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The ac dielectric response of metal-insulator composites is studied numerically, using the
transfer-matrix algorithm of Derrida and Vannimenus. For two-dimensional random composites
with site percolation, we verify numerically that the effective dielectric function can be written nu-

merically in the form e, /e, =g '~'G+((e2/e, )g"+'~', g/L ), where e~ and eq are the dielectric func-
tions, g is the correlation length, L is the system size (or wavelength of the electric field), G+ and
6 are universal functions above and below percolation, and t, s, and v are standard percolation ex-

ponents. A similar form has been previously verified for bond percolation by Bug et al. We also
study surface-plasmon resonances in a two-dimensional lattice model of a composite of Drude metal
and insulator. The effective conductivity of the composite in this case is found to consist of a Drude
peak which disappears below the metal percolation threshold, plus a band of surface-plasmon states
separated from zero frequency by a gap which appears to vanish near the percolation threshold.
The results in this case agree qualitatively with effective-medium predictions. The potential relation
of these results to experiment, and the possibility of a Lifshitz tail in the surface-plasmon density of
states, are briefly discussed.

I. INTRODUCTION

Composite materials have long been known to have
electrical and optical properties very different from those
of their constituents. ' The differences are particularly
marked near a percolation threshold, i.e., a point at which
one of the two components of the composite first forms a
closed connected path extending throughout the sample.
For a composite comprised of two materials with conduc-
tivities 0.

&
and o.z, the effective conductivity o, exhibits

the power law (in the limit in which o q approaches zero)

tr, =tr~(p —p, )' (p &p, ),
where p is the volume fraction of material 1 and p, is the
percolation threshold for material 1. Conversely, if
o.

I ~&o.2, then as p approaches p, from below it is believed
that o., diverges according to the law

(1.2)

The exponents t and s are believed to depend on the
dimensionality of the composite, but are otherwise
"universal" in the sense that they are identical for all lat-
tice models of the same dimensionality. Exponents for a
continuum composite are thought to depend on certain
details of the microgeometry, and may differ from those
expected for lattice models. The percolation threshold
p„on the other hand, is not universal, but varies from
sample to sample.

The power-law behavior suggests a close analogy be-
tween the percolation transition and conventional phase
transitions, with the percolation threshold as a kind of a
critical point. Just as in the theory of phase transitions,
there exists a correlation length in percolation phenomena
which diverges as the percolation threshold is approached
from either side. This correlation length, denoted g, de-
scribes the linear dimensions of a typical cluster for

p &p„' above p„ it is the length scale below which the
connected cluster has a fractal rather than a homogene-
ous, integer-dimensional geometry. g also obeys a power
law near the percolation threshold, diverging on both sides
of the threshold as

(1.3)

where v is another critical exponent with the same degree
of universality as s and t.

This paper is concerned with several aspects of the con-
nection between the percolation transition and convention-
al phase transitions. First, we consider a scaling form for
the complex dielectric response of a metal-insulator com-
posite. This form is expected to be valid at both finite
sizes and finite frequencies. We provide numerical evi-
dence to confirm that this form is valid in site percola-
tion, using a transfer-matrix method recently developed to
treat dc problems in composite media. A similar demon-
stration has recently been carried out by Bug et aJ'. for
bond percolation in two dimensions. Secondly, we exam-
ine a model for a composite of Drude metal and insulator
near the percolation threshold. We present numerical evi-
dence, using the transfer-matrix technique, that, in the
limit of a long Drude relaxation time, there exists a gap in
the absorption spectrum at low frequency, and that the
frequency width of this gap goes to zero at p, . Analytic
arguments suggest that the gap actually obeys a power
law near the percolation transition. Our numerical results
are not accurate enough to estimate this power.

All of our calculations are carried out using random
impedance networks to model metal-insulator composites.
These networks emerge naturally if one discretizes the ap-
propriate electrostatic equations and solves them on a lat-
tice. Such a lattice representation of a continuum com-
posite may lead to power laws near the percolation thresh-
old that differ from the continuum in some cases. This
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difference appears to be less important in two dimensions,
for which our lattice simulations are carried out. Our re-
sults may thus have some relevance to real two-
dimensional composites.

