Crystal-field model for acceptor-associated bound magnetic polarons in wurtzite semiconductors

A. K. Bhattacharjee

Laboratoire de Physique des Solides, Bâtiment 510, Université Paris-Sud, Centre d'Orsay, 91405 Orsay, France

(Received 21 January 1987)

The effects of coupling between the A and B valence-band states in an acceptor-associated bound magnetic polaron (A^0 -BMP) in hexagonal crystals such as $Cd_{1-x}Mn_xSe$ are studied within a uniaxial model. The effect is found to be small for both the average BMP energy and the equilibrium hole polarization. However, the average excitation energy of the B-like hole states is reduced by an order of magnitude at low temperatures. The resulting spin-lattice relaxation time of the hole, within the Orbach framework, accounts for the time evolution of the hole polarization, inferred from timeresolved luminescence experiments.

A spherical approximation^{1,2} has proven adequate for an acceptor-associated bound magnetic polaron ($A⁰$ -BMP) in cubic systems like $Cd_{1-x}Mn_xTe$, where the top of the valence band is a Γ_8 quartet. But, in wurtzite crystals like $Cd_{1-x}Mn_xSe$ the hexagonal crystal field leads to a substantial splitting between the Γ_9 and Γ_7 doublets. The ground state of a shallow acceptor is then associated with the upper band $A(\Gamma_{9})$. Theoretically the Ising model, with the Mn spins treated classically, has been used^{3,4} to treat the corresponding A^0 -BMP. This, of course, neglects any mixing of the B band (Γ_7) states through the hole-Mn exchange interaction. However, in $Cd_{0.95}Mn_{0.05}Se$ at 2 K the BMP energy is 50 meV.⁴ On the other hand, the energy separation between the A and B bands is 26 meV. It is slightly less (23 meV) for the hydrogenic 1s states associated with them.⁵ Thus, the $A - B$ mixing is expected to be non-negligible.

In the following, we present a simple model for $A⁰$ -BMP, which incorporates this mixing. We add a uniaxial crystal-field term to the spherical Heisenberg model, previously used for cubic crystals. The bound hole is previously used for cubic crystals. The bound hole is treated as a particle of total angular momentum $j = \frac{3}{2}$. The A-band associated ground doublet is represented by $j_z = \pm \frac{3}{2}$, and the *B*-band associated excited one by $j_z = \pm \frac{1}{2}$. The splitting between them is represented by the uniaxial term $-Dj_z^2$.

Within a finite-radius constant-coupling approxima- tion^6 for the hole-Mn exchange, the Hamiltonian is then diagonalized exactly and the partition function calculated. This yields good fits of the BMP energy⁴ as a function of temperature, and the equilibrium hole polarization³ as a function of applied field. But, a more interesting result is obtained from the zero-field equilibrium population of the $j_z = \pm \frac{3}{2}$ and $j_z = \pm \frac{1}{2}$ states. The ratio yields the average excitation energy δ of the B-like hole states. At low temperatures (\sim 5 K), δ is an order of magnitude smaller than the crystal-field (CF) splitting $2D$. Within the framework of a thermally activated Orbach process, we then calculate the spin-lattice relaxation time τ of the hole. The order of magnitude of τ as well as its temperature dependence are consistent with time-resolved polarization measurements. $4,7,8$

In the spherical approximation, the exchange interaction between a bound hole and the Mn^{2+} ions is represented by the Heisenberg Hamiltonian

$$
H_{\rm ex} = -J\mathbf{j} \cdot \sum_{i} b_{i} \mathbf{S}_{i} \tag{1}
$$

Here, S_i denotes the spin $(S = \frac{5}{2})$ of the Mn ion situated at \mathbf{R}_i , and $b_i = |\phi(\mathbf{R}_i)|^2$, where

$$
\phi(\mathbf{r}) = (\pi a_B^3)^{-1/2} \exp(-r/a_B)
$$

is the hydrogenic envelope function of the acceptor ground state.

To this, for wurtzite crystals, we add

$$
H_{\rm CF} = -D(j_z^2 - \frac{9}{4}), \qquad (2)
$$

where z is along the c axis. If a magnetic field B is applied in the same direction, we have also the Zeeman term

$$
H_Z = -\mu_B g_{\text{Mn}} B \sum_i S_{iz} - \mu_B g_h B_j \tag{3}
$$

An exactly soluble quantum-mechanical model is obtained by making the following approximation:

$$
b_i = \begin{cases} \frac{1}{V}, & R_i \le R_c \\ 0, & R_i > R_c, \end{cases} \tag{4}
$$

