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Quantum theory of the double layer: Model including solvent structure
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We describe a microscopic theory of the electrons at the surface of an electrode-electrolyte inter-
face in which no specific adsorption of ions takes place at the electrode surface. Unlike some earlier
models, our calculations allow for the possibility that the distance from the metal to the solvent mol-
ecules can change when the potential on the electrode is changed. In the work described here, we re-

port calculations on a model which improves on our previous work by including more detail con-
cerning the electronic and molecular structure of the solvent. By including these features, we re-
move some arbitrary features of our previous model and improve the agreement between experiment
and our calculations for the differential capacitance of the interface between an sp metal and a di-
lute electrolyte.

I. INTRODUCTION

The differential capacitance of the double layer at a
metal-electrolyte surface has been studied experimentally
and theoretically for more than a century. Until recently,
one could summarize theoretical thinking concerning this
quantity in terms of the Stern-Gouy-Chapman model'
which described the interface (when there is no specific
ion adsorption at the surface) as consisting of a region of
electrolyte described by the Gouy-Chapman theory and a
compact layer inside the second Helmholtz plane which
arose from a monolayer of tightly bound solvent mole-
cules and which behaved as a second capacitor of capaci-
tance per unit area C, in series with the Gouy-Chapman
capacitance. The metal was modeled as a classical conduc-
tor. In this model the differential capacitance could then
be written as

1/Cd ——1/C, + 1/CGC

in which the compact and Gouy-Chapman layers, respec-
tively, contribute differential capacitances C, and CGC.
C, was assumed to be independent of the ionic concentra-
tion of the electrolyte. The form of Eq. (l) has been sub-
stantiated in many experiments. The charge dependence of
the compact capacity has however, been difficult to model
theoretically. Until recently, most theories of the compact
layer treated the metal as a classical conductor and attri-
buted this potential dependence of C, entirely to nonlinear
polarization of the solvent layer near the interface. These
theories had some success in reproducing the experimental
capacitance but a recent review by Guidelli makes it clear
that there is a serious discrepancy between essentially all
forms of these theories and experiment on the anodic side
of the point of zero charge. While we agree that the polar-
ization state of the first layer of solvent plays an impor-
tant role in determining the differential capacitance, we
and others ' have recently noted that a complete picture
of the capacitance of the electrode-electrolyte interface
must include the properties of the electrons of the metal
electrode and the nature of their interaction with the sol-
vent.

Prior to the work reported here, we have published two
papers in which the effects of these electrons on the dif-
ferential capacitance were estimated using models of in-
creasing sophistication. ' In each of these papers, the key
feature, not present in most other work on this problem, is
that our calculations allow the positions of the solvent
molecules to relax relative to the metal surface as the
charge on the electrode changes. This feature turns out to
be essential to our explanation of the main qualitative
features of the observed differential capacitance. It is also
this feature which differentiates this problem from that of
a metal-oxide junction. In the latter, solid-solid problem,
the relaxation of the position of the oxide relative to the
metal as the charge on the interface changes is not a key
feature in accounting for the electrostatic properties of the
interface, as we believe it is in the metal electrolyte inter-
face. In our first paper, we assumed, following work of
Theophilos and Modinos on the vacuum-metal interface,
that the electron density distribution responded to a
change of charge on the electrode by translating in or out
of the metal without changing shape. This simple assump-
tion permitted a correct prediction of the sign and order
of magnitude of the change of the differential capacitance
with charge.

In our second paper on this subject, we made a more
complete model based on the same physical ideas as
described in more detail below and at the beginning of the
next section. That theory incorporated the effects of ap-
plied voltages upon the metal's electrons and the solvent
equilibrium position and accounted qualitatively and sem-
iquantitatively for the differential capacitance in the ex-
perimentally accessible range of surface charge. In Ref. 6,
we presented quantitative, self-consistent calculations of
the electronic structure. The model for the metal was the
jellium plus pseudopotential model previously used by
Lang and Kohn while the solvent was supposed to affect
the electrons of the metal through a pseudopotential, tak-
en to be a "step potential" whose position was determined
by minimization of the surface energy.