The use of a transfer-matrix technique to calculate the
effective impedance of our model composite leads to great
efficiency in ac problems, just as in static problems. '

The method gives values for the percolation exponent t
which are accurate, in two dimensions, to a few tenths of
a percent, ' in contrast to the earlier method, based on the
solution of Kirchhoff's equations, which are rarely accu-
rate to better than 10%.

The scaling theory we study has its origin in the work
of Straley. '" For a two-component composite with con-
stituent conductivities o~ and o.2, Straley has proposed
that the two variables characterizing the "phase diagram"
are p —p, and o.&/o. z, which are analogous respectively to
the temperature and magnetic field in a magnetic phase
transition. Lobb and Frank' have applied finite-size-
scaling arguments to obtain the exponents t and s precise-
ly at p =p„using a homogeneous function representation
for the function cT, /cT2, based on the two scaling variables.
The transfer-matrix algorithm permits the same finite-
size-scaling idea to be used with much greater accuracy to
calculate these exponents, and also eliminates the necessi-
ty of averaging over many realizations of a finite sample:
this averaging is done automatically.

The scaling form we describe is appropriate for the ef-
fective complex dielectric function of a metal-insulator
composite at finite sizes and finite frequencies. The ex-
tension of scaling ideas to finite frequency was first pro-
posed by Bergman and Imry. Further work has been car-
ried out by Stroud and Bergman, ' and by Wilkinson
et ah. the latter authors have used a random resistor-
capacitor network as a representation of a metal-insulator
composite near the percolation threshold, and have calcu-
lated the scaling function using a real-space
renormalization-group approach. Several authors have
discussed theoretically the ac properties of a metal-
insulator composite near the percolation threshold, ' and
recently Bug et al. have tested a finite-size, finite-
frequency scaling form similar to that discussed below,
for bond percolation in two dimensions. The fact that we
are able to verify the same scaling form for site percola-
tion is not surprising, but does provide further evidence in
favor of the kind of universality expected in lattice per-
colation problems with short-range order.

The latter part of the paper treats a lattice model of a
composite of Drude metal and insulator. Such m.etal-
insulator composites exhibit so-called surface-plasmon
resonances and a corresponding absorption band at fre-
quencies below the plasma frequency, co&.

' We calculate
this absorption band explicitly in two dimensions, using
the transfer-matrix algorithm. The calculated absorption
band compares well with a mean-field theory of the com-
posite, the effective-medium approximation (EMA). '

The bottom of the absorption band is found to go to zero
frequency at the percolation threshold, in agreement with
both the EMA and the scaling theory. Thus our results
numerically confirm existing theories of absorption in
random metal-insulator composites, within a lattice

model.
We turn now to the body of the paper. Section II re-

views the scaling form for the effective complex dielectric
function, e, . Section III describes the model resistor-
capacitor network on which to test the scaling form, and
presents the results of numerical simulations based on the
transfer-matrix method. Section IV gives analogous cal-
culations for a network model of a Drude metal and insu-
lator, and compares the results with the EMA. A discus-
sion follows in Sec. V.

e)(co) = 1+4~i' )(co)/co,

eq(co) = 1+4~i o2(co) /co,

(2.1)

(2.2)

where cT&(co) and c72(co) are the frequency-dependent con-
ductivities of the two constituents, which are present in
volume fractions p and 1 —p. Since the formalism is
largely equivalent to that described in Ref. 6, we simply
quote the main results. When the wavelength of the ap-
plied field is large compared to any length scale within the
composite (e.g. , grain size, percolation correlation length),
it is usually adequate to work in the quasistatic limit, in
which the electric field E(x) and displacement D(x) satis-
fy the equations

V-D=O

VxE=O,
D(x) =e(x)E(x),

(2.3)

(2.4)

(2.5)

where E(x) is the position- and frequency-dependent
dielectric function. At finite frequencies, the displace-
ment current is generally non-negligible. Thus a scaling
function must be developed for the complex effective
dielectric function

e, (co) =e„,(co)+4~i o, (n))/co . (2.6)

The scaling expression appropriate to a sample of finite
linear dimensions L is

e, /e, =e ' G+((e2/~, )g"+" ",g/L), b,p &0

e, /e2 ——e' G ((e2/e&)g" +",g/L ), bp &0

(2.7)

(2.8)

where G+(x,y) and G (x,y) are functions of two vari-
ables which describe the frequency- and size-dependent
dielectric function above and below the percolation
threshold. In writing (2.7) and (2.8), we are considering
both L and g to be expressed in units of some fundamen-
tal length, such as grain size, so that they can both be tak-
en as dimensionless.

