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Phase diagram of silicon by molecular dynamics
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Using the Stillinger-Weber potential we explored the liquid, crystal, and amorphous phase dia-
gram of silicon by molecular dynamics. We obtain the chemical potential of the crystal by following
the crystal-vapor coexistence curve from the T =0 harmonic solid up to the melting point. The
liquid free energy is found by reversible expansion. The thermodynamic melting point is 1691+20
K, which is very close to the experimental value of 1683 K. Contrary to experiment, the calculated
supercooled liquid phase does not undergo a first-order transition to the fourfold-coordinated amor-
phous structure upon cooling, since the chemical potentials of these structures are almost equal over
a wide range of temperatures. Diffusion coefficients, heat capacities, and expansivities are com-
pared with experiment.

I. INTRODUCTION

Silicon has three high-density phases at atmospheric
pressures. The crystal is covalent and semiconducting, as
is the amorphous phase. In contrast, the liquid is metal-
lic, with the melting point occurring at 1683 K. Very lit-
tle experimental data concerning the liquid is available
mainly because of the high temperatures involved and be-
cause the melt attacks most crucibles. The amorphous
structure is formed either by ion bombardment or at the
very high crystal-growth rates achievable in laser anneal-
ing experiments on silicon surfaces. ' Much of this latter
data points to a first-order phase boundary separating the
liquid and amorphous phases. The idea that the amor-
phous system is a distinct "phase" led Bagley and Chen
and Spaepen and Turnbull to propose that the amor-
phous phase melts at a discrete temperature which is
lower than the crystalline melting point.

Partly as a result of the paucity of data concerning the
liquid and its supercooled state, attempts are presently be-

ing made to describe silicon's electronic and structural
properties at the "ab initio" and semiempirical levels.
These atomistic methods rely either upon suitably
parametrized many-body interatomic potentials, or
upon phase-space trajectories based upon tight-binding or
local-density-functional representations of the total energy
of the system. ' In many respects, silicon is proving to
be the testing ground for how well we can currently
predict the surface and bulk properties of matter.

Progress is well underway in the description of simply
bonded systems such as the inert gases and free-electron
metals. System behavior may be obtained from perturba-
tion theories about the free-electron gas, ' or about
Lennard-Jones (LJ) reference systems' ' (which are in
turn related to hard-sphere systems). There is no simple
equivalent system for covalently bonded materials.

It is with these reasons in mind that we have explored
the low-pressure phase diagram of silicon using the only

potential to date that was parametrized against both
liquid and crystalline structural data. Stillinger and
Weber (SW) spent much time developing this potential
and it has subsequently become popular amongst surface
simulationists. ' ' The potential energy (PE) of the sys-
tem is given as a sum over all pairs of atoms of a LJ-type
term of depth e which smoothly goes to zero at a distance
a (approximately the second-neighbor distance at normal
densities) plus the sum over all triplets of a three-body
term of the form

03(rz "k |1Jk)=A, exp[y(r& —a) '+Y(rk —a) ']

X ( cos01tk + 3 )

This term vanishes if either r;J or r;k is greater than a.
The angular term is zero at the ideal tetrahedral angle and
positive otherwise.

