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Fundamental difficulty in the use of second-harmonic generation as a strictly surface prohe
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We prove that an important component of forbidden bulk second-harmonic generation in homo-
geneous media is inseparable from the surface contribution in all practical experimental situa-
tions. Experimental evidence is presented. Consequences are discussed.

In a centrosymmetric material, second-harmonic gen-
eration (SHG) due to electric dipoles is forbidden, and the
second-harmonic polarization sources have magnetic di-
pole and electric quadrupole symmetry. ' Near a surface,
however, inversion symmetry is broken and electric dipole
sources are allowed. In addition, large gradients exist in
the normal component of the electric field. The source po-
larization due to both these eA'ects can be described phe-
nomenologically by a dipole sheet, the amplitude of which
depends on the fundamental electric field at the surface
through a surface susceptibility tensor.

In the use of second-harmonic generation as a probe of
surface (or bulk) properties, it is obviously desirable to
employ experimental geometries which allow —as far as is
possible —for the unambiguous and separate determina-
tion of the elements of the surface susceptibility tensor
and the material constants characterizing the bulk
sources. Indeed, a number of clever experimental proto-
cols have been suggested to do this. But there is an im-
portant limitation to the extent to which this is possible in
a homogeneous medium; a proof of that limitation is the
subject of this note. Several years ago, Wang observed a
special case of our result when he considered the second-
harmonic signal observed in reflection from a linearly po-
larized plane wave impinging from the vacuum on a flat
surface. He showed that, in this very restrictive geometry,
the signal depended on one of the bulk coefficients only
through its dependence on a particular linear combination
with one of the surface coe%cients. And, since this linear
combination is the same for all angles of incidence and
linear polarization, no experiment in the class considered
by Wang could separately determine those terms. This
result has been noticed, in such special classes of experi-
mental geometries, by other workers since.

Here we prove theoretically and demonstrate experi-
mentally that the result is considerably more general than
has been previously appreciated. It holds for arbitrary po-
larization, and in fact for any number of beams of any
shape propagating in any direction. Indeed, essentially
nothing need be assumed about the form of the fundamen-
tal field. Further, the result holds for an arbitrarily
shaped medium, and can be generalized to treat sum and
diflerence frequency generation. It is thus a fundamental
and important result in the theory of optical parametric
processes.

To present and prove this result, we first consider
second-harmonic generation from an isotropic medium, in
a geometry where only one (planar) surface is important

P (r) =8(z —0+ )p(x, y ), (2)

where we have assumed vacuum for z & 0, medium for
z &0, and

p(x,y) =Z':e(x,y, z =0 )e(x,y, z =0 ) .

The assumption of isotropy in the medium requires
~zxz ~zzz ~yyz ~yzy =~II II J ~zgx ~zyy =~J II II

elements of the surface susceptibility tensor Z' except
Z,'„—:Z~» vanish. (The subscripts II and J refer to
components parallel and perpendicular to the surface, re-
spectively. )

The particular surface and bulk terms that appear to-
gether are Z& II II and y; we prove below that these terms al-
ways appear in the linear combination Z~~~~~+ e '(2ro) y,
where e(2co) is the (in general, complex) dielectric con-
stant at the second-harmonic frequency. This result has
some surprising consequences. For example, consider a
transparent material where SHG can be observed in
reflection or transmission. In the latter case the condition
of phase matching can be much more closely approximat-
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FIG. l. A simple interface; the dipole sheet is placed at
z =0+ as indicated. The medium is in the region z & 0.

(see Fig. I). In the bulk of the medium the polarization at
2' is given by'

P(r) = yV[e(r) e(r)]+Pe(r)[V e(r)] t8'[e(r). V]e(r),
(I)

where e(r) is the electric field at the fundamental fre-
quency co, and y, p, and 8' are material constants. The 8
introduced by Bloembergen is B=r$'+p+2y; it is con-
venient to consider y, p, and 6' as the independent con-
stants. The polarization of the dipole sheet at the surface
is
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ed than in the former. If fused silica is chosen as the ma-
terial with a fundamental beam at 532 nm incident at 45,
the effective coherence length (the thickness of the bulk
material that coherently contributes to the second-
harmonic signal) is 3.0 pm in the forward direction and
only 0.052 pm in the reverse. Thus, one might naively
expect of order (3.0/0. 052) =3300 times more contribu-
tion form the y term in the forward direction (SHG in
transmission) than in the backward direction (SHG in
reflection), with roughly comparable contributions from
the surface terms. Yet this coherence-length factor is aI-
ways canceled out (as can be shown by direct calculation)
by geometric factors associated with the direction of the
bulk source polarization, and in the end the signal is sensi-
tive not to y independently, but toZ~ii+e '(2')y.

