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Exponentially localized states appear at the center of the energy spectrum of Cayley trees charac-
terized by two different connectivities randomly distributed within the tree. These states share with
‘“ultralocalized” states (states located on a few sites of the lattice) found in dilute lattices and, more
recently, in Penrose lattices the surprising feature of showing no dispersion. This random system il-
lustrates the fact that disorder not always tends to round off the density-of-states curves or to

broaden 8-function peaks.

Solid-state physics presents many examples of band-
center singularities when simple tight-binding Hamiltoni-
ans are employed to model physical systems. Paradigms
are the logarithmic Van Hove singularity appearing in the
density of states of a two-dimensional square lattice' and
the 8-function peak appearing in the gap of the density of
states of a dilute cubic lattice.> The origin of the singular
behavior is quite different in both cases. While the Van
Hove singularity describes extended states in an infinite
periodic lattice, the Kirkpatrick-Eggarter singularity
comes from “ultralocalized” states in a disordered system.
A noncomprehensive list of some further examples is
given in Ref. 3. Very recently, Penrose lattices (two-
dimensional quasicrystals) have added a new example to
this kind of singular behavior, and, as a consequence, new
contributions to the subject have appeared.*~® It seems
clear’ now that a great variety of systems formed by two
atomic species with different coordinations show ‘‘ultralo-
calized” states. We report in this paper the results of a
study of this phenomenon in Cayley trees characterized by
two different connectivities randomly distributed within
the tree. Our analysis extends the knowledge of band-
center singularities to random systems that can be studied
very precisely both numerically and analytically due to
their inherent simplicity.® As a by-product of our work,
we test further an analytical approximation that repro-
duces very accurately the density of states of complex ran-
dom Cayley trees obtained by computer simulation.
These complex Cayley trees have been used to study the
electronic structure of amorphous semiconductor alloys.’

We study a stoichiometric binary alloy AxABXB formed

by A atoms (atoms linked to k 4+ 1 first neighbors) and B
atoms (atoms linked to kp+1 first neighbors). A forms
A—A and A—B bonds with probabilities 1-p and p,
respectively, whereas B forms B—A and B—B bonds
with probabilities g and 1-g, respectively. Equalizing the
number of crossed bonds obtained starting from 4 or B
atoms, we have

xA(kA+1)p=xB(k3+1)q, (1)
which together with the stoichiometric requirement

x4(ky+1)=xplkp+1) (2)
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implies the equality of crossed probabilities:

p?=q . (3)

The probability p is related to the atomic correlation
that takes place in the binary alloy. It varies from p =0
(there are no crossed bonds; A4 and B form separate
phases) to p =1 (all tree branches show perfect atomic al-
ternation ...ABABAB...). One s orbital per site is con-
sidered. Atomic energies are equal to zero for both 4 and
B atoms and all first-neighbor interactions are equal to V.
Local properties of random Cayley trees are determined
completely by two sets of complex energy-dependent self-
energies {2 4(E)} and {Z3(E)} acting on sites 4 and B,
respectively. The probability distributions of self-energies
are governed by the following probabilistic equations:

EA(E)=V2/

i=1

kl
E—E,—3 3,(E) ] : (4a)

kl
E—E,— 3 3,(E)

i=1

5 5(E)=12 / , (4b)

where ¢ is a random subindex that takes values A4 and B
with probabilities 1-p and p, respectively, in Eq. (4a) and
that takes values 4 and B with probabilities p and 1-p,
respectively, in Eq. (4b). Also X 4(E) and Z3(E) are ran-
dom variables that take values according to their distribu-
tions {Z,4(E)} and {Zp(E)}. Equations (4a) and (4b)
show that the difference between {2 ,(E)} and {Zg(E)]}
stems from the difference in the distribution of atomic
configurations about 4 and B atoms, or in other words,
only the difference in the subindex distribution makes a
difference between both equations. Finite distributions of
self-energy values are obtained numerically through itera-
tion of Eqgs. (4a) and (4b). We have checked that final
self-energy distributions are independent from initial self-
energy values whenever the number of iterations is large
enough. Typical values of the computational parameters
are 1000 self-energy values in each set, 75 iteration loops
and ImE =0.01| ¥V |. Some tests with different values of
the parameters have been run to obtain an estimate of the
achieved numerical precision.

Once the self-energy distributions {Z,(E)} and
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{Zp(E)} are known, local densities of states are given by:

ky+1 =1
N4(E)=—(1/7)Im [E— 2 2 (E) , (5a)

i=1

kp+1 -1
Np(E)=—(1/m)Im{E— 3 EB(E)] . (5b)

i=l1

Finally, an average over atomic configurations, i.e.,
over {Z4(E)} and {Zp(E)}, allows the obtention of the
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averaged local densities of states on atoms A and B,
respectively.