Though the calculations based on the model of Ref. 6
gave results which were in encouragingly good qualitative
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and sometimes semiquantitative agreement with experi-
ments, they contained some deficiencies: The assumption
of a "step potential" barrier was arbitrary, and did not
take account of the nonuniformity of the solvent density
near the surface. The height of the barrier was a parame-
ter, not predicted by the model. Furthermore, there was
no clear connection between the position of the square
barrier and the number density and the polarization densi-
ty associated with the solvent. In the present paper we
present calculations which remedy these deficiencies and
improve the agreement with experiment on sp metals.

In Sec. II we review the model of Ref. 6. In Sec. III we
indicate how we have modified it to include more detailed
information on solvent molecular structure. In Sec. IV we
describe how we have obtained a pseudopotential to
describe the electronic structure of the solvent. In Sec. V
we give results and compare them with experiment. Sec-
tion VI contains conclusions and discussion.

II. DESCRIPTION OF THE EARLIER MODEL

P(o,xq+d)o—/2+Ez, +E„„,»~ (2)

We used Eq. (2) to calculate the position x2 of the square
barrier as a function of o., the charge per unit area on the
metal side of the interface. [In the new model, described
in Secs. III—V below, a position x will play the role of
xz in Eq. (2) and a position xq, defined in Sec. V and re-
lated to x, will be used to calculate the compact part of
the differential capacitance. ] In Eq. (2), E,(o,x2) is the
surface energy of the jellium-step potential system with
charge o. per unit area induced on the surface. In Ref. 6,
E, (cr,xz) was calculated self-consistently using the local
density approximation. The energy E,«describes the long
range mutual attraction of the solvent and the metal
which is clearly left out of the step potential form for the
pseudopotential ~ In Ref. 6 and in the present work we use
the dipole-image interaction for E,«. In the model of this
paper, however, we will not adjust the magnitude of the
solvent dipole in E,«as we did in Ref. 6 in order to ob-
tain a reasonable binding energy and equilibrium position
of the solvent. In this paper we will use the experimentally
known value of the dipole moment of water in E,«.
P(o,xz+d) in Eq. (2) is the electrostatic potential at the
point xz+d. x2+d is a point beyond which the electron
density is essentially zero. The term —(()(o,xq+d )o'/2 de-
scribes the electrostatic interaction of the ions of the elec-
trolyte with the metal and is derived in Appendix 8 of
Ref. 6. Ep, is an energy due to a pseudopotential correc-
tion to the jellium approximation arising from ion cores
of the metal crystal face and E„„,„]describes the
solvent-metal ion-core interaction. These last two terms,
Eps and E„„„]will not be used in the present model.
Since only the derivative of the total energy with respect
to x2 was of interest, terms independent of x2 have been
left out of Eq. (2) as discussed in Ref 6.

The self-consistent calculation which was done in order

In our earlier model the energy E(o,x2) per unit area
of the interface was calculated from the expression

E(cr,x~) = E, (cr,x2) + E„,(o,x2)

to determine the functions E, (o', x2), P(o,x2), and the
first moment x(cr, x2) of the charge induced on the metal
is described in Ref 6. We used the Kohn-Sham version of
the variational principle originally formulated by Hohen-
berg and Kohn' in which the variational function n (x)
(the electron density) is described in terms of "orbitals"
P~(x) which obey the Hartree-like equation (atomic units)

v(n ) = /dr'n (r')/
~

r —r'
~

+ u„,+ ubqs + v„~. (4)

The key difference between the present model and that
described in Ref. 6 is the form used for v„~.In Ref. 6 we
chose the form

u,„,= V,e(x —x, ),
in which 6 is the Heaviside function. This term was sup-
posed to arise from the interaction of the electrons arising
from the metal with the molecules of the solvent. As men-
tioned above, it has two defects: the quantity Vo is not
determined from first principles but is a parameter and
the "step" form of Eq. (5) does not take full account of
solvent structure near the electrode. Here we will remedy
these defects by averaging a pseudopotential describing
the interaction of a solvent molecule with the electrons
arising from the metal over a solvent molecule distribu-
tion containing an approximate account of the inhomo-
geneities near the surface. In the following two sections
we will describe first how this averaging is performed in
order to obtain v„~and second how the pseudopotential is
obtained.