The purpose of this paper, then, is to determine sys-
tematically how well this potential describes the different
low-pressure phases of silicon. Particularly, we are in-
terested in its ability to distinguish between supercooled
liquid and amorphous phases, since only then may
molecular-dynamics (MD) be reliably used to explore
growth kinetics for comparison with laser annealing stud-
ies. The normal mode spectrum, the diffusion coeffi-
cients, the heat capacities and expansivities, and the heat
of fusion will be determined along the crystal-vapor and
liquid-vapor coexistence lines. We will determine whether
the potential can describe the amorphous phase of silicon,
a system against which it was not parametrized. Further,
we seek to produce a reference system against which oth-
ers, described by different many-body potentials, may be
compared. For this reason, we provide numerical data for
the chemical potentials of the crystal and liquid phases.
Simple and rapid numerical methods, ' ' such as the
"umbrella sampling" or A.-integration schemes of Monte
Carlo (MC) or molecular-dynamics (MD), may then be
used to relate the unknown to the SW system.
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In Sec. II, we describe our computational method. Sec-
tion III gives raw MD data for the phase diagram, includ-
ing structural information and diffusion coefficients. Sec-
tion IV describes the free energy analysis for the crystal
and liquid. Section V compares our properties with ex-
periment, while Sec. VI presents our conclusions.
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II. COMPUTATIONAL DETAILS
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Newton's laws of motion were integrated using the Bee-
man algorithm for a system of 512 particles with period-
ic boundary conditions for the crystal and liquid phases.
A 216-particle system, obtained from the coordinates of
Wooten, Weiner, and Weaire, was used as one descrip-
tion of the amorphous state. Particle bookkeeping is per-
formed, as in conventional two-body short-range potential
systems, by a combination of chain-link and Verlet
tables. Three-body forces complicate this bookkeeping
only slightly. The neighbor lists are small because of the
short cutoff radius of the SW potential. Properties are re-
ported in the reduced units of the SW paper; that is, the
unit of length is 0.20951 nm, the unit of energy is
3.4723 &( 10 ' J and the unit of mass ( Si) is
4.6459)&10 kg. The experimental triple point tem-
perature of 1683 K is thus 0.066 89 reduced units. The re-
duced integration time step is 0.005.

Crystal-vapor and amorphous-vapor coexistence curves
were followed by making the assumption that they are
well approximated by the zero-pressure isobar. The free-
energy analysis of Sec. IV will vindicate this supposition.
We maintain zero pressure using the method of
Broughton, Gilmer, and Weeks.

III. MOLECULAR-DYNAMICS PHASE DIAGRAM
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FIG. 1. Density dependence along P =0 isobar of the crystal
{open circles), liquid {open triangles), %"%'W amorphous
{crosses), and indirect amorphous {open squares) phases of the
SW system.

Heating the T=0 crystal in small temperature incre-
ments of -0.01 for 3600 steps to equilibrate the system
followed by 5000 steps to collect statistics produces the
data of Figs. 1 and 2. The crystal superheats to T=0.09
before melting. The density (p) increases on melting as is
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FICx. 2. Energy per particle along I' =0 isobar of systems
described in Fig. 1. The indirect amorphous system is not
shown. See text.

experimentally observed. The supercooled liquid branch
is obtained at temperatures below 0.07 by taking smaller
temperature decrements of -0.005 and equilibrating for
-40000 time steps before gathering statistics. The max-
imum in p(T) at T=0.045 is quite stable, as is the
minimum at T=0.03. For example, reheating the T =0
liquid, retraces essentially exactly the data obtained by
cooling given in Figs. 1 and 2. Also, starting with a low-
temperature disordered configuration and spontaneously
heating to a temperature above 0.07 rapidly produces (i.e.,
within 5000 time steps) liquid configurations with ener-
gies and densities identical, within the MD noise, to those
obtained by careful stepwise heating from the crystal.

The question naturally presenting itself is whether the
low-T disordered system is characteristic of an amor-
phous phase. Certainly, there is no dramatic first-order
transition from the liquid into such a phase. The
maximum-minimum anomaly in p( T) coincides with a
point of inflection in the E(T) diagram. Thus, this tem-
perature range is associated with a heat capacity max-
imum. But it is a broad maximum, the curvature of E( T)
away from the high-temperature linear regime occurring
at temperatures above the p(T) anomaly. The radial dis-
tribution function and the three-body correlation function
(see below) change continuously throughout this tempera-
ture range.

The p(T) anomaly seems to be related to a glass transi-
tion; diffusion becoming immeasurable on MD timescales
at temperatures below 0.04. In an attempt to determine
whether this SW glassy phase can be associated with
amorphous silicon, we equilibrated the Wooten, Weiner,
and Weaire (WWW) model of amorphous silicon (which
they obtain from crystalline silicon by selected displace-
ment of atomic coordinates) at zero pressure and
T =0.03. Cooling and reheating produces the reversible
curve of Figs. 1 and 2. In keeping with experiments, the
amorphous density is —1% lower than that of the crystal.
The enthalpy difference, on the other hand, is large. (See
properties section. ) At temperatures above 0.04, the sys-
tem undergoes a phase transition either to the liquid or to
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the crystal; heating from 0.04 to 0.045 gives reproducibly
the crystal phase while heating from 0.04 to 0.05 gives the
liquid phase. The density in the latter case reaches the
maximum in the liquid branch. Notice that whereas the
densities of the supercooled liquid and amorphous phases
are dissimilar, their energies are essentially identical. The
free energy analysis performed in the next section shows
that the driving force to amorphisation out of the super-
cooled liquid is extremely small.