where R_c is the effective polaron radius and $V = (4\pi/3)R_c^3$. According to Ref. 6, $R_c = 1.84a_B$. The effective number of Mn ions in the BMP is $N \approx N_0Vx$, where N_0 is the number of cation sites per unit volume. $H_{\rm ex}$ is thus replaced by

$$
H_0 = -(J/V)\mathbf{j}\cdot\boldsymbol{\sigma} \ , \tag{5}
$$

where

$$
\sigma \equiv \sum_{i=1}^{N} \mathbf{S}_i \ . \tag{6}
$$

The Hamiltonian

 ϵ

$$
H = H_0 + H_{\rm CF} + H_Z \tag{7}
$$

35 9108 1987 The American Physical Society

can then be diagonalized exactly, by noting that σ and $M = \sigma_z + j_z$ are good quantum numbers. Here, $\sigma = NS$, $NS-1, \ldots, 0$ (assuming even N). The energy levels $\varepsilon_{\alpha M}$ are obtained by diagonalizing H in the subspace

$$
\{ | \sigma, \sigma_z = M - m \rangle | j, j_z = m \rangle \} .
$$

Clearly, there are 1, 2, 3, or 4 values of *l*, depending on σ . and M . The partition function is

$$
Z = \sum_{\sigma=0}^{NS} \sum_{M=-\sigma-3/2}^{\sigma+3/2} \sum_{l} \zeta(\sigma, M, l) , \qquad (8)
$$

where

$$
\zeta(\sigma, M, l) = \omega(\sigma) \exp(-\varepsilon_{\sigma M l} / k_B T) \tag{9}
$$

Here

$$
\omega(\sigma) = \Omega(\sigma) - \Omega(\sigma + 1) \tag{10}
$$

with $\Omega(\mu)$ being given by the coefficient of X^{μ} in $(X^S+X^{S-1}+ \cdots +X^{-S})^N$. The equilibrium population of the $j_z=m$ hole state is given by

$$
n_m = \sum_{\sigma} \sum_{M} \sum_{l} \zeta(\sigma, M, l) |a_{\sigma Ml}^m|^{2} / Z , \qquad (11)
$$

where

$$
a_{\sigma M l}^{m} \equiv \langle \sigma M l | \sigma, \sigma_z = M - m; j, j_z = m \rangle \tag{12}
$$

In zero field, $n_m = n_{-m}$, and

$$
\delta = -k_B T \ln(n_{1/2}/n_{3/2})
$$
 (13)

is the average excitation energy of the B-like hole states. In an applied field, the degree of circular polarization of donor-acceptor pair (DAP) luminescence is

$$
P_c = \frac{3(n_{-3/2}v_1 - n_{3/2}v_1) + (n_{-1/2}v_1 - n_{1/2}v_1)}{3(n_{-3/2}v_1 + n_{3/2}v_1) + (n_{-1/2}v_1 + n_{1/2}v_1)},
$$
(14)

where v_1 and v_1 represent the population of spin-up and spin-down electron states, respectively. Thermal equilibrium values of v_1 and v_1 can be estimated from the conduction-band spin splitting given by 10

$$
\Delta E_c = \bar{x} N_0 \alpha S B_S \left[\frac{S g_{\text{Mn}} \mu_B B}{k_B (T + T_0)} \right] + \mu_B g_e B \quad . \tag{15}
$$

Then

$$
v_{\rm t}/v_{\rm t} = \exp(-\Delta E_c / k_B T) \ . \tag{16}
$$

The relevant parameters for Cd_{0.95}Mn_{0.05}Se are¹¹ $g_e = 0.5$
and $\bar{x}N_0\alpha = 7.6$ meV. Also, $T_0 = 1.5$ K (Ref. 12) and $g_{\text{Mn}} = 2$. Here, we have neglected the relatively small polaron effect on the donor states.

Let us now present some of our results for $Cd_{0.95}Mn_{0.05}Se$. The acceptor binding energy in CdSe is estimated 100 meV.⁴ From the measured¹³ static dielectric constants (average =8.92), we obtain $a_B = 8$ \AA . The known lattice constants $a=4.309$ Å and $c=7.021$ Å give N_0 = 0.01772 (\AA)⁻³. Thus the effective polaron volume⁶ $V=25.93$ a_B^3 contains $N=12$. Let us recall⁵ that $D=11.5$ meV. In Fig. 1, the upper curve shows the resulting zero-field polaron binding energy $E \equiv -\langle \varepsilon \rangle$ as a function

FIG. 1. The upper curve shows theoretical polaron binding energy E as a function of temperature in $Cd_{0.95}Mn_{0.05}Se$. The circles represent experimental data from Ref. 4. The lower curve shows the average excitation energy δ of the *B*-like hole states.

of temperature. Note that an excellent agreement is obtained with the experimental data of Ref. 4. The only free parameter is J, which equals $\beta/3$ in the usual notation. The theoretical curve corresponds to $N_0\beta=0.81$ eV, which is 73% of the free-hole value 1.11 eV^{14} This reduction factor for bound hole is about the same as that predicted¹⁵ for Cd_{1-x}Mn_xTe. In Fig. 1, we also present δ as a function of T. Note that δ is very small at low temperatures, it increases with T as the polaron binding decreases. At high T (not shown in the figure) δ approaches 2D asymptotically.