III. MODEL INCLUDING SHORT-RANGE
SOLVENT STRUCTURE

To produce a model in which the short-range structure
of the solvent and its interaction with the metal are treat-
ed in a more microscopic and detailed manner, we have
developed a pseudopotential Vz, (r —R;,Q;) which de-
scribes the interaction of the electrons of the metal with a
molecule of the solvent. In V~, (r —R;,Q;), r is the elec-
tron position, R; is the position of the center of mass of a
solvent molecule, and 0; is the orientation of the dipole
moment of the solvent molecule. The derivation of this
pseudopotential and the form we are currently using for it
are described in the next section. In deriving Vps we have
replaced the water molecules of the solvent by spherically
symmetric neon atoms (with the same number of electrons
as H20) plus a long range dipole potential. In addition to
the linearly additive part Vz, (r —R, Q), the net pseudopo-
tential developed here also has a nonlinear, exchange and
correlation part V„,. In this section we describe how Vp,
and V„areused to construct v, ]. To obtain the contribu-
tion of V~, (r —R;,Q;) to v„~,we average the pseudopo-
tential over the positions R; of the solvent molecules

[——,V +u(n )]ctpx eA——x

n is the density of electrons. Here u(n ) includes a Har-
tree term, an exchange and correlation term, v„„aterm
due to the positive jellium background, vb],g, and a term
v„~ due to the interaction between the electrons arising
from the metal and the solvent molecules:
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weighted to take account of solvent inhomogeneity and
also over the position coordinates z,y which are transverse
to the interface. Denoting the resulting average by (.. .)„
we have a contribution to v„~of

g VR, (r —R;,Q;)

g(X —x,Q) = go(X —x ) + gD(X —x~)cos0, (9)

where 0 is the angle between the normal to the surface
and the direction of Q. In Figs. 1 and 2 we show go(x)
and gD(x) as given by the calculations of Ref. 11.

The form chosen for VR, (r —R;) as described in Sec.
IV below takes the form

=—fdRdQP(R, Q) f dz f dyV~, (r —R, Q)
1

VR, (x,Q) = V„,&(x) + V„,(x) + VD(x)cos8, (10)

=p, fdXdQg(X, Q) V~, (x —X,Q).

Here A is the surface area;

P(R, Q) = +5(R—R;)5(Q —Q;),
E

fdZdYP(R, Q),
ps

g(X, Q) =

and

VR, (x —X,Q) = (1/A) fdzdy V~, (r —R,Q),

(6) where the bar above V means a transverse average and the
subscript 1 on V~, &

means the part of the pseudopotential
which is linear in the metal electron density n (see
below) and V„,is the exchange and correlation part of the
pseudopotential. In Eq. (10), VD(x) is the transverse aver-
age of the dipolar field due to the point dipole on the sol-
vent molecules. We write this as

dz dy VD r —R

where p, is the (three-dimensional) bulk solvent density.
For the correlation function g(X, Q) we are using the
mean spherical approximation" for a liquid of hard
sphere atoms with point dipoles against a hard wall at po-
sition x . The resultant total energy is minimized with
respect to x . This can be regarded as a first iteration in
an iterative calculation in which the electron density
would be used to modify the form of g(x) in later stages.
In the mean spherical approximation, g(X,Q) can be
written

where

VD(r) = (1—e

T

—(r/ro)0

7

—(r jrO)~
The cutoff function e ' removes the unphysical
divergence in VD as r~0 and p is the magnitude of the
dipole moment taken here to be that of water. Combining
Eqs. (6), (9), and (10) gives the pseudopotential as

v„~(x—x ) = QV~, (r —R;,Q;)
l av

=p, f dXgo(X x)V—R, (x —X)+ —,fdXgD(X x)V—D(x —X)

[Here and elsewhere, potentials denoted with an unbarred,
capital letter V refer to functions of the radial coordinate
referred to a solvent molecule center, potentials denoted
with a barred V refer to a potential which has been trans-

versely averaged as in Eq. (8), and potentials denoted with
a small v have been averaged over solvent molecule posi-
tions using the correlation functions as in Eq. (11).] The
first of the two terms in the potential in Eq. (11) is shown
in Fig. 3 using the forms given in the next section and the
results in Fig. 1.

0

o t 2 3 4
X-X~/R

FICx. 1. Hard-sphere density as calculated from the mean
spherical approximation as in Ref. 11. Here x —x„is the dis-
tance of the center of a sphere from the hard wall at x and R
is the diameter of the spheres.

O 1 I I 1

0 1 2 3 4

X-X~/R

FIG. 2. Dipole correlation function gdI, x —x ) as calculated
in Ref. 11~
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FIG. 3. Averaged linear part of the pseudopotential v„~(x)as
given by Eq. (11).