Following previous work,*° analytical approximations
for the averaged local densities of states are obtained by
means of a self-consistent definition of two effective
mediums 2 4(E) and 23(E). (Note that we are using the
same notation for the self-energies in spite of the change
of character of the variables.) The first (one-step) approx-
imation to the effective mediums is determined by the fol-
lowing equations:

{E—(ks+1DEE)} " '=(1—pE —k = (E)—V*/(E —k 43 4(E))} ' +p{E —k,S(E)—V>/(E —kzSg(E)} ",

(6a)

{E —(kg+1)Zg(E)} ~'=(1—p){E —kp3g(E)—V*/(E —kpZg(E))} '+ p{E —kpSg(E)— V2 /(E —k 2 4(E)}~".

Equations (6a) and (6b) are usually inverted to obtain
3 4(E) and 2(E) as a function of 2 4(E) and 23(FE), and
then, they can be solved iteratively. We have taken the
imaginary part of E equal to zero in the last part of the
iteration procedure. In this way, the appearance of gaps is
unambiguously shown by the calculated density of states.

Further approximations to the effective media X ,(E)
and Z3(E) are obtained through averages over larger
atomic configurations that are generated by two or more
steps along branches of the Cayley tree. (See Ref. 8 for a
systematic comparison of analytical approximations done
to study diluted Cayley trees.) We have verified that the
two-step approximation is good enough for the system
under study. Furthermore, the one-step approximation is
as good as this except for energies around E =0. The
self-consistent equations for the two-step approximation
are not given here because their form depends explicitly
on the connectivities. (Note that both the two-step config-
urations used to define the effective medium and their
probabilities do depend on the Cayley-tree connectivities.)
Nevertheless, they can be very easily derived by the in-
terested reader.

At the end of this paper we will compare our analytical
approximations with the Kittler-Falicov analytical
method.!® For the sake of completeness, we write the
equations that give the effective medium in this scheme:

SUE)=(1—pWV*/(E —k, 3 4(E))

+pV*/(E —kpZg(E)), (7a)
Sp(E)=pVi/(E —k, 3 4(E))
+(1—p)WV*/(E —kpZp(E)) . (7b)
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(6b)

Through these equations, a direct average over the self-
energies corresponding to one-step atomic configurations
is done. Their relationship with the exact probabilistic
Egs. (4a) and (4b) is evident. This averaging procedure
can be contrasted with the one done using the diagonal
elements of the Green function [Eqgs. (6a) and (6b)].

Once the effective media have been obtained, averaged
local densities of states are given by

N E)=—(1/m)Im[E —(k,+ 12 (E)]~", (8a)

Np(E)=—(1/m)Im[E —(kg+1)Z5(E)]~!. (8b)

In addition, more complex atomic configurations can be
studied by saturating the configuration by the correspond-
ing effective media (cluster-Bethe-lattice calculations in a
widely used nomenclature).

We have applied the preceding methods to the study of
Cayley trees with two different kinds of branching defined
by connectivities k=1 and kpz=4. Our results for the
averaged local density of states as a function of p are
compiled in Figs. 1 and 2. In these figures both “exact”
numerical results and approximate analytical results are
shown. We start the discussion by analyzing the two ex-
treme values p =0 and p =1. The case p =0 is trivial:
two separate Cayley trees of connectivities 1 and 4 give
rise to well-known densities of states with band limits
+2V and *4V, respectively. The value p =1 originates a
regular Cayley tree with alternating branching. This tree
is exactly solvable. The continuous part of the local den-
sity of states on an atom of connectivity k is given by

N (E)=(1/mk(k + )| —E*42(k +k")VV*E?>—(k —k"V*1V2/{(k + D[ (k*—1)(k'—k)+k +k']V?—2kE?} |E | , (9)

where k' is the second connectivity of the ordered Cayley
tree (k'=kp for k =k, and k'=k, for k =kg). The
spectrum is formed by four bands with limits which are
+(v'kg+1v'k4)V. In addition to the continuous part of

the spectrum there is a & function at the gap center
(E =0) on the sites of smaller connectivity ( A sites). Its
weight is (kg —k,4)/(kg+1). (In Figs. 1 and 2 the spec-
trum for k4 =1 and k=4 is shown. The energies of the
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FIG. 1. Averaged densities of states on A4 sites (k,=1) as a
function of p [the probability that an A4 ( B) site is connected to
a B ( A4) site] in a random Cayley tree with two different connec-
tivities k4 =1 and kp=4. Numerical results obtained by simu-
lation, solid line, are compared with an analytical approxima-
tion, dashed line. With the spectra symmetric about E =0, only
the right parts of them are shown. The energy scale ranges
from —4.1| V| to O and the density-of-states scale ranges from
0t00.7| V| ~L

band edges are at +3V and * V for these connectivities.)

It is interesting to obtain the wave function of the local-
ized state. To this end, linear combinations of orbitals
with spherical symmetry around the central 4 atom are
considered. Let cg,cy,c;,... be the coefficients of the
wave function in terms of the symmetrized linear com-
binations of orbitals located on shells 0,1,2,... . Appli-
cation of Schrodinger equation gives the following set of
equations:

E60=mcl ,
Eci=V'k4+1co+V'kge, ,
Ec;=V'kge,+V'k 4¢3,
Ec;=V'k c+V'kges
Ecy=V'kges+V'kyes ,
Ecs=v"k c4+V'kpe .
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FIG. 2. Averaged densities of states on B sites (kz=4) as a
function of p [the probability that an A4 (B) site is connected to
a B ( A) site] in a random Cayley tree with two different connec-
tivities k4 =1 and kz=4. See also the caption of Fig. 1.

