
PHYSICAL REVIEW B VOLUME 35, NUMBER 17 15 JUNE 1987-I

Transport properties of random and nonrandom substitutionally disordered alloys.
II. New cluster formulation of the ac conductivity and numerical applications
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A cluster-field theory providing a rigorous foundation for dealing with cluster calculations in or-

dered and disordered materials is presented. The theory is based on a special matrix (given in the

text) which plays the role of intracluster interactions and allows the formulation of a general cluster

perturbation theory. The use of this cluster theory is demonstrated by deriving a cluster formula for
the ac conductivity of general physical systems with specific attention paid to substitutionally disor-

dered alloys. The formalism is general enough to encompass Hamiltonians of various and diverse

kinds, such as those of tight-binding and muffin-tin character, and allows us to obtain previously es-

tablished results in a straightforward and unified manner. In addition it allows, by uti1izing the

Ward identity, the rigorous expression of vertex corrections in terms of cluster quantities and makes

possible the setting up of controlled approximation schemes for their evaluation. The usefulness of
the method is illustrated by means of calculations of the ac conductivity of one-dimensional disor-

dered model systems.

I. INTRODUCTION

In the preceding paper, ' to be referred to as I, we
presented a set of exact numerical results for the ac con-
ductivity of a large class of one-dimensional alloys,
characterized by various types of substitutional disorder.
In this paper we discuss analytic theories which may be
used to calculate the averaged two-particle Green func-
tion, and hence the transport properties associated with a
disordered material. The formalism is underlined by the
coherent potential approximation (CPA), which in fact
has been applied to the calculation of transport properties
of disordered systems. However, it goes much beyond the
single-site CPA by extending the CPA to a multisite (clus-
ter) method which allows the calculation of transport
properties within feasible, accurate, and controlled levels
of approximation. In particular, it provides a consistent
method for the calculation of the vertex corrections. In
this paper we present a general cluster field theory which
allows us unambiguously to visualize and calculate physi-
cal properties in terms of cluster quantities. The theory is
useful not only in the context of these papers, but is appl-
icable also to any cluster or multicomponent calculation
in other fields.

The outstanding success of the CPA in calculating
physical properties of substitutionally disordered alloys is
well known. However, as was realized almost immediate-
ly upon its introduction, the CPA cannot account for the
effects of local-environment fluctuations which are known
to be very important in determining many physical prop-
erties of disordered materials. Various multisite generali-
zations ' of the CPA were consequently developed to ad-
dress a variety of problems associated with the calculation
of the one-electron properties, essentially the density of
states (DOS), in such materials. Of these generalizations
very few have proved to be useful and practical —some

more so than others —and to possess the desired analytic
properties. We will have occasion to make these state-
ments more precise in the course of developing the for-
malism of this paper. We begin with a brief review of
previous efforts in applying the CPA and some of its clus-
ter extensions to the calculation of the transport proper-
ties of disordered alloys.

Beginning with the pioneering work of Velicky, the
CPA has been used to study electronic transport, the ac
and dc conductivity in particular, by a number of investi-
gators. ' Velicky's formalism and model calculations
make it clear that the CPA provides a good overall
method for calculating electronic transport away from the
mobility edge, whose accuracy is comparable to that ob-
tained in the calculation of the DOS. However, in analo-

gy with the case of DOS calculations, the CPA fails to
reproduce the local fine structure in the conductivity spec-
tra. In fact, it can be shown formally, under the random-
phase-like approximation of Velicky, that the vertex
corrections vanish identically within the CPA for a tight-
binding (TB) single-band Hamiltonian. These vertex
corrections are certainly nonzero and various attempts
have been made to develop methods for their evaluation.
A new approach, based on a cluster generalization of the
CPA, the embedded-cluster method (ECM), '' which in-
corporates the effects of fluctuations from the beginning
is presented in this paper.