Figure 3 gives the radial distribution functions [g(r)]
for the supercooled liquid and amorphous systems at a
temperature of 0.03. These functions look remarkably
similar except for the height of the first peak and a
shoulder on the second peak of the liquid. This same
shoulder exists on distribution functions obtained by rap-
idly quenching high-temperature liquids down to T =0.
It is an inherent part of the structure of the liquid (observ-
able also in Stillinger and Weber s original isochoric sirnu-
lations).

As a further intercomparison, Fig. 4 gives the three-
body distribution function (g&) for the crystal, liquid, and
amorphous systems at T=0.03. This gives the probabili-
ty of finding an angle of ( cosO) between triplets of parti-
cles, the bond lengths of which about the included angle
are both less than the position of the first minimum in the

g (r). The crystal g& is sharply peaked about the
tetrahedral angle. The amorphous system g& also peaks at
this angle but the distribution is broad. On the other
hand, gz of the supercooled liquid peaks at angles slightly
less than tetrahedral, is broader still, and has a pro-
nounced shoulder at approximately 84. The essential de-
tails of this liquid distribution function are unchanged at
a temperature of 0.07, in the supercooled T =0 liquid and
in rapidly quenched liquids.

The amorphous and supercooled liquid systems appear
to be distinct metastable states of the SW system. The su-
percooled liquid is simply the glassy state of the liquid.
The three-body correlation function indicates that the
glassy state is approaching a tetrahedral network and a
further question to ask is whether the SW supercooled
liquid is unable to find a more-stable amorphous
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FICi. 4. Three-body correlation functions for the T =0.03
liquid, amorphous, and crystal systems. The liquid system has
lowest maximum and broadest tail.

tetrahedral state (i.e., not necessarily that of WWW) in its
sluggish exploration of phase space. One way of testing
this hypothesis is to increase the strength of the three-
body part of the potential to force tetrahedrality, allow
the system to locally equilibrate, and then to return the
potential to the SW values to see if the tetrahedral system
is stable. The entire following procedure was run at zero
pressure. Doubling the strength of the three-body part at
a temperature of 0.05 produces a disordered system with a
well-defined gz maximum about the tetrahedral angle
after a run time of 10000 time steps. This system was
cooled to T=0.04 and then to 0.03, equilibrating in each
case for 10000 time steps. The potential was then re-
turned to its SW value and the system equilibrated for
190000 time steps. Equilibration of densities and energies
was very slow. Having achieved local equilibrium at this
temperature, we progressed both upwards and downwards
in temperature in small steps to produce the data of Fig.
1. We refer to this structure as the "indirect amorphous. "
Again, at low temperatures the energies of the liquid and
this amorphous structure are very similar and are not
plotted (for reasons of clarity) in Fig. 2. The p( T)
behavior is now midway between that of the supercooled
liquid and that of WWW amorphous silicon. So too are
the g(r) and gq correlation functions. The indirect struc-
ture melts to the liquid at T =0.045. The T =0 value for
the energy of this system is —1.9014 which is to be com-

3.5--

TABLE I. Fraction of atoms with given coordination at
T =0.03.
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FICx. 3. Radial distribution functions of T =0.03 liquid

(lower) and WWW amorphous systems.

Coordination Liquid

0.015
0.544
0.405
0.034

Fraction
WWW

amorphous

0.012
0.866
0.118
0.002

Indirect
amorphous

0.012
0.666
0.306
0.015



35 PHASE DIAGRAM OF SILICON BY MOLECULAR DYNAMICS 9123

TABLE II. Polynomials for temperature dependence of energy and density of crystal and liquid
phases.