Note that in an optics experiment V e(r) =0 in the
bulk, and if s-polarized light is incident, there is no signal
due to 8', Z&», or Zfp&, and only the Z~i~~+c '(2co)y
term remains. From this it follows that the ratio of the
signal in a transmission experiment to that in a reflection
experiment should only depend on Fresnel coefficients.

We have experimentally tested the validity of this asser-
tion, on both Suprasil (fused silica), and BK-7 optical
glass. Second-harmonic generation was performed, both
in reflection and transmission, at a fundamental wave-
length of 532 nm, with a 25-ps s-polarized Nd: YAG laser
(where YAG is yttrium aluminum garnet) at 10 mJ/pulse
and with a measured beam radius of 2.2 mm at the sam-
ple. In the case of the BK-7, a 6-mm-thick optical flat
was used with fundamental beam incident at 45' to the
normal [see Fig. 2(a)]. As BK-7 is opaque at 266 nm,
only the first surface region contributes to the second har-
monic detected in reflection, and only the second surface
region to transmission. A detailed calculation, using the
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linear Fresnel factors associated with the vacuum-glass in-
terface, predicts a value of 2.952 for the ratio of the
second-harmonic intensity in the forward direction to that
of the reverse. Note that we do not need to know the
value of either g&]~]~ or y for this calculation. Experimen-
tally we have measured this ratio to be 2.87 + 0.15, in ex-
cellent agreement with this prediction.

In the case of fused silica, which is transparent at both
532 and 266 nm, a diA'erent geometry was employed to fa-
cilitate a clean separation of the two surface contributions
(thus avoiding complications due to interference effects).
The sample was a Littrow prism with a 34.5 apex angle.
In transmission, the first face, set at normal incidence to
the beam, did not contribute to SHG; in reflection, the
first face was rotated to 45', with the second-surface con-
tribution eliminated geometrically [see Fig. 2(b)]. For
this experiment we calculated a ratio of forward to reverse
second-harmonic intensities of 9.807, and measured 10.07
~0.42; again excellent agreement. (The value differs
from that of BK-7 largely due to the different forward
geometry. )

Once the basic premise of this ratio depending only on
the linear optical properties of the sample is accepted, it
becomes possible to use the calculated ratio as an excel-
lent and rigorous test of the experimental system, and to
obtain a measure of systematic errors. This is a feature
not normally available to the experimentalist.

We now turn to a proof of this result, dealing first with
the simple geometry shown in Fig. 1. Denote by G(r;r')
the Green's function for a polarization source at r' and a
detection point at r. Then the second-harmonic field attri-
butable to the y term in Eq. (1) is

ro , I
-t+-

E;(r) =& dz'„J' dx'dy'G;~(r;r')

x y [e(r') e(r')], (4)
c)r/

where subscripts denote Cartesian components, and are
summed over if repeated. The Green's function G incor-
porates all the linear optical properties of the medium and
vacuum at 2co and the Maxwell saltus (boundary) condi-
tions at the interface. In particular,
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FIG. 2. (a) Experimental geometry employed with the BK-7
flat, which is opaque at 2'. The solid line indicates the laser
beam at m. The dashed line, shown displaced for clarity,
represents the generated second harmonic. (b) Experimental
geometry employed with the Suprasil (fused silica) Littrow
prism. In transmission the first surface is oriented at normal in-

cidence to the beam, and so does not contribute to SHG. In
reflection the first surface is rotated by 45'.

(any r' and r&r') away from a source since the field gen-
erated by that source is divergenceless. The Green's func-
tion also satisfies a reciprocity condition,

G;, (r;r') =G,;(r';r)

(all r, r'). That is, the ith component of the field at r due
to the jth component of polarization at r' is the same as
the jth component of the electric field that would be pro-
duced at r' if instead there were an ith component of po-
larization at r.

Partially integrating Eq. (4), we find
g + ao

E; (r) = y „~ dx'dy'G;, (r;x', y', z'=0 )

xe(x', y', z'=0 ) e(x', y', z'=0 )

(7)
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plus a volume integral involving 8G;~(r;r')/Bri. But that
divergence vanishes using Eqs. (5) and (6), and so the
contribution from the volume integral vanishes, leaving
only Eq. (7)—regardless of the form of the function e(r).
From this alone it is clear that the contribution to the
second-harmonic signal from the Z term of Eq. (1) is
behaving like some sort of surface term.