Velicky's single-site theory was later generalized by a
number of workers. Chen et al. studied the effects of
thermal disorder and explained some unusual features of
metallic alloys which exhibit negative temperature coeffi-
cients of electronic resistivity. Niizeki et al. ,

' in a series
of papers, formulated a general theory'" to include the ef-
fect of off-diagonal disorder in the additive limit. Black-
man' used the formalism of Blackman et al. ' for apply-
ing the CPA to alloys with general off-diagonal disorder
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(ODD) to formulate the calculation of the conductivity in
such alloys within the single-site CPA. Schwartz' dis-
cussed electronic transport within the CPA for a multi-
band model which bears features characterizing muffin-
tin (MT) Hamiltonians. Wysokinsi et al. ' investigated
both the thermal and off-diagonal effects on the dc and ac
conductivities of binary and ternary alloys. Czycholl
et al. ' ' calculated transport quantities by extending the
molecular coherent-potential approximation (MCPA) of
Tsukada to the calculation of two-particle Green func-
tions.

Most recently, Butler and Stocks' ' have succeeded in
calculating the dc conductivity of substitutionally disor-
dered Ag, Pd&, alloys from first principles. Their work
is based on the calculation of the electronic structure of
substitutional alloys by means of a charge self-consistent
version of the CPA in connection with muffin-tin Hamil-
tonians. The results of these calculations were then used
to calculate the low-temperature electrical resistivity and
the thermopower of these alloys. Good agreement with
experiment was obtained for a wide range of alloy param-
eters.

In a real alloy, fluctuations in the local environment of
a site cause what are known as local-environment effects.
These local spatial fluctuations away from the uniform ef-
fective medium, which characterizes an ensernble-
averaged alloy, are often important in determining the
physical properties of a material. The molecular CPA
(MCPA) (Ref. 7) was developed to take account of such
effects. However, the calculation of the cluster Green
function in the MCPA can become computationally very
difficult even for moderate-size clusters, such as a near-
neighbor cluster in an fcc lattice. In addition, the MCPA
requires the introduction of an effective medium with su-
percell symmetry which violates the translational invari-
ance of the underlying lattice. The embedded-cluster
method (ECM), '' on the other hand, although a non-
self-consistent theory, is computationally much simpler
than the MCPA and avoids the introduction of spurious
periodicities. It has been shown to yield analytic cluster
Green's functions and non-negative spectral weight func-
tions, and allows the investigation of local-environment
effects, such as short-range order' (SRO) and composi-
tional modulation, ' easily and efficiently.

In this paper we formulate a general cluster-field theory
and show that most of the work mentioned above can be
included within the same unifying framework. We also
derive a theory of electronic transport in substitutionally
disordered systems based on cluster generalizations of the
CPA. This theory is consistent in the sense that the
effective-medium self-energy satisfies the fundamental
Ward identity. Our cluster theory of electronic transport
in substitutionally disordered systems may be viewed as
an extension of the single-site CPA transport theory of
Velicky, just as the ECM is an extension of the original
CPA for the calculation of the single-particle equilibrium
properties. Within the ECM, the scattering of electrons
from a large cluster of atoms embedded in an effective
medium is treated exactly; therefore, local-environment
effects can be taken into account properly. In contrast to
the simple single-site CPA, the ECM yields nonvanishing

vertex corrections for transport coefficients.
In Sec. II we first discuss the models we use and review

the connection between the first and second quantizations
which are relevant to our formalism. We then formulate
a cluster-field theory and establish a transformation of
operators between these two different quantizations. The
cluster theory is then used to derive a cluster formula for
the ac conductivity of a general physical system. In Sec.
III a cluster approximation scheme for calculating the ac
conductivity of disordered systems is presented. As an ex-
ample, the ac conductivity is formulated within the
MCPA for the case of general disordered systems, with
explicit formulas given for the calculation of vertex
corrections. We then discuss the validity of the Ward
identity which ensures the conservation law of macroscop-
ic quantities. The formalism of the embedded-cluster
method is then proposed with specific instructions for
computational applications. Section IV contains the re-
sults of numerical applications of our methods to model
one-dimensional substitutionally disordered chains. In
Sec. V we give a discussion of our method and summarize
possible extensions and further work. Finally, a detailed
discussion of the matrix Wick's theorem used in our
theory is given in the Appendix.

II. FORMALISM

The field-theoretic approach to many-body problems
has found wide application in studies of condensed-
matter. This approach has proved particularly successful
in connection with systems possessing translational sym-
metry, such as the uniform electron gas and pure crystals.
For such systems the theory can be formulated in terms of
essentially scalar quantities. In particular, it involves only
the matrix elements of Green functions which are diago-
nal in a k-space representation.