Figure 2 presents our results for equilibrium polarization as a function of applied field at different temperatures. The solid curves show the hole polarization $P_h \equiv -\frac{2}{3} \langle j_z \rangle$, while the dashed curves correspond to the DAP polarization P_c from Eq. (14). All the curves have been obtained by multiplying the calculated values by 0.8, the observed saturation value. Experimental DAP polari-

û٤ E. u4| r
C $\frac{1}{10}$ B (kG))0 $\mathbf{0}$

FIG. 2. Theoretical curves for equilibrium polarization in $Cd_{0.95}Mn_{0.05}Se$, scaled to the saturation value 0.8. The solid curves show the hole polarization P_h , while the dashed ones show the DAP polarization P_c . The circles represent experimental data from Ref. 3.

zation data from Ref. 3 are presented for comparison. It is interesting to observe that experimental data show agreement with P_h , rather than P_c curves. In fact, in Ref. 3, the electronic polarization was neglected and experimental data were shown to fit P_h , calculated in the Ising approximation. Thus, our theoretical P_h curves are in agreement with those of Ref. 3. On the other hand, the experimental DAP polarization lying close to P_h , would seem to indicate that the electron spin distribution does not reach lattice thermal equilibrium before recombination. Such an effect was previously reported¹⁶ in $Cd_{1-x}Mn_xTe$. It is, however, surprising in a *n*-type material.

Let us mention that we have studied the D dependence of both E and polarization $(P_c \text{ or } P_h)$. As D increases from 0, E at a finite temperature decreases and the lowfield polarization increases. However, for $D > 10$ meV, this effect saturates, i.e., E and P remain unchanged with increasing D in the temperature range of interest $T \le 50$ K. This shows that the Ising approximation used in Refs. 3 and 4 is adequate for these equilibrium properties in $Cd_{1-x}Mn_xSe.$

The most interesting aspect of the present model is that it provides a framework for discussing time-resolved polarization measurements. The ground state of $A⁰$ -BMP in zero field is doubly degenerate: $M = \pm (NS + \frac{3}{2})$, corresponding to orientation parallel or antiparallel to the c axis. The orientational relaxation time is expected to be long compared to that in cubic $Cd_{1-x}Mn_xT$ e, because long compared to that in cubic $Cd_{1-x}Mn_x$ Ie, because
direct $+\frac{1}{2}\leftrightarrow -\frac{3}{2}$ hole transitions are forbidden and there is a finite activation energy for relaxation to proceed via $j_z = \pm \frac{1}{2}$ states. We estimate the spin-lattice relaxation time τ of the hole by applying the Orbach formula¹⁷

$$
\frac{1}{\tau} = C \left[\frac{\delta}{k_B} \right]^3 / (e^{\delta / k_B T} - 1)
$$
\n(17)

with δ given by the average excitation energy of the $j_z = \pm \frac{1}{2}$ states, discussed above. In this picture, the pola-
ron formation time ($\sim 10^{-9}$ sec, according to Ref. 18) is assumed to be much shorter than τ . Indeed, we shall see that $\tau \sim 10^{-6}$ sec. On the other hand, direct spin-lattice relaxation time of individual Mn spins is much longer¹⁹ (-10^{-4} sec) . Thus, τ plausibly characterizes the time evolution of the BMP orientation. Note that δ at low temperatures is much smaller than the Debye temperature of CdSe [181 K (Ref. 20)]. This is consistent with the two-phonon process implied in Eq. (17), with

$$
C = \frac{3}{2\pi\hbar^4 \rho v^5} (k_B)^3 |V_1|^2 , \qquad (18)
$$

where ρ is the density and v is the velocity of sound. Aswhere p is the density and b is the velocity of sound. Assuming $V_1 \simeq \frac{1}{3}(2D)$ for the coupling matrix element, and using ρ and average v from Ref. 20, we obtain $C=2.8\times10^4$ sec⁻¹. Since this is only an order of magnitude estimate, we take $C=10^4 \text{ sec}^{-1}$. The resulting τ as a function of temperature in $Cd_{0.95}Mn_{0.05}Se$ is shown in Fig. 3. It is in good agreement with time-resolved DAP