Precisely at p =p„ the correlation length is infinite,
and the complex dielectric function can be expressed in
terms of a single variable. The result is

e, /e& ——(e /e )' " "J(L(e /e )
" ') (2.9)

where J(u) is a complex function of the complex variable

II. SCALING FORM FOR THE COMPLEX
DIELECTRIC FUNCTION

We summarize the scaling formalism for a composite
of two components having complex dielectric functions
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u. Form (2.9) is readily tested numerically by calculating
the complex conductivity of samples of different linear di-
mensions L. If the scaling form is valid, they can all be
represented by the same universal function (2.9). This cal-
culation provides a reasonably stringent test of the origi-
nal scaling relation, Eqs. (2.7) and (2.8).

The scaling form is appropriate to a dielectric function
at infinite wavelength in a finite medium. Presumably the
same form holds at finite wavelength in an infinite medi-
um. We then interpret Eqs. (2.7) and (2.8) as equations
for the wave numb-er and -frequency-dependent effective
dielectric function e, (q, ai) near the percolation threshold,
with L to be interpreted as the wavelength, L =2~/q.

This picture leads to some novel predictions for the ac
response of composites near the percolation threshold.
Assume bp &0, j/L »1, and (e2/ei)g~'+"/ &&1. The
first inequality means that we are on the metallic side of
the metal-insulator transition. The second implies that
the role of the correlation length g is played by L, i.e.,
that e, is independent of g in this regime. The third in-
equality is the condition that e, should be independent of
the insulating dielectric constant e2. Putting these results
together, we find that G+(x,y) must vary as u' in this
regime or

e, (q, e2) -ei(e2)L '/'- ei(ei)q' (2.10)

To see how this result might influence electromagnetic
wave transmission through a composite material, we note
that the dispersion relation can be written self-consistently
as

q =co e( qco)/ c (2.11)

where c is the speed of light. Substituting (2.22) into
(2.23)

[ 2
( ) / 2]1/(2 —t/v) (2. 12)

If we assume e, (co) 4iricr/ai, —characteristic of a metal at
low frequencies, where o. is the conductivity, we get

e, {q(at), co) -ei(co)q (co)'/

III. CALCULATIONS OF THE SCALING
FUNCTION FOR A METAL-INSULATOR

MIXTURE AT FINITE FREQUENCIES

e =1/(Z ice)=1/(icoR),

ed = I /(Zdico) =C .

(3.1)

(3.2)

In principle, a capacitance should also be added in parallel
with the resistor across each metallic bond. But at suffi-
ciently low frequencies such a capacitance will have little
effect, and we do not include it here.

We calculate the effective dielectric function of the net-
work, denoted (eco), by applying an ac voltage difference
across a particular realization of the random network and
solving Kirchhoff's equations to obtain the electric dis-
placement across each bond. The (complex) displacement
across bond (ij), denoted D,i(ttt), is related to the (com-
plex) potential difference V;(hatt) —VJ(co) by

We will calculate the scaling function (2.16), and con-
firm the validity of the scaling form, by considering a
random network of impedances in two dimensions. The
impedances are chosen to model metallic and dielectric
components at low frequencies. The metallic component
is assigned a purely real impedance, Z =R, characteris-
tic of a pure resistor. The dielectric, on the other hand, is
given a purely capacitive impedance, Zd = I/(icoC), with
C real. The impedances Z and Zd are placed at random
on the bonds of a two-dimensional rectangular network.
We carry out the random placement according to the rules
of site percolation. That is, we denote the sites on the net-
work as "conducting" or "insulating" with probability p
and 1 —p. The rules of bond assignment are that a bond
between two conducting sites has impedance Z; a bond
between a conducting and an insulating site, or between
two insulating sites, has impedance Zd.