For the study of systems which do not possess transla-
tional invariance, however, such as random, substitution-
ally disordered alloys, it is immediately evident that a
real-space representation of the Green function is more
appropriate. Strictly speaking, one needs to evaluate exact
real-space ensemble averages of various quantities. such as
the Green function, over all configurations of a system,
which is clearly a computationally impossible task. Con-
sequently, approximate methods have been proposed for
carrying out such averages. The most successful and
most widely used such method within a single-site context
is the coherent-potential approximation (CPA). The
CPA introduces a self-consistently determined transla-
tionally invariant effective medium which allows the use
of a k-space representation in the evaluation of quantities
of physical interest. It is generally accepted that the CPA
is the best single-site theory for the study of the one-
particle properties of substitutionally disordered systems.
Multisite, or cluster, extensions of the original CPA dev-
ised in attempts to account for the presence of various
physical effects such as off-diagonal disorder and local-
environrnent statistical fluctuations have also been pro-
posed.

Realistic applications of the CPA or of its multisite
generalizations inevitably involve the use of matrix alge-
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bra. Thus many of these methods can be classified in
terms of different levels of an underlying, unified cluster
theory. This is particularly true of those generalizations
of the CPA such as the MCPA (Ref. 7) or the ECM
(Refs. 6 and 15), which have proved the most durable of
multisite generalizations. Some of these methods, e.g. , the
MCPA, have been used not only in the calculation of the
single-particle properties of disordered materials, but also
in the calculation' ' of the dynamic, or transport, prop-
erties as well. On the other hand, the applications of such
methods are usually burdened by a proliferation of indices
which are combersome to handle and which tend to ob-
scure the underlying physics. These statements can be
amply illustrated by examining the literature associated
with the calculation of transport phenomena in substitu-
tionally disordered systems.

The foregoing discussion indicates that it is highly
desirable to develop a unified treatment of the transport
and other properties of disordered materials which can be
applied in a compact, easily retained manner to the calcu-
lation of important quantities such as the single-particle
and two-particle Green functions. It is the purpose of this
paper to introduce such a general treatment of substitu-
tionally disordered systems based on a cluster formulation
of canonical field theory. Such a cluster-field theory is
possible in the case of substitutionally disordered alloys
due to the presence of the underlying translationally in-
variant lattice. We emphasize that our cluster-field
theory is general enough to be applied to any cluster cal-
culations of alloys, characterized by either tight-binding
or more realistic Hamiltonians such as those of the
muffin-tin type. Furthermore, it is of more general appli-
cability, not limited to the context of these papers. In the
remainder of this section we discuss certain popular
models used in the discussion of disordered materials and
present our cluster-field theory whose versatility and effi-
ciency is demonstrated by deriving a cluster conductivity
formula.

A. Models of disordered systems

The equivalence of the first and second quantizations
was established soon after the introduction of the latter.
In this paper we use the language of canonical field
theory, i.e., second quantization, and review the transfor-
mations of calculated physical quantities between the
above two pictures. Two typical model Hamiltonians, i.e.,
tight-binding (TB) single-band Hamiltonians and those of
a muffin-tin (MT) type, are used throughout this paper to
illustrate our cluster formalism. It will become clear that
both TB and MT Hamiltonians are only two relatively
simple examples in our general theoretical framework.

Within first quantization, a single-particle Hamiltonian
is taken to be of the form

7 + gu(r —R;) .
2m

(2.1)

where the R; will be taken as fixed and forming a regular
lattice and u; =u(r —R;) is the potential at r due to the
atom centered at site R;. For a binary alloy 3, 8,
( c„+c~ ——1 ), the potential u; can assume the value u z or

uz with respective probabilities cz or cz. Multicom-
ponent alloys can be treated within the same formalism.