I I

-1 P 1 2
X- X~/R

FIG. 4. Transversely averaged electron density associated
with solvent molecules as given by Eq. (14).

1
V (x ) = — dz dy V„,[n, (x) + nm (x )],XC (12)

where

n, (r) = +no(r —R;)

is the electron density associated with the solvent mole-
cules and n (x) is the density of electrons associated with
the metal. %'e have shown that, for the problem o in-
terest, the solvent averaged form of Eq. (12) can be ade-
quately approximated by

1
U„,(x) = V„, —f dzdy n, (r) + n (x)

As explained in Sec. IV below, in addition to the first
two terms in Eq. (11), the short-range electron-solvent in-
teraction must include the exchange and correlation po-
tential U„,which is not linearly additive in the sense that

V„,(n +n, )&V„,(n )+ V„,(n, ).

This exchange and correlation potential takes the form

wave functions describing the electrons associated with
the solvent molecules remain fixed in the configuration
they have in some reference state. Though this "frozen
core" approximation is not very accurate for hydrogen
bonding molecules such as H20, it is essential for a one
dimensional calculation of the sort we are doing here. The
reference state chosen for construction of the pseudopo-
tential is that of a neon atom far enough from a metal
surface so that the potential in the region near the neon
atom due to the metal is approximately zero. The solution
to the all electron problem for the reference state then
reduces to first solving the all electron, local density equa-
tions for an isolated neon atom, obtaining both the neon
atom electron density, no(r), and effective potentia
V[no(r)] . The electronic density associated with electrons
from the metal can then be described by local density ap-
proximation "wave functions" Pz which can be expanded
in the region surrounding the neon atom as

@ = g~™RI(r)YI~(B,Q)
l, m

Here RI (r) = u~ /r is given by the solution to the radial
Schrodinger equation (atomic units):

where

= V„,[n, (x —x ) + n (x)], (13)
+ 2V[no(r) —E] u((r) = 0.d"+ 2

n, (x —x ) = p, f dXgo(X x) jdz—dygnp(r R;). —
E

(14)

n, (x) is shown in Fig. 4.

IV. MODEL SOLVENT PSEUDOPOTENTIAL

To complete the description of the model discussed in
the preceding section we explain here howhow the interaction
of metal electrons with solvent molecules is described by a
pseudopoten ia . ed t' 1. The method is similar to one described
by Hamann, Schluter, and Chiang' but we have adapted

t the roblem at hand. As mentioned above we wi
describe the method here for a neon atom, adding a ipo e
potential to the neon pseudopotential in order to obtain
our model solvent "molecule. "To use a pseudopotential to
replace the entire solvent molecule we require that the

Following a procedure like that in Ref. 12, we find a
nodeless "pseudo-wave-function" ul"' which is required to
have the properties that (1) uf' becomes the same as u~

for large enough r, (2) the net charge associated with the
pseudo-wave-function and uI are the same, and ( ) uf'
goes to zero as r at r:1+1

u '(r) = ul (r) for all r &~r„0 (16)I

[ '( )] dr = f [uI (r)] dr for R » r„(17)
0 l 0

u,~'(r) ~ r + as r~O.1+1 (l8)
H, , " ore" radius which is a parameter of the
pseudopotential, and 8 is any finite radius large enoug
so that the two wave functions are equal for all larger
values of r. The method is only fully consistent if the re-
sults are not strongly dependent on r, . In this work, we
have created such a pseudo-wave-function by requiring
that uI '(r) minimize the functional G[uI(r)] given by
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G[u((r)] = u
' ( +1)"( d„z +

2 q
u( —Eu( + V[no(r )][1 f—(r )]u( dr

+ p f (» —.(')'[1 —f(r)]dr + A, f u2f(r)dr,

where f(r) satisfies

0 r))r,
r)—+.

1 r (r, .

[In our calculations we choose f(r ) = e ' .] Here k is a La r.] ere is a agrange multiplier determined by requiring that u( satis-
ies con ition above and the term containing p forces u( to go to u( for r ~~r, . We took p = E . The e

satisfied by u((r ) under these conditions is
l c e oo = iii ~ e equation

l(l + 1) u(+ 2« P)u( —2[ V[n—o(r) l[1—f(r )] + (~+ P)f(r) }u((r) = —2Pu('[I —f(r )].