To use the scaling form at finite frequencies, we must
consider the effective dielectric function of the composite.
Hence, rather than considering the impedances Z and
Zd, we must consider the effective "dielectric functions"
of these bonds, defined by

[1/(2 —t/v j —1] (2. 13)
D;, (e2) =e;~(co)[ V~(.at) —V, (co)], (3.3)

which describes very well the frequency dependence ob-
served by Laibowitz and Gefen' in two-dimensional thin
films of granular metals near the percolation threshold.
However, the inequalities required for this form to be
applicable are not satisfied in the frequency range studied
by Laibowitz and Gefen; the agreement is therefore coin-
cidental. Basically, (2.13) can apply only if (a) the wave-
length of the radiation in the composite is small compared
to a correlation length, and (b) the dielectric response of
the insulator is so small in comparison to that of the met-
al grains that (e2/ei)q "+'/ «1. Neither relation is
true in the composites studied in reference in the frequen-
cy range of —10 KHz investigated. Nevertheless, the
present results show that novel frequency dependence is to
be expected in metal-insulator composites near the per-
colation threshold when the wavelength is small compared
to a correlation length, so that the fractal character of the
percolation structure' can be probed.

where e;2 ——e or ed according as the bond (ij) is con-
sidered metallic or dielectric. The condition that no dis-
placement current shall build up at the ith node is
equivalent to the equation

(3.4)g e;i( V; —VJ. ) =0,

where the sum runs over all sites j with a nonzero bond
connected to site i. The total displacement current across
the network is that of an equivalent uniform network in
which each bond has dielectric function (ce). ti

Rather than solve Eqs. (3.4) directly to compute the
voltage at each site—a procedure which consumes a great
amount of computer time when done by a standard itera-
tive procedure —we use the transfer-matrix algorithm suit-
ably extended to finite frequencies. To execute the
method, we consider an L )&M rectangular array of sites
(L rows, M columns, with M »L). The potential is
fixed at V =0 on the first row, V = Vo exp(i erat) on the
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Lth row. The total displacement current flowing through
the array is computed consecutively, column by column,
with free boundary conditions on the first column of sites.
The method requires no repeated iteration of linear equa-
tions, since only the total current is computed, not the
voltages at each node, and thus is extremely fast. Also,
because a very large number of columns can be accommo-
dated by this procedure, the calculation in effect averages
automatically over many L XL samples and thus makes
unnecessary the averaging over many realizations required
in earlier calculations of random impedance networks.

In order to verify the scaling form (2.7), we first as-
sume, in agreement with established theory, that the
correlation length g varies as

I
Ap

I

" near p =p, . We
must graph (e, /e )

I
bp

I

' against the variable

I
edle

I I
bp

I

"+' for fixed values of the second vari-
able

I
hp

I

"/L, where L is the sample width. We have
carried out such a calculation, but rather than displaying
the ratio of dielectric functions, we plot instead the ratio
of admittances

against L(gdlg )
"+' for several sample widths L, ad-

justing the frequency co so as to keep the variable
L (gdlg )

~"+" constant. The results are shown in Figs.
2(a) and 2(b). For each value of the scaled variable
L (gd/g )

~"+'l, the variable (gd/g )
'~"+'(g, /g ) is

indeed independent of the width L to within numerical
accuracy. Thus we have perhaps even stronger evidence
that the original scaling forms are valid, because we have
eliminated the variable p by working precisely at p =p, .

Finally, we show the scaling function itself at the per-
colation threshold. Defining X=L (gd Ig )"~"+', we
write

J(X)= (gd /g ) '~I'+'(g, /g ), (3.9)

IQ
l l

I
l I 1

which is plotted in Figs. 3(a) and 3(b). At small values of

against the variable

I
l~p I

(3.5)

(3.6)
O

C3

P'
0

D

d'

g = 1/Z

d
——1/Zd,

g, =1/Z, .