The wave function corresponding to E =0 is easily ob-
tained from Egs. (10):

cy=c3=cs=--+=0,
cr=—VTky+1/kpco ,
ca=V'k/kgV (ky4+1)/kgeo ,
ce=—(ky/kp)V/ (k,+1)/kgcq .

Finally, normalization of the wave function requires
that co=[(kgz—k,)/(kg+1)]"/? and the wave function
coefficients become specified. Thus, there is an exponen-
tially localized state of localization length A given by

A=2/In(kp /k4) (12)

(11)

in terms of steps along branches of the Cayley tree. Fur-
ther localized states with similar properties are obtained
for different symmetries. Nevertheless, these states do not
contribute to the density of states on the central atom.
(Only states with spherical symmetry contribute to the
density of states on the central atom of a Cayley tree
when one s orbital per site is considered in the Hamiltoni-
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an.) In conclusion, the §-function peak at the band center
comes from a ‘“nondispersive band” of exponentially lo-
calized states. Neither extended states as it happens for
Van Hove singularities,! nor “ultralocalized” states as
they appear in dilute lattices’ are responsible for the
band-center singularity. In some sense, the system under
study constitutes an intermediate example between well-
known extremes.

The Cayley tree of alternating branching falls into the
category of systems for which Sutherland’s theorem’ is
applicable. The following properties are correctly predict-
ed by the theorem. The spectrum is symmetric about
E =0 and it has a 8-function peak of finite weight at the
spectrum center [ | k4 —kp | /(k4+kp+2) is the average
weight for the regular Cayley tree]. Localized states are
confined to one of the sublattices, to the sites of smaller
coordination in this case.

Following now our numerical results (Figs. 1 and 2)
from p =1 to p =0, we note that the bands broaden and
the gap disappears around p =0.7. These features are
easily understandable in terms of the p=0 case.
Nevertheless, the most interesting facts occur in the
neighborhood of p =1 before the gap around E =0 closes.
Figures 1 and 2 show that for p <1 new bands around
E =+0.7V appear but the central peak does not broaden.
This is our main numerical result. We have checked this
assertion by a study of the dependence of the peak height
on the imaginary part of the energy. The study reveals a
S-function peak behavior.

We have studied the p—1 limit in order to understand
the effect of disorder for p < 1. In this limit the principal
defects occurring in the Cayley tree are local failures of
alternation, i.e., the appearance of ...ABABAABAB. ..
and ...ABABBABAB. .. paths along the branches of the
Cayley tree. For p—1, it suffices to study one isolated
defect of each of these two types. We have found that the
first type of defects explains our numerical results. A
...ABABAABAB. .. defect removes two states from the
peak at E =0 and produces two new localized states at
E =+0.7V. Furthermore, it can be checked directly that
the rest of the states belonging to the central peak do
change their wave function without changing their energy.
Figure 3 shows one of the new states at £ =0 in order to

FIG. 3. Example of a wave function of zero energy in a per-
fectly alternating Cayley tree with a defect of the
...ABABAABAB. . . type.

illustrate the phenomenon. Isolated defects do not pro-
duce states of energy very close to O and, therefore, the
central peak does not broaden for p—1.

Finally, we will briefly comment on the analytical ap-
proximations to the spectra of random Cayley trees. As
the comparison done in Figs. 1 and 2 proves, the analyti-
cal approximation reproduces very well the numerical re-
sults except in the neighborhood of E =0. While numeri-
cal results show the permanence of the 8-function peak
until p =~0.5, the central peak disappears from the analyti-
cal approximation for p <0.8, just when the gap closes.
A deeper analysis shows that the central peak is given by
our approximation as an extremely narrow band instead
of as a 8 function. Figure 4 shows that this failure is
largely magnified by the standard Kittler-Falicov approxi-
mation.

As a summary of our work, the following results can be
remarked.

(i) Regular Cayley trees with alternating connectivities
show exponentially localized states at the spectrum center
within the gap opened by the alternating connectivity.

(ii) The peak in the density of states that describes these
localized states does not broaden when perfect alternation
disappears.

(iii) This behavior can be easily understood in the quasi-
perfect limit. Wave functions are able to adapt them-
selves to the defects without changing their energy.

(iv) An analytical approximation to the density of states
reproduces the numerical results quite satisfactorily.

(a) p=0.85

(b)

DENSITY OF STATES

A B E—
ENERGY

FIG. 4. Comparison of three analytical approximations for
the case p =0.85. (i) Two-step analytical approximation shown
in Figs. 1 and 2 together with the numerical results, solid line;
(ii) one-step analytical approximation defined by Egs. (6a) and
(6b), dashed line; and, (iii) Kittler-Falicov analytical approxima-
tion defined by Egs. (7a) and (7b), dotted line. (a) shows the
averaged density of states on B sites, whereas (b) shows the
averaged density of states on A sites. Scales as in Figs. 1 and 2.
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