated
into the covalent energy, EIv, and the ionic contributions

A'D'=
2Rp

(18)

Substituting this value for D' in the bulk modulus equa-
tion, Eq. (17), gives

1
0 0 Iv (19)

valent and ionic terms are zero separately. For III-V
compounds C' —=0, therefore D' is related to A '

by

The bulk modulus is given by

1 2A', 2 12C'
Bo =Bo,rv— +2D'R p—90 Rp Rp3

(17)

Since A' is known, Eq. (19) enables one to calculate the
bulk modulus for a III-V compound given Bp &v. For
skew compounds, we can use the empirical formula given
by Eq. (1) with A. =O or Eq. (14) for Bo &v. For simplicity
we will use Eq. (1). Equation (19) is rewritten as

A. III-V compounds 1971'-d 408( hZ )

d4
(20)

We will show that the bulk modulus of a III-V com-
pound can be calculated given the bulk modulus of the
group IV compounds. We use an empirical fact that the
lattice constant of a III-V compound is the same as its
group-IV counterpart. This means that if we differentiate
Eq. (16) and set it equal to zero, the derivative of the co-

0

where Bp is in Gpa and d is in A. This formula is ap-
propriate for zinc-blende structure. We should emphasize
that the numerical factor 408 is not an empirical coeffi-
cient, it comes from the Madelung constant A'. The
agreement between Eq (20) .and the experimental values is

TABLE I. Comparison of calculated and measured values of bulk moduli Bo and its pressure derivative Bo. The bulk moduli are
calculated (a) using Eq. (14) for the group-IV compounds and Eq. (20) with AZ equal to 1 and 2 for III-V and II-VI compounds,
respectively, (b) using empirical relation Eq. (1), and (c) using Eq. (22) with V~, (G=0) ~ 1/Z . The pressure derivative Bo is calcu-
lated with Eq. (13) using the experimental value for Bo.

C
SiC
Si
CJe
a-Sn

d
(A)

1.55
1.88
2.35
2.45
2.81

B(expt)
(GPa)

442
211

98
77.2
53

(a)

Group IV
436.9
208.6
100.0
87.6
55.9

B(calc)
(b)

430.1

215.7
99.1

85.8
52.7

(c) (expt)

4.69

4.24
4.55

Bo
(calc)

4.4
4.4
4.3
4.5
4.2

BN
BP
Alp
A1As
A1Sb
GaP
GaAs
GaSb
InP
InAs
InSb

1.57
1.97
2.36
2.43
2.66
2.36
2.45
2.65
2.54
2.61
2.81

367.0
165.0
86.0
77.0
58.2
88.7
74.8
57.0
71.0
60.0
47.4

Group III-V
342.3
158.0
84.0
76.1

56.4
84.5
74.5
56.9
65.6
59.5
46.7

364.3
164.6
86.2
77.9
57.3
86.7
76.3
57.9
67.0
60.6
47.4

358.0
167.9
89.9
81.5
60.5
90.4
79.8
61.0
70.3
63.9
50.2

4.55
4.77
4.67
4.8
4.9
4.8
4.9

4.8
4.7
4.6
4.6
4.5
4.6
4.6
4.5
4.5
4.5
4.5

ZnS
ZnSe
ZnTe
Cds
CdSe
CdTe
HgSe
Hg Te

2.34
2.45
2.64
2.52
2.62
2.81
2.63
2.78

77.1

62.4
51.0
62.0
53.0
42.4
50.0
42.3

Group II-IV
44.7
39.1

32.3
36.5
32.8
27.5
32.4
28.1

77.9
66.0
51.4
60.3
52.6
41.4
51.6
42.5

70.4
61.2
49.4
56.7
50.4
40.8
49.5
41 ~ 8

4.7
5.1

5.4
5.5
5.3
5.3
5.3
5.1

5 ' 3
5.2
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very good for the III-V compounds except those with ele-
ments from the upper rows of the Periodic Table; see
Table I, column (a).

B. II-VI compounds

For II-VI compounds, using Eq. (20) with AZ =2
would not give the correct bulk modulus; see Table I,
column (a). The reason for this is that in deriving Eq. (20)
it was assumed that C=-C&v or C'=0. This is not true
for II-VI compounds. Recall that

C=(3/4~)Z —,[ Vp, (G=O)+ Vp, (G=O)] .

An atom with a high valency has a small V~, (G=0); that
is, a high valency atom is more electronegative. For the
Ashcroft pseudopotential, V~, (G=O) =4nZr, The .core
radius r, decreases with increasing Z. One would expect
Vz, (G=0) to scale as V~, (G=O) cc Z~, where p is a nega-
tive number. This scaling ignores variations between rows
in the Periodic Table. Expanding V~, ( G =0) about
Z =4, one obtains

2

V. CONCLUSIONS

Starting with the pseudopotential total-energy formal-
ism, analytic expressions for the bulk modulus and its
pressure derivative are derived using perturbation theory
and a one- G model. For a given valency, the bulk
modulus can be expressed as a function of the Wigner-
Seitz radius, Ro, alone because the pseudopotential core
radius also scales with Ro. The formulas derived here
give similar numerical values for the bulk moduli as the
empirical relation. One major difference is that the effect
of ionicity enters as AZ in the present approach but
linear in b.Z in the empirical relation, k in Eq. (1) is same
as AZ. In the present approach the ionic compounds are
treated as a small perturbation from the covalent group
IV. The quadrative behavior is expected for small AZ but
higher-order effects of the pseudopotential would weaken
the quadratic effect for large bZ. Including higher-order
effects of the pseudopotential would also improve the
agreement for the compounds with elements from the
upper rows of the Periodic Table.

p(p —1) bZ+
2 Z Iv (21)
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