(3.7)

where the complex admittances are defined, for present
purposes, by the relations

E

CD I Q
D

I

CL
Cl

DD
DDD D

(Z p) r I =263

&0 (Ap) /I =494

gm gm

where the admittances and dielectric function are related
as in Eq. (3.7). We must graph (gd/g ) "'+'(g, /g )

The value of p, for site percolation in two dimensions
is known numerically to be 0.59297. . . . The ratio
t /v =0.973 from numerical studies based on the
transfer-matrix algorithm and finite-size-scaling theory. '

The exponents t and s are equal in two dimensions by an
exact duality relation. Denoting the metallic admittance
g and the insulating admittance as gd, we have
gd/g =icuRC. The results of the calculations are shown
in Figs. 1(a) and 1(b) with the values R =1, C= 1. For
(Ap) /L =4.94, we have carried out two calculations at
different volume fractions of the metallic component but
preserving the value of the ratio. Evidently the two
curves lie atop one another as required by the scaling hy-
pothesis. An additional calculation was carried out at
(Ap) /L =2.63; this produces a scaling function which
differs from the first at low frequencies. These results
provide evidence that the form (2.16) is indeed valid, at
least for Ap ~ 0 in two dimensions.

We have also carried out simulations precisely at p =p,
in order to verify the scaling form (2.9) and to calculate
the scaling function J(u) exphcitly. To verify (2.9) for
the network under consideration, first note that it can be
written in the equivalent form

t!(~+s)

&(L(g /g )
" ') (3.8)

IQ

IQ

II l

IQ IO IO IO IO
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IO

(b)

02

c

Oi
IO

E

0
IO

E
I

CL
C]

IO

D

D
D~

D

DD
d'
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D (Ap) /L =265

&0 (h, p) /I =494
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FIG. 1 (a) Scaled real part of the effective admittance,
(Ap) 'Re(g, /g ), plotted as a function of frequency for two
values of the variable (Ap) /L, where (Ap) is proportional to
the correlation length and L is the width of the sample. For a
fixed value of this variable, the conductivity is a universal func-
tion of coRC

I
bp

I

"+'. (h) Scaled imaginary part of the effec-
tive conductivity, plotted as in (a).
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X, Fig. 3(a) shows that ReJ(X) varies approximately as
X ', while at large values it approaches a constant. The
small-X behavior can be understood as follows. The two-
dimensional strip, with M&&L, is always above p —p„
that is, the metallic portion percolates. Thus we expect
that at small X the admittance g, of the network should
become independent of g2, the admittance of the insulat-
ing component. This can occur only if J(X) varies as
X ' " for small X. In two dimensions t/v-0. 96, ' con-
sistent with the behavior of Fig. 3(a), which shows the
dominant part of J(X) at small X. If we were below p„a
complementary argument given in Ref. 6 shows that

g, -gdI-' at small X.

IV. SURFACE-PLASMON MODES IN A
TWO-DIMENSIONAL METAL-INSULATOR

COMPOSITE

E;„=3ED/(e +-2) . (4.2)

In the usual limit co&~&&1, E;„becomes very large at fre-
quencies in the vicinity of co~/(3)', the surface-plasmon
frequency for this geometry. At such frequencies, the ap-
plied field is in resonance with the surface-plasmon dipole
mode of the small metal particle, and the result is a strong
absorption at this frequency. If one calculates the effec-
tive dielectric function e, of a dilute suspension of small
Drude metal spheres in dielectric, e, is found to have a
large imaginary part near co&/(3)'~ . For larger concen-

embedded in an insulating matrix of dielectric constant
unity. Here co& is the plasma frequency and ~ is a charac-
teristic relaxation time. If we imagine the medium sub-
jected to an applied electric field Eo exp( i—cut), then the
solution of the electrostatic equations (2.3)—(2.5) leads to
a uniform electric field E;„within the metal given by

As a second application of the transfer-matrix algo-
rithm at finite frequencies, we have considered a model
somewhat similar to that discussed in the preceding sec-
tion, but generalized to take account of the so-called
surface-plasmon modes known to be an important absorp-
tion mechanism in random metal-insulator composites. '

In a bulk (three-dimensional) composite, such modes are
easily understood by considering a small spherical metal
particle, described by a Drude dielectric function,

102

IQ
I

(
9d

)
/ / ( I 5 )

(
9p

y I (
RC)u/(its)

e (co) = 1 —cop/[co(co+i/r)]j, (4.1)
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FICx. 2. (a) and (b) Real and imaginary parts of the variable

(gd/g~ )
' "+'(g, /g~ ) plotted as a function of width L for two

different values of the scaled frequency L(gd/g )" "+'. The
validity of scaling is demonstrated by the fact that the variable

(gd/g ) ' "+"(g,/g ) is independent of L for fixed values of
the scaled frequency.