The procedure is now to solve this equation for u((r) and
then invert the equation

1(l+1) u(+ 2[E —V((r)]u( = 0
r

in order to obtain the partial wave pseudopotential V((r).
The corresponding potential

00 l

Vp(1 r)QV((r)QY((I )Y((r)
l=o

is the correct pseudopotential in the "reference st t "
whw en the molecule is far from the metal. For the present
case we have shown that it is sufficiently accurate to take
Vp ( I r ) Vo ( r)5( r —r' ). In Fig. 5 we show the pseudo
and true wave functions for E= —0.15 a.u. and r, =1.3

a.u. In Fig. 6 we show Vo(r) for various values of the pa-
rameter r, in the function f.

Thhe resulting pseudopotential Vo only takes account of
that part of the exchange and correlation potential which
arises from that part of the electron density which is given
by the core density no(r). To take account of the full ex-
change and correlation energy in a way which takes full
account of the nonlinearity of the exchange and correla-
tion energy as a function of electron density, we follow
Ref. 1~e . 3: We subtract the exchange and correlation poten-
tial due to no(r) alone from Vo and then add the full ex-
change and correlation potential arising from the full elec-
tron density no(r)+n (r) back in to give the full ex-
change and correlation potential used in the solution of
the Kohn-Sham equations. Here n (r) is the density of
valence or "metal" electrons. The resulting pseudopoten-

(Q

C
Q~ LA—0

CL

t ]

2 3
r (a.u.)

I

6
( (a.u.)

10

FIG. 5. Real and pseudowave functions for E= —0. 15 a.u.
and r, =1.3 a.u.

FIG. 6. The pseudopotential Vo(r) for E= —0. 15 a.u. and
(a) r, =1.2938 a.u. , (b) r, =1.5 a.u. , and (c) r, =1.7 a.u.
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of a linear" (or char e indetial is a sum g
'

p )p

Vp, )(x) = (1/A) t
V'(r-o ") —Vxc[&o(r)] Idy dz (19)

and an exchan e „,x given byge and correlation part V (x)

Vxc(x ) = ( 1/A ) dy dz V„, n (x) + +no(r —R )

where the sum is ovover solvent positions. The inte
the right-hand side of E . (19 i

very near the nucl f
c ice, n is essentially zero

nuc eus of each solvent mol
can truncate n (r —R

olecule, so that weg, since the potentiale no r —;)in that re ion
e used there. We tak

in r r near the core and m
to the exact n at a r

match it smoothly
no at a radius ro which is near r .

mentioned
V„,[n (x)+n, (r)] is not 1 f

in the precedin

o t}lat
no a inear function of it

i over t e transverse ositi
nates of the solvent m 1 1

posi ion coordi-

h s}lo
'

ll b
ven mo ecules is not strai ht

ordered array of 1

erica y by evaluatin th
o moecules that the a r

g e average for an

Eqs. (4), (13), and (14)]
e approx&mation [see

U„, = (1/A) f dzdy V„,[n, (r) + n (x)]

V„,[(1/A) f dz dy n, (r) + n (x)]

is accurate to with bwi in a out 10

s;. n ortunately, if we use the seu o
db t}li o dproce ure to calculate the bindin

a neon atom to a m t 1 f
suit depends on th

me a sur ace, then we ~find that the re-
on e parameter r, as it sho

do ot ti 1th o W heory. e have chosen to deal with this diffi-

culty by choosing a value of r, for use i
e in t e next section in such a wa th

wi a electron calculations' of rar-
on jellium surfaces.

o rare-gas atoms

V. CALCULATION OF x (cT)

AND THE CAPACITANCE

The calculation of x (tr) and the
tion to th e compact layer ca acitan

o. an the electronic contribu-

essentiall th
y pacitance now proceed in

en ia y t e same way as in Ref. 6: For a iv
1 of 11x, a t e terms in E . (2 a

ed [except that in th
q. are comput-

butions from E
n e present model we 1

, an E
eave out contri-

placed everywhere b x . e resultant ener
p core —so/ and in E . 2

ixe o. is t en fitted to a poy o

th q ilibriu posit f h
e o ain t e function x„(o)and s

have chosen in the
osi ion o the solventh distribution. We

n in t e present work to focus at
metals for which the ell

cus a tention on sp
e je ium model is most relia

pseudopotential corre t' frec ions or the meta
re iable. The

expected t bo e very large for the s stem
eta ion cores are not

compare (at least
e systems with which we

d fo hi o do
a east away from the stron 1

reason we do not include the terms E and

care —sa~(0rxp ) n th o ner cagy t* . s e .
u e t e ipole-image interaction a

h
moment and we in

, we o not ad'ust thej e value of the dipole
an we integrate the dipole-ima

over the solvent d' t b
-image interaction

is ri ution as iven b
sphere results. In Fi . 8

g' y the MSA hard-
s. n tg. 8 we show the values of x (o) cal-

rs =259
Cadmium

0

0
I

2
f I

6 8 10
r (a.Lj.)