Within second quantization, a field operator 1t(r) and
its conjugate g (r) can be expanded in terms of eigenfunc-
tions Nq(r) and 4q(r) as follows:

W(r) = gc~+dr) (2.2)

Ic~ cx I =5xx

Icq, cq I=Icx,c~ I =0. (2.4)

In second quantization, the Hamiltonian can be written in
the form

H= fg (r)H(r)1((r)dr

= QExcqcq+ g wqq cqcq

(A.~A. ')

(2.5)

where H(r) is the Hamiltonian defined in Eq. (2.1) and Ez
and Wqq are defined by the equations

sq= f @q(r)H(r)@q(r)dr (2.6)

and

8'qq = f@q(r)H(r)+z(r)dr, (2.7)

Any one-particle operator is defined in the same way,
e.g., the current operator J is given by the expression,

J= r Jr rdr

C A JAR'Cg (2.8)

with

J~~ —— N~r Jr+~ rdr. (2.9)

In the case of the electron gas one usually chooses plane
waves as the basis set, i.e., the indices A. and k' in the
above equations refer to vectors in k space. The existence
of an underlying lattice in a substitutionally disordered al-
loy provides us with a natural choice of a basis set associ-
ated with sites in the lattice. A basis set can be chosen in
various models, as either configuration independent or
configuration dependent. The latter is more appropriate
for dealing with general disordered systems.

Much of the following discussion will be given in terms
of a single-band model which can serve as a prototype for
the discussion of TB as well as MT systems. We will
show explicitly how specific choices of the basis functions
used in the formalism can lead to well-known expressions
associated with Hamiltonians of a TB or of a MT type.

Let us assume then that there exists a single-band basis
set [f;(r), i =1,2, . . . , oo I, where P;(r) depends on the
configuration of the alloy and in particular on the occupa-

and

q'(r) = g cia~(r), (2.3)

where c~ and c~ are the creation and annihilation opera-
tors of an electron associated with the state k, and satisfy
the canonical anticommutation relations,
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B. Cluster-field theory

In principle, a cluster theory can be formulated either
in a real-space or in a momentum-space representation.
As already mentioned, a real-space formalism is more ap-
propriate for the discussion of substitutionally disordered
alloys. Therefore, we formulate our cluster-field theory in
a site representation. This formalism provides us with a
natural procedure for calculating transport properties of
disordered systems. In this subsection we define our nota-
tion, give the basic definitions of cluster quantities, and
summarize certain general principles involved in the
theory.

In a cluster approach we divide the whole lattice into
identical nonoverlapping clusters of atomic sites, thus

forming a superlattice. A cluster theory which interplays
between Schrodinger wave mechanics and Heisenberg ma-
trix mechanics can then be easily formulated. Within
each cluster the intracluster interaction is described by
matrix mechanics, i.e., every physical quantity is
represented by a matrix, and at the level of the superlat-
tice the intercluster interactions are governed by wave
mechanics. This has the advantage that we can define
unique cluster operators and regard a cluster as an opera-
tional unit without the need to consider explicitly the
single-site aspects of the theory.

We first introduce an important and interesting matrix,
denoted by II, which can be used to characterize intraclus-
ter interactions. The matrix II is the backbone of our
cluster theory and is defined by its elements,

II j=1, i,g =1,2, . . . , n; (2.1 1)

tion of site i. The single-band Hamiltonian, obtained by
replacing the function @~(r) in Eqs. (2.6) and (2.7) by the
basis functions g;(r), has the form

H= pe;c;c;+ g Wjc;cj . (2.10)
E /, J

(i&j )

One usually refers to E; and 8;J. as a site energy and hop-
ping integral respectively. Both, in general, can depend
on the whole configuration of a disordered material in a
rather complicated manner. Different levels of approxi-
mations can be made in considering the configurational
dependence of these parameters. Thus diagonally as well
as off-diagonally disordered models of substitutional al-
loys can be constructed in the manner discussed in I.
Even though Eq. (2.10) has the form of the usual TB
Hamiltonian it is not confined to the TB approximation
since none of the simplifications commonly involved in
TB theories have been made. Thus, for example, 8'~ in-
cludes two-center as well as three-center integrals.