Exponent of T pc

0.459 280 0
—0.143 694 6

0.430458 9
1.182 408 3

PL

0.463 525 1

1.130482 9
—14.780 689

46.342 777

Coefficient
Ec/X
—2.000 000 0

2.994 140 6
1.303 955 9

10.027 059
—136.71008
3800.003 4

—19958.824

EL /N

—1.899 5100
2.994 140 6

—7.297 969 5

1013.698 2
—16 332.88

98 189.462
—207 300.11

pared with the relaxed WWW T =0 value of —1.9022.
E(T) for the WWW system and this indirect phase paral-
lel one another extremely closely. One useful way in
which to compare the supercooled liquid, WWW system
and this amorphous phase is by finding the fraction of
atoms with given nearest-neighbor coordination. As in
the calculation of g3, the radius within which neighbors
are counted is the position of the first minimum in g (r).
Table I presents this data. In the WWW amorphous
structure, fourfold coordination clearly dominates
whereas in the liquid phase, the percentage of fourfold
and fivefold coordination is becoming comparable. As
anticipated, the coordination distribution of the indirect
phase is midway between the two. It is clear that the den-

sity of the indirect structure does not conform to experi-
mental observation (it is too dense) and in our discussion
henceforth, we simply refer to the WWW structure as the

amorphous phase. In conclusion, however, it is clear that
the SW potential is incapable of discriminating between a
wide range of low-temperature disordered structures.
This of course, implies significant configurational entro-

pies in these systems.
The E ( T) and p( T) dependence of the amorphous,

crystal, and liquid phases were fit to polynomials. In or-

der to ensure correct behavior near T =0 (for later use in

the free-energy analysis), the energies of the crystal and

amorphous phases were forced to have the correct har-

monic linear temperature coefficient. That this is not ex-

actly three is a consequence of the (3X—3) degrees of
freedom (fixed center of gravity) of the system. The poly-

nomials are given in Table II.

T E(r) EH(r)—dr
A ( T) = AH( T) —T (2)

where subscript H implies the harmonic system at the
T =0 density. For this zero-pressure system, the
Helmholtz and Gibbs free energies are equal. Equation
(2) was integrated using the polynomials of Table II.

The free energy of the harmonic crystal was obtained
by diagonalizing the dynamical matrix. The sum of the
logs of the frequencies for the 512-particle system is
4.7553 per particle. Figure 5 gives a comparison of the
experimental and SW-derived dispersion relationships.
The agreement with experiment is extremely good except
for the transverse acoustic which is well-known to be
poorly described by local Keating-like potentials (such
as the SW). Figure 6 presents the density of states spec-
trum, which necessarily (given the aforementioned) agrees
well with experiment. Table III gives numerical values
for A(T).

B. Liquid

IS

l6

l4

The natural way to determine the chemical potential of
a liquid is to reversibly pull it apart and measure the work

IV. FREE-ENERGY CALCULATION

In all the ensuing, we take careful account of the de-

grees of freedom of the system. The MD simulations are
run with fixed center of gravity. MD temperatures are
obtained from the mean kinetic energy of the system; the
mean here being over 3N —3 degrees of freedom. When

referencing our system to the ideal gas, we ensure that the
ideal gas also has this number of degrees of freedom.

A. Crystal

I2
OJ

IO

8

a 6
U

0
0.0 o.5

—[ioo]

I.O 0.5 0.0

[oui]—
Reduced Wave Vector

0.5

The reference state here is the T =0 harmonic crystal.
The Helmholtz free energy of the system (A) is given by

FIG. 5. Intercomparison of SW and experimental phonon
dispersion curves. Points represent experiment.
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FIG. 6. Density of states of SW crystal. FIG. 7. Radial distribution functions of T —0.08 SW (lower
first maximum) and repulsive potential liquids.

P„„(r)—1.0+A., r (r
$2(l, , r) = ~

(1 —k)tt„t(r), r )r,„, (4)

where A, now is the integration parameter and "rep" and
"att" represent repulsive and attractive parts of the poten-
tial. This way of decomposing a potential into its repul-
sive and attractive component parts is the basis of the
Weeks-Chandler-Andersen' ' perturbation theory of
liquids. For simple liquids described by a two-body po-

done. To do this with any accuracy requires that we cir-
cumvent the first-order phase boundary between the
liquid and the vapor. The only attractive component of
the SW potential which might stabilize a liquid-vapor in-
terface is in the two-body part. We therefore reversibly
reduce the attractive tail to zero before expanding the sys-
tem to zero density.