FIG. 7. The "linear part" ofFI . " par of the pseudopotential with
5 a.u. and r, =1.3 a.u. See E . '19q. ,

2 3

FIG. 8. V

a )0 a.u. )

. 8. Values of the distance x as a fu
per unit ararea on t e metal for Cd ca

x as a unction of the charge
, calculated using the model
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rs= 2.59

~a(
U

I

7 -1 Il 1

a ( 10 a u. )

-7
I I I

5

a. (10
' a.u. )

FIG. 9. The inverse compact capacitance as a function of the
charge per unit area on the metal for Cd, calculated using the
model described in the text.

FIG. 10. Comparison of C, ' for the three models studied to
date and the experimental results for Cd: (a) the prediction of
Ref.6, where the solvent pseudopotential was modeled by a step
function; (b) the prediction of the present model, described in
the text; (c) experimental results; (d) the slope predicted by the
simple "slide" model also described in Ref. 6.

culated in this manner for Cd.
In order to calculate the compact differential capaci-

tance, one needs to know' x(cr), the first moment of the
charge induced upon the metal, and xz(cr), the starting
point of an equivalent Gouy-Chapman electrolyte. The
point x(cr) is obtained from the self-consistent charge
densities as described in Ref. 6. The point x2(cr) is the po-
sition at which to place the edge of an ideal Gouy-
Chapman electrolyte in place of the true electrolyte charge
distributions in order to obtain the same total potential
drop. ' The MSA hard-sphere-plus-dipole distribution
functions allow calculation of x2(cr) relative to the hard
wall position in the limit as o. ~ 0. Here we assume that
this position for x2 remains fixed with respect to the sol-
vent distribution over the range of induced charge con-
sidered and so differs from x by a known constant. This
is analogous to the assumption in Ref. 6 that xz(o) was
fixed to the edge of the square barrier, and relies largely
on the assumption that the polarization density is linear in
o.. Thus the present model offers the added advantage that
the position of x2 relative to the pseudopotential is calcu-
lated from the model rather than being guessed at. The in-
verse compact differential capacitance is then given by'

The results for the inverse compact differential capaci-
tance, expressed as a graph of 1/C, as a function of
charge cr are shown in Fig. 9, and they are compared
with experiments' on Cd electrodes and with the results
of the model of Ref. 6 in Fig. 10.

VI. DISCUSSION AND CONCLUSIONS

Inspection of Fig. 10 indicates that the inclusion of sol-
vent structure and more detailed information about the
solvent-electron interaction has resulted in quite signifi-
cant improvement in the power of the model to predict
the right values for the observed differential capacitance
of the Cd-electrolyte interface. This improvement, which
is also obtained for other sp metals, is particularly en-
couraging in view of the fact that the new model for the
solvent is somewhat less arbitrary than the preceding one
as well as being more detailed. It should, however, be
pointed out that at least one free parameter remains be-
cause we are forced to adjust r, in the pseudopotential in
order to give the right binding energy for neon to a metal
surface.

In future work on this model it will be necessary to in-
clude saturation effects in the dipolar response of the sol-
vent in this model and to improve the model employed to
calculate E&,„g „„g,. We have discussed both these points
before. The former effect can be expected to account for
the observed temperature dependence of the differential
capacitance and the latter will remove the arbitrary char-
acter of the assumptions employed in that term. Finally, it
will be useful to explore the consequences of the trans-
verse averaging employed in this paper by developing a
fully three-dimensional model. This is of particular im-
portance in view of the fact that most experimental elec-
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trochemical interfaces are far from being perfect single
crystal faces while the solvent is undoubtedly highly
disordered. Despite these caveats, we do not anticipate
that the basic physics of the model will require major re-
vision as a consequence of such considerations.
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