For example, in a TB single-band diagonally disordered
model one usually assumes that the matrix elements of the
current operator, i.e., Jqq in Eq. (2.9), do not depend on
the configuration of the material. An extra assumption
was made in I, namely that the position operator is site di-
agonal, [cf. Eq. (3.4) in I], which led to J;J. being only a
function of hopping integrals, Wj's. Both of these as-
sumptions must be modified when considering more real-
istic Hamiltonians such as those of a MT type.

i.e., II is a matrix with all elements equal to 1. The physi-
cal meaning of this matrix is that it allows the treatment
of every site in a cluster on the same footing. This singu-
lar matrix provides us with two simple and surprising re-
lations. The first is

Tr( II 2 )Tr( II B ) =Tr( II 3 II B ) (2.12)

where II, 3, and B are n &n matrices. Thus, the opera-
tion of taking the trace and of matrix multiplication com-
mute. This property allows us to perform all calculations
in matrix form first and then to obtain physical quantities
by taking the trace at the end. Also, for any n Xn diago-
nal matrices, A and B, we have the second relation,

Tr( 11A II B ) =Tr[( UISI II )( A B ) ] (2.13)

where denotes a direct product. This relation is useful
when we consider nonlocal interactions, as will be dis-
cussed later.

In the following discussion we use Greek character su-
perscripts to denote cluster-associated quantities, and use
English characters as subscripts to denote the sites in a
given cluster. We begin by defining n-dimensional cluster
creation and annihilation operator matrices, (C ) and
Ca

(
Ca)f'

CC)

0

0

CC2

~ ~ ~ 0

Ca

0 i ~ ~

ci 0

0 cz

cn —1 0

0 c„

0

c„ I 0

(2. 14)

0 i i i 0 Cn

where c j,cz, . . . , c„and c ~,cq, . . . , c„are the usual an-
nihilation and creation operators associated with the sites
in a cluster a of n sites. We also define the cluster wave
function and its conjugate as

0

0

)(r)
0

0

(2.15)

0 gz(r)

0

where g~(r), $2(r), . . . , g„(r) are the basis functions asso-
ciated with the sites in cluster o.. With the above defini-
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tion the field operators, Eqs. (2.2) and (2.3), can be rewrit-
ten in the form

g(r) =Tr(II c g(r)],

0 "= g [(C )"(Ct') ]0» (CrC )
a, p, y, 5

where

+r p+r'

(2.23c)

P (r) =Tr[II ct P*(r)],
TrA = g TrA~tr,

a, p

(2.17)

(2.18)

)& [pr (r')S fs(r)]dr dr' . (2.24)

Thus a general Hamiltonian, H =H"'+H' ', can be writ-
ten in the form

0'"= f g (r)0'"(r)p(r)dr

= fTr[II et/*(r)]0"'(r)Tr[II c 1((r)]dr

=Tr Hc~ * r 0"'r H rdr c

(2.19)

where 0 ''(r) is an operator in the first quantized form
and we have used the relation Eq. (2.12) to pull out the
trace. Note that 0'"(r) is a scalar operator and operates
on all elements of a matrix. Equation (2.18) suggests that
we can associate any single-site observable 0"'(r) with a
matrix 0' ". For example, the noninteracting single-
particle Hamiltonian, Eq. (2.10), can now be rewritten in
the cluster basis as

H= Tr(UH),

where

H = g (c~) E~c~+ g (c~)t~~rrctr
a a, p

(a~pj

(2.20)

(2.21)

and where c. and 8' p are n Xn matrices. The former
represents a cluster energy and can be related to single-site
quantities,

where Tr denotes the trace over both matrix and cluster
spaces.

Many results can be obtained from these two forms
which are the only construction we use in our cluster
theory. Any single-particle operator in second quantized
form can now be written as

[A,B]n=A II B+(BII A)r, (2.26)

where A,B are cluster operators and a superscript T
represents the transpose of a matrix. Note that, in gen-
eral, (B II A ) is not equal to, A TII BT because the matrix
elements of the cluster operators 2 and B may not com-
mute. This can be easily illustrated in terms of the opera-
tors defined in Eq. (2.14). It is not difficult to check that
the cluster canonical anticommutation relations, corre-
sponding to Eq. (2 4), are still satisfied, i.e.,

[ c,(c~) ] 0 =IS t3,
(2.27)

[(c ),(c~) ] Lr
= [c,c~]0 =0 .

Furthermore, the causal (C) and retarded (R) (as well
as the advanced) finite-temperature Green functions can
then be defined in a straightforward way,

(2.25)

where a direct-product space must be used in order to in-
clude nonlocal potentials. These equations simplify con-
siderably in the case of factorizable two-particle operators
such as the current-current correlation function. The ad-
vantage of this cluster formulation is that diagrammatic
techniques in perturbation theory can be formulated
unambiguously. However, Wick's theorem, familiar from
scalar perturbation theory, must be modified due to the
noncommutative property of both matrices and operators.
A more-detailed account on this point is given in the Ap-
pendix.