The two-body component (t()z) which has a binding en-

ergy of 1.0 reduced units, may be written

P„,p(r) —1.0, r (r;„
$2(r) =

(3)
Patt(r) r ) rmtn ~

We rewrite this as

a~= j (BE/Bz)dz. (5)

The k integration was performed at a temperature close to
our expected melting point. We chose T=0.08. The den-
sity of the system was fixed at the value given by the p(T)
liquid polynomial for this temperature. The plot of
(BE/BX) has a gentle point of inflection but is almost
linear. The polynomial fit to this data is given in Table
IV. Figure 7 illustrates the change in structure that
occurs upon going from X=O to 1. The first peak of the
g(r) moves toward the origin and the second-neighbor
peak becomes very intense. We see that the attractive tail
of the two-body potential is very important in determin-

tential with a slowly varying attractive tail, the structure
of the liquid is almost independent of the presence (or
otherwise) of the tail provided the density of the system is
held constant.

We used Eq. (4) to drive the dynamics of our system at
seven values of A, ranging from 0 to 1. We evaluate, at
each value (BE/BA. ) since the Helmholtz free-energy
difference between the Stillinger-Weber state and the
repulsive state (A. = 1 ) is given by

TABLE III. Chemical potentials of crystal, amorphous, and liquid phases. The term of order 3

kTln A is omitted.

Temperature

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.0672
0.07
0.08
0.09
0.10

Crystal

—2.0000
—1.8147
—1.6712
—1.5437
—1.4266
—1.3176
—1.2150
—1.1446
—1.1179

Liquid

—1 ~ 8995
—1.7239
—1.5908
—1.4756
—1.3736
—1.2821
—1.1995
—1.1446
—1.1241
—1.0547
—0.9902
—0.9296

Amorphous

—1.9022
—1.7204
—1.5805
—1.4568
—1.3437
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FIG. 8. Radial distribution functions of T =0.08 low density
(p=0.435 and 0.345) repulsive potential liquids. See text.

FIG. 9. Density of states of SW WWW-amorphous phase.

ing the liquid's structure.
Lastly, we integrate (Plp )dp as the repulsive liquid is

expanded to infinite value. The system is well behaved
with no phase transitions. At high densities, 4000 time
steps were used for equilibrium followed by 5000 time
steps for accumulating statistics. At low density, this was
increased by a factor of 4 to account for the lower col-
lision rates. Figure 8 shows that as the density is de-
creased, the second-neighbor g (r) peak increases in inten-
sity at the expense of the first-neighbor peak. In order to
facilitate integration of the pressure data, we also calculat-
ed the value of the second Virial coefficient and used this
in the fit of the data to a polynomial. The polynomial is
given in Table IV, and values for A (T) along the liquid
P =0 isobar are given in Table III.

C. Amorphous system

the vibrational entropy of the amorphous system is higher
than that of the crystal. The density of states spectrum is
shown in Fig. 9. It is necessarily coarser than that of the
crystal, since only the k =0 state was computed. (Period-
ic replication of an amorphous system has no meaning. )
The chemical potential of the system was computed from
Eq. (2) and numerical values are presented in Table III.

The data for the low-temperature liquid and amorphous
phases are in error, of course, by the configurational en-
tropy. Given that the SW potential produces a range of
degenerate disordered structures, we assume that this term
is of similar magnitude in each disordered phase. %"hat-
ever the magnitude, however, it is clear that the heat of
fusion of the amorphous to liquid transition is much too
small relative to experiment. ' Further, it is clear that
the driving force to amorpitization out of the liquid state
is so small within the SW framework that no such transi-
tion is seen on MD time scales.

Proceeding as for the crystal-free energy, we find that
the sum of the logs of the frequencies per particle for the
relaxed Wooten-Weiner-Weaire (WWW) 216-particle sys-
tem is 4.4546. Since the entropy of a harmonic system is
proportional to the inverse of this quantity we find that

V. PROPERTIES

In the previous section we have seen how well the SW
potential fits experimental phonon dispersion curves. The

TABLE IV. Polynomials for (BE/BA. )(k}, P„„(p},and E~/X(T) and p&{T).