To see its nature in detail, we note that if there were a
source at r(z & 0), the z component of the electric field
produced at (x',y', z'=0+), would be e(2') times that
produced at (x',y', z'=0 ), as follows from the Maxwell
equations. Using this fact and the reciprocity condition
(6), we can then write Eq. (7) as

p+oo
E;(r) =ye '(2') „~ dx'dy'G;, (r;x',y', z'=0+)e(x', y', z'=0 ) e(x', y', z'=0 ) . (8)

Now, using Eq. (2), we write down the second-harmonic
signal from the surface source,

+ oo

Z;(r) =„I „dx'dy'G, )(r;x',y', z'=0+)p, (x',y'),

and the similarity of the form of the bulk contribution (8)
due to y with that of the surface contribution (9) is ap-
parent. In fact, writing out the form p(x', y') takes at the
surface of an isotropic medium we find

~J. J. J.~ ~ +~~illll(~ & +&y&y)

~J IIII(e e)+ (~J J. J. ~J IIII)&

p. =2~(((l J exex

pz =22((((Je~e, .

where e of course refers to the fundamental field evalu-
ated at z =0 . Using Eq. (10) in Eq. (9) and comparing
with Eq. (8), we see that y appears only in the linear com-
bination ye ' (2') +g~ p i =E~ I[ p. From Eqs. (1), (9),
and (10) we can then identify only four independent ma-
terial parameters that can be measured in an optical
[V e(r) =0] experiment, namely, X& i i, I&» —&& ii ii,

Z((((&, and 8'. The parameter y itself simply cannot be
determined.

Although we have given the proof here only for a planar
interface (Fig. 1), it is clear that it is easily generalized to
any shape interface as long as a dipole sheet model can be
used to phenomenologically describe the surface sources.
For an interface of general shape, of course, the dipole
sheet is considered "warped" to follow the shape of the in-
terface. Further, it is clear that the proof can easily be
generalized to sum and difference frequency generation:
the Green's function G(r;r') is then evaluated at the fre-
quency generated, as is the e that appears in going from
Eq. (7) to Eq. (8). We emphasize we have assumed noth-
ing about the form of e(r), the fundamental field. Thus,
the proof holds for any number of beams in the medium,
of any shape. Indeed, although in using a linear Green's
function G(r;r') we have implicitly assumed that the
medium can be assumed to have linear optical properties
at the frequency of the generated field, we have assumed
nothing about the medium at the fundamental frequency.
Even if e(r) satisfied a nonlinear wave equation in the
medium, the proof would still hold. In the case of a
medium-medium interface, as opposed to vacuum-
medium, an analogous result would apply. Finally, we
note that the proof can be generalized to anisotropic

I

media where, in addition to the bulk and surface terms we
have included, additional sources of lower symmetry are
allowed. So in fact this result holds for all homogeneous
media, including crystalline metals and semiconductors.

Because of the generality of our result, expectations
that y could be measured by using mixing experiments
with noncolinear beams are seen to have been overly
sanguine. Yet, our result does not imply that SHG cannot
serve as a purely surface specific probe. For an isotropic
system, a single-beam experiment (for which the 8' term
gives no contribution) with an input polarization that is a
combination of s and p polarization, and where only the
s-polarized component of the generated field is measured,
will be sensitive to only X((((&. Unfortunately this com-
bination of polarizations is not similarly surface specific
for anisotropic systems such as crystalline silicon. There-
fore, since Z&(((( can never be measured directly and com-
pared with theory, a direct consequence of our result is
that the use of SHG as a probe of strictly surface phenom-
ena is rendered more di%cult. Indeed, it is interesting to
note that if the surface were changed by material process-
ing (changing Z') the ratio of forward to reverse SHG in
the experiment described earlier (s-polarized fundamen-
tal) would not be aA'ected. But if the processing aA'ected
the bulk material down to say a depth of order the coher-
ence length for a reflection experiment, but rather less
than that for a transmission experiment, that ratio could
appreciably change [in going from Eq. (4) to Eq. (7) we
assumed a uniform y in the medium]. Whether this
change would be more sensitive to bulk modification than
would be changes in the linear optical properties is un-
clear; however if it were, then second-harmonic genera-
tion, which is usually promoted as a surface probe, would
be insensitive to the surface and in fact probe the bulk.

Finally, we mention that since X&(((( and y describe
different physical effects we would expect that, at least in
principle, some experiment could measure them separate-
ly. And indeed this is true: if the detection point r were
inside the medium, BG;J(r;r')/Brj would contain a singu-
lar part at r'=r, giving a "local" contribution proportion-
al to ye(r) e(r), in addition to the surface term. Mea-
surement of the second-harmonic field at different points
in the medium, then, could in principle lead to a deter-
mination of both XJ (((( and y.

In summary, we have proved that for a wide class of ex-
periments, y always appears in the same linear combina-
tion with one component of Z', and hence the two terms
cannot be measured separately. This key result, which
had previously been derived by Wang (see also Guyot-
Sionnest, Chen, and Shen ) with a very restrictive set of
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assumptions, in fact holds for an arbitrary number of
beams in an arbitrarily shaped medium, and is easily gen-
eralized to sum and difference frequency generation. The
result restricts to some extent the use of second-harmonic
generation as a probe of purely surface phenomena. Fur-
ther, it leads to somewhat surprising and testable conse-
quences. We have performed experiments to verify the

validity of these assertions and obtain agreement to within
the experimental uncertainty of 5%.
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