IO'
0 2

I

IO 100 10

Ixl

FIG. 3. (a) and (b) Real and imaginary parts of the scaling
function J(X) plotted against X at the percolation threshold,

p =p, . The scaling function and its argument are defined in the
figure; both J(X) and X are dimensionless.
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trations of metal, this resonance broadens out and no fully
satisfactory method exists for calculating the e, in such
cases, although many approximations have been pro-
posed. ' lt is therefore useful to have available some nu-
merical results as standards for comparison with approxi-
mate theories.

We have carried out such numerical simulations in two
dimensions, using the site percolation model described in
Sec. III in conjunction with the transfer-matrix algorithm.
However, the frequency-independent impedance used to
represent the conductive bonds in Sec. III cannot lead to
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metal in the metal-insulator composite discussed in the text, as calculated numerically using the transfer-matrix algorithm. (The
quantity actually plotted is the in-phase part of the current passing through the 18 && 300 network for unit voltage drop. The frequen-
cy is expressed in units of the plasma frequency, co~.)
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surface-plasmon absorption; the model must be general-
ized to allow a frequency dep-endent impedance. We there-
fore represent a metallic bond by a resistor and an induc-
tor in series, and an insulating bond simply as a capaci-
tance. Thus we have

Zm =R +iL;„d/co,

Zd =lh)C .

(4.3)

(4 4)

The network corresponds to a random LC circuit with
resistive damping in the inductive elements. To represent
the Drude model more faithfully, we should, in principle,
place a capacitance in parallel with the LR element in the
metallic bonds. Such a capacitance does not affect the
fundamental physics of the problem, however, and has not
been included in our calculations. In the present model
the surface-plasmon resonances will now manifest them-
selves as the LC resonances of the random impedance net-
work.
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a 10& 100 network at p =0.3.

The results of our calculations are shown in Fig. 4. We
assume without loss of generality that L;„d——1 and C =1.
The figures show the real part of the effective admittances
g, of the random network. For the samples shown we
have used the relatively small sizes L =18, M =300 be-
cause of the considerable expense in looking at larger sam-
ples over a broad range of frequencies. In particular, our
samples are still too small to have fully converged to the
expected infinite-sample behavior. Thus, we expect that
many of the details of the structure shown for our rather
small samples would vary from one realization of the
disordered network to another. For example, the posi-
tions of many of the peaks shown in Fig. 4 (except for
that at zero frequency) would be expected to differ from
one realization to another. We have confirmed this hy-
potheses by carrying out two further runs at p =0.3,
L = 10, and M = 100, each corresponding to a different
realization of a composite with 30%%uo of sites metallic. In
each case, as may be seen in Fig. 5, the overall peak
shapes are quite similar, and similar also to the single run
at L =18, M =300. But the various details, such as the
number and strengths of the peaks, do differ among the
realizations.

Some features are independent of realization. These
may be summarized as follows.

(i) The absorption band (i.e., the band of LC resonances,
broadened by the resistive damping) can be divided into
two parts. One is an "impurity band, " consisting of the
network analog of the surface-plasm on resonances
described above, and spread over a typically broad range
of frequencies. The other is the "Drude peak, " centered
at zero frequency, and appearing only above the metallic
percolation threshold and corresponding to finite dc con-
ductivity.

(ii) The bottom of the impurity band is separated from
zero frequency by a gap which appears to go to zero at the
percolation threshold, and to increase with

~ p —p, ~

on
either side of the threshold. This feature is somewhat ob-
scured by the resistive damping but certainly persists to
the largest sample we have studied. We believe that in the
limit of a very large sample and very low damping the
feature would become even more prominent. Our results
are not accurate enough to ascertain if the gap goes to
zero according to some power law in p —p„as has been
predicted by Bergman and Imry.