Coeffirient
Exponent

0
1

2
3
4
6
7
8
9

10
11

(BE/BA, )

2.363 633 1

—0.928 128 9
0.643 051 6

—0.228 756 7

Prep

0.0
0.079 843 7
0.195 143 2
1.795 345 3

23.096 827
—695.032 21
7861.456 3

—42 675.661
122 866.41

—178095.68
101 777.27

—1.902 250 0
2.986 111 1

2.566 948 3

0.454 5300
—0.127 914 5

0.920 805 5
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TABLE V. Triple-point properties.

Simulation Experiment'

T (K)
D(cm s ')

LCI (J mol ')

pc (gcm )

p, {gcm-')
P (Pa)
Cp (Jg K )

Cp (Jg 'K ')

(K—I)

X, (K-')

'Reference 35.

1691
6.94' 10—'

30.9X10
2.283
2.459
0.309
0.999

1.256

2.047 ~ 10-'
6.210K 10

1683
—10

50.6 X 10'
2.40
2.53

-0.1

1.04

1.04

4.4~10 '
5.2x10 '

4 5

—5. 5

—6.5

6 8 10 12 14 16 18 20 22 24 26
1jT

FIG. 10. Arrhenius plot of diffusion coefficient behavior.

other low temperature property of interest is the latent
heat (L) of crystallization out of the amorphous phase.
Donovan et al. calorimetrically measured 20 samples of
amorphous silicon prepared by different methods to arrive
at a value of 11.3+0.8 kJ/mole. In contrast, we find a
value of 20.4 kJ/mole which is approximately constant
over the temperature range of stability of our WWW sys-
tem. The SW potential therefore significantly overesti-
mates this quantity. In contrast, the latent heat differ-
ences between the liquid and amorphous phases will be
given experimentally as the difference (approximately) be-
tween the heat of the amorphous to crystalline transition
and the heat of fusion; that is, approximately 39
kJ/mole. ' Comparing this quantity with our system is
indirect since our amorphous phase is not stable up to the
experimentally ascertained amorphous-liquid melting
point of —1480 K. At low temperatures, our LAt is ex-
tremely small whereas a value extrapolated, very crudely
using Fig. 2, to 1480 K yields 9.6 kJ/mole. In either case,
the SW value is lower than experiment.

Turning now to triple point properties, these are listed
in Table V. The melting point is in extraordinarily good
agreement with experiment while the latent heat achieves
approximately —, of the experimental value. The thermo-
dynamically derived T is midway between the values
found by Abraham and Broughton' and by Landman and
co-workers' in their two-phase coexistence calculations
using the SW potential. Densities and equilibrium vapor
pressures are in tolerable agreement with experiment. In
fact, it is this low-vapor pressure which vindicates our
choice of zero pressure for these bulk phase MD calcula-
tions. Heat capacities (Cp) are really in very close agree-
ment with experiment while expansivities (X) are within
an order of magnitude of being correct. Lastly, the dif-
fusion coefficient (D) is in reasonable agreement with the

value that many authors guess to be that of liquid silicon.
(It is usually assumed that the self-diffusion coefficient is
of the same order as that of common dopants in liquid sil-
icon. )' An Arrhenius plot of diffusion coefficients, ob-
tained from the Einstein relation relating mean-square
displacements with D, is shown in Fig. 10. All in all, the
SW potential reproduces triple-point properties really
rather well.

VI. CONCLUSIONS

We may summarize simply by saying that the SW po-
tential does rather well at obtaining triple-point properties
of the crystal and liquid phases and T =0 properties of
the crystal but that the thermodynamics of the amor-
phous phase is poorly described. In fact, it predicts a
melting point below room temperature which is very dif-
ferent from the experimentally derived value of —1480
K. That the potential imperfectly handles the three dif-
ferent phases simultaneously is in accord with a recent
publication of Ding and Andersen who studied liquid
and amorphous germanium using a SW-like potential.
They showed that parametrization to achieve a good
amorphous g(r) produces a poor analogous distribution
function for the liquid. Lastly, we find that the SW su-
percooled liquid structure represents a glassy extension of
the liquid which is dissimilar from WWW amorphous sil-
icon. Attempts to quench a SW liquid directly into an
amorphous structure failed.
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