FIG. 3. Spin-lattice relaxation time τ of the hole (in zero field) as a function of temperature.

polarization data of Scalbert et $al.^{4,7,8}$ They reported that⁴ at 6 K (with $B=6$ kG) the time to reach the equilibrium value of polarization was about 1 μ sec. The characteristic time was also found to decrease with increasing T. A more direct comparison is provided by their zero-field optical pumping data.^{7,8} At 1.7 K a polarization of 8% was obtained that remained stable during 5 μ sec, indicating a longer relaxation time, in agreement with the calculated τ . With increasing temperature, the polarization was found to decrease rapidly, almost disappearing at 10 K. This is also consistent with our τ curve: for $T \ge 10$ K, $\tau < 10^{-7}$ sec, which is apparently shorter than the time scale of the experiment.

To summarize, we have developed a uniaxial crystalfield model for A^0 -BMP in wurtzite semiconductors. It incorporates the B-band mixing. We obtain good fits of both the BMP energy as a function of temperature and the equilibrium hole polarization as a function of applied field in $Cd_{0.95}Mn_{0.05}Se$. The effect of the B-band states is small for these equilibrium properties. On the other hand, the polaron coupling drastically reduces the average excitation energy δ of the *B*-like hole states at low temperatures. By using δ in the two-level Orbach formula, we estimate the hole spin-lattice relaxation time τ . Both the order of magnitude and the temperature dependence of τ are found to be in good agreement with the relaxation time, inferred from time-resolved DAP polarization data.

I wish to thank C. Benoit à la Guillaume, D. Scalbert, and J. Cernogora for numerous discussions.

- ¹A. K. Bhattacharjee, R. Planel, and C. Benoit à la Guillaume, in Proceedings of the 17th International Conference on the Physics of Semiconductors, San Francisco, 1984, edited by J. D. Chadi and W. A. Harrison (Springer-Verlag, New York, 1985), p. 1431.
- ²J. Warnock and P. A. Wolff, Phys. Rev. B 31, 6579 (1985).
- D. Heiman, J. Warnock, P. A. Wolff, R. Kershaw, D. Ridgley, K. Dwight, and A. Wold, Solid State Commun. 52, 909 (1984).
- ⁴D. Scalbert, M. Nawrocki, C. Benoit à la Guillaume, and J. Cernogora, Phys. Rev. B 33, 4418 (1986).
- 5P. Y. Yu and C. Hermann, Phys. Rev. B 23, 4097 (1981).
- ⁶S. M. Ryabchenko and Yu. G. Semenov, Zh. Eksp. Teor. Fiz. 84, ¹⁴¹⁹ (1983) [Sov. Phys.—JETP 57, ⁸²⁵ (1983)].
- ⁷D. Scalbert, M. Nawrocki, C. Benoit à la Guillaume, and J. Cernogora, Proceedings of the 18th International Conference on the Physics of Semiconductors, Stockholm, 1986 (unpublished).
- D. Scalbert, Doctoral thesis, Universite Paris VII, 1986.
- ⁹J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford Univerisity Press, Oxford, 1932), p. 324.
- ¹⁰J. A. Gaj, R. Planel, and G. Fishman, Solid State Commun.

29, 435 (1979).

- ¹¹D. Heiman, P. A. Wolff, and J. Warnock, Phys. Rev. B 27, 4848 (1983).
- ¹²D. Heiman, Y. Shapira, S. Foner, B. Khazai, R. Kershaw, K. Dwight, and A. Wold, Phys. Rev. B 29, 5634 (1984).
- ¹³D. Berlincourt, H. Jaffe, and L. R. Shiozawa, Phys. Rev. 129, 1009 (1963).
- ¹⁴R. L. Aggarwal, S. N. Jasperson, J. Stankiewicz, Y. Shapira, S. Foner, B. Khazai, and A. Wold, Phys. Rev. B 28, 6907 (1983).
- 15 J. Mycielski and C. Rigaux, J. Phys. (Paris) 44, 1041 (1983).
- ¹⁶A. V. Komarov, S. M. Ryabchenko, O. V. Terletskii, R. D. Ivanchuk, and A. V. Savitskii, Fiz. Tekh. Poluprovodn. 14, 17 (1980) [(Sov. Phys. Semicond. 14, 9 (1980)].
- ¹⁷See, for example, A. Abragram and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970), p. 561.
- 8A. V. Nurmikko, J. Lumin. 30, 355 (1985).
- ¹⁹H. Krenn, W. Zawadzki and G. Bauer, Phys. Rev. Lett. 55, 1510 (1985).
- ²⁰C. F. Cline, H. L. Dunegan and G. W. Henderson, J. Appl. Phys. 38, 1944 (1967).