In concluding this section, we examine some general
properties of our cluster-field theory. First, we define a
cluster anticommutation relation as

ifi =j,
i,j~a,C.

1 l J,
(2.22) G;t'= —r (T[c.(t)U[c~(O)]'] ),

Gg~= —ie(t)( [c (t), [c~(0)] ]rr),
(2.28)

while the latter is a cluster hopping matrix, with elements
8',

z
p denoting the hopping integra/ from site i of cluster a

to site j of cluster P.
As a further example, consider a two-particle operator

0' ', which in a scalar theory is defined by the expression

0'2'= f fPt(r)gt(r')0' '(r, r')g(r')P(r)dr dr' . (2.23a)

Within the cluster formalism, 0' ' can be written in the
form

O' '= Tr(II 0'~') . (2.23b)

It follows from Eq. (2.13), that a general nonfactorizable
operator 0' ', e.g. , the Coulomb interaction, can be ex-
pressed as

where we use the convention of Ref. 23, i.e., ( )
denotes both thermal and quantum-mechanical averages.

Two general principles can be drawn from these con-
siderations: (1) The usual Matsubara formalism~ for sca-
lar Green functions can be extended directly to our
cluster-field theory, and (2) perturbation theory, as dis-
cussed in the Appendix, can still be performed by general-
izing Wick's theorem to a matrix form.

The use of the above principles will now be illustrated
in the process of deriving a cluster-conductivity formula.

C. Cluster-conductivity formula

In the linear-response regime the static ac conductivity
o (co) can be calculated by means of the relation



8990 M. HWANG, A. GONIS, AND A. J. FREEMAN 35

cr(co) =—n.(co)+ 6
cu m e

(2.29)

~„(co)= i j— 6(t)e' '( j J„(t),J„(0)])dt, (2.30)

which can be calculated through the use of the Matsubara
formalism. In this formalism one first calculates the
complex time response function.

m„,(r) = —( T,[J„(r)J(0)]), (2.31)

where ~ is the complex time and T, means complex time
ordering. The real energy correlation function 7r& (co) can

where ~ is the external frequency; n, e, and rn, are the
density, charge, and mass of the electrons, respectively;
and p, v are indices denoting spatial directions. The
current-current correlation function m& (co) is given by the
expression

be obtained by performing the following analytic con-
tinuation:

change

ice„~ co+i 5 in m„(ice„) (2.32)

with the complex energy response function ~„„(ice„)given
in the form

lS t
tr„,(ice„)= e " vr„(r)dr,

0
(2.33)

where P is equal to Silk&T, kz is Boltzmann's constant,
and T is the temperature.

For a general Hamiltonian the complex response func-
tion mz(r) can be evaluated in many-body theory by using
diagrammatic techniques. However, for a noninteracting
single-particle Hamiltonian, Eq. (2.1), there exists a simple
form for calculating m& (r). We will derive that compact
form by using the cluster theory described previously.

The cluster formalism for the current-current operator
can be constructed by using Eq. (2.22),

n&„(r) = —f f tij (r)g (r')( T,[J„(r,r)J (r', 0)] )P(r')@(r)drdr'

= —(T f f P (r)P (r')J„(r,r)J„(r',0)g(r')P(r)drdr')

=Tr(T, (c IIctJ&c IIctJ„))
=Tr[$( r)~JS'(r)J—], (2.34)

where the definition of the Green function S is evident. In deriving Eq. (2.34), we have used Eqs. (2.16), (2.17), (2.12),
and the matrix Wick s theorem given in the Appendix. The calculation of m.

& (r) can be performed in the usual way by
carrying out the corresponding contour integrations. The final form of the correlation function is

r

n& (co)=—Tr f n~(s)A(e)~J[G+(a+fico)+G "(s—fm)]J,
V —~ 2m

(2.35)

where n~(s) is the Fermi distribution function, A (s) is the cluster spectral function defined by the expression

A(s) = —Im[G~*(e) —G (s)],
and V is the volume. The real part of the ac conductivity, Reer„„(co), can be related to ~„„(co),

(2.36)

Recrp (co) = ——Im~p (co) .
CO

Thus

(2.37)

(2.38)
1 — " dc.