(iii) There is a great deal of fine structure in the reso-
nances within the impurity band. This structure is un-
masked by reducing the damping in the calculation, but as
noted above it is very sample dependent. For a very large
sample, and very low damping, we believe, as stated
above, that most of this structure would average out leav-
ing a smooth impurity band with few prominent features.
Our samples are not large enough to fully confirm this
smoothness, however.

One other point should be made about the curves of
Fig. 4. The nominal percolation threshold for an infinite
sample is 0.592. . . (site percolation in two dimensions).
For finite samples percolation of the metallic component
will occur at a lower concentration. That is why the
Drude peaks appear in the real part of the admittance for
concentrations p =0.4 and greater: those at 0.4 and 0.5
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would vanish in the limit of infinite sizes.
Our results can be put in perspective by comparing

them with a simple analytic approximation, the effective-
medium approximation. For a site percolation problem
on a lattice, the effective-medium approximation has been
worked out at dc by Watson and Leath; their equations

are readily generalized to our ac problem and the resulting
effective conductivity is shown in Fig. 6. Our calculations
agree qualitatively with the EMA; the extra structure, as
noted above, may be sample size dependent. Our results
do confirm the basic prediction of the effective-medium
approximation for finite frequencies, namely, that the im-
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purity band is separated from dc by a gap which goes to
zero as the percolation threshold is approached.

Further work, using larger samples, would be useful to
order to confirm that the resonance spectrum becomes
smooth for large networks.

While the transfer-matrix algorithm is merely desirable
in the calculations of Sec. III, it is essential here. The pre-
viously standard numerical technique for computing the
effective conductivity of a random impedance network in-
volves Gauss-Seidel relaxation (or overrelaxation) of the
relevant linear equations (Kirchhoff's laws). When this
technique is applied to a resonant random network, espe-
cially one with little damping, it does not converge, be-
cause of the presence of both positive and negative (imagi-
nary) impedances. With the present technique, the im-
pedance of a random network can be calculated at arbi-
trarily low damping. We include damping here only to
smooth out the very complex structure found in the low-
damping limit, not to achieve convergence.

V. DISCUSSION

We have considered two aspects of the finite-frequency
response of metal-insulator composites. We have
described a finite-size, finite-frequency scaling relation
and verified it for two-dimensional composites with site
percolation, using the transfer-matrix algorithm. Second-
ly, we have evaluated the surface-plasmon spectrum of a
metal-insulator composite modeled as a random LRC net-
work, again using the transfer-matrix algorithm.

In a real material, finite size will matter only if one of
the sample dimensions is comparable to the percolation
correlation length g. The same effect can be achieved in
an infinite sample if the wavelength becomes comparable
to g. However, it appears that the scaling relation dis-
cussed in Sec. II still cannot explain some of the
anomalous experimental results, ' ' ' in particular those

of Ref. 17, relating the frequency dependence of the effec-
tive conductivity near the percolation threshold. Perhaps
these experiments can be explained if one goes beyond the
quasistatic approximation ( V )& E=0) and includes eddy
current effects, although this too seems unlikely in two di-
mensions, since the magnetic field of the incident radia-
tion is typically parallel to the sample.

Our results for the surface-plasmon absorption spec-
trum are potentially relevant to real experiments. We
have shown in two dimensions that the qualitative predic-
tions of the effective-medium approximation are correct
for this spectrum, provided that the geometrical assump-
tion underlying the approximation (random distribution
of dielectric and metallic cells) is satisfied.

Because of the small size of our surface-plasmon simu-
lations, we cannot examine one intriguing possibility
about this spectrum —the existence of a Lifshitz tail in the
surface-plasmon density of states. Such tails are well
known in electronic disordered systems. A tail of this
kind would probably fill up the gap in the surface-
plasmon density of states, although the density of tail
states would be exponentially small in the gap at low fre-
quencies, just as in crystalline semiconductor alloys. The
tail would be rather difficult to see in the surface-plasmon
spectrum because, in a real composite, the surface-
plasmon states always have a finite lifetime w, i.e., a
finite-frequency width. The tail would therefore be con-
cealed under larger density of states arising from
relaxation-time broadening.
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