Reer„(co)= — Im Tr f nz(e)A(e)~J[G (a+fico)+G "(s fico)]J-
Vco 2'

In the zero-temperature limit and for clusters confined to a single site the above formula reduces to the ac conductivity
formula derived by Velicky (the dc conductivity formula can be obtained in the limit co~0),

Recrq (co) = 1 — 1
Im Tr f ds A(e)~JG (e.+fico)J

A@V E —Rcu
(2.39)

where E denotes the E Fermi energy.
We conclude this section by emphasizing that the conductivity formulas just derived are of a generic character and can

be used both in conjunction with single-band as well as more realistic potentials such as those of the muffin-tin type. In
the following section we show that the conductivity formula, Eq. (2.39), reduces to well-known results for the cases of
some commonly used model Hamiltonians.

III. CLUSTER EVALUATION OF THE CONDUCTIVITY
We consider a system of noninteracting electrons moving in the presence of a substitutionally random potential. The

expression for the real part of the ac conductivity of such a system has been shown to have the form of Eq. (2.38). For
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the present we confine ourselves to the zero-temperature limit, Eq. (2.39). Our formalism is general enough to illustrate
the structure of the theory, and can be easily extended to calculations at finite temperatures. In the zero-temperature
limit, Eq. (2.39) can be rewritten in the form

Reer„„(co) =— 1 — 1
Im Tr dE J A c. J G~ c+Aco

co V E—%co

1 — 1 E
Im Tr f de(J„Im[G~(e) —G "(e)]J G (c.+%co))

2icoV
Im Tr f dE(J [G+(E)—G+*(e)—G "( s) +G"*( E)]J G (E+~))

E—r
(3.1)

where ( ) denotes a configurational average, and,
denotes a complex conjugate. Thus, the main task of
evaluating the real part of the ac conductivity is to evalu-
ate the expression (for simplicity, we suppress the space
indices) =Tr(J G(J+1 )G), (3.5)

tive medium.
By using Eqs. (3.2) and (3.3), we arrive at the relations

IC=Tr(J(G+G TG)J(G+G T G))

K =Tr( J G(e)JG(a+fico) ), (3.2) where we assume that ( T ) =0 and define

where J, a matrix current operator, can fairly generally be
made to include the model used by Blackman, Esterling,
and Berk' (BEB) to treat ODD as well as MT Hamiltoni-
ans used by Butler and Stocks. ' G is a single-particle
cluster Green function which depends on the details of the
random potential. Note that J and G are all matrix
operators.

The rest of this section is arranged as follows. In Sec.
IIIA we give the random-phase-like decoupling scheme
for evaluating Eq. (3.2); in Sec. III B we establish the
Ward identity and show that it is satisfied by the
random-phase-like decoupling scheme. In Sec. IIIC we
present the concepts and formalism used in the
embedded-cluster method.

A. Random-phase-like decoupling scheme

Consider the Hamiltonian of a random system given in
Eq. (2.19). The cluster Green function can be written as

I =(TG JG T), (3.6)

(3.7)

where

TG= V~(I+G TG) (3.8)

and a is a cluster index. Transposing Eqs. (3.7) and (3.8),
one finds

as the cluster vertex operator.
Within multiple-scattering theory, we can decompose

the random potential V into the sum of contributions
from individual clusters. Therefore the cluster t matrix in
turn has the form

G=G+G TG, (3.3)

Where G is the cluster Green function of an effective
medium, and T, the cluster transition or scattering ma-
trix, can be expressed in the form Q = I+ g Q~G T~.

p (~a)
(3.10)

T= V(I GV) '=(I V—G) 'V— (3.4)

where V is the cluster perturbation away from the effec-
Introducing the above decompositions of the t matrix into
the cluster vertex operator, Eq. (3.6), we have

T' I+G g Q~ GJG I+ g Q G T~).
a, p 5 (~a) & (~p)

(3.11)

The coherent decoupling consists of neglecting the statistical correlation of the atomic t matrix and the effective wave
factors, i.e.,

(
T'1~6 g Q~ GJGI~ g Q G Ta = T' I-pG g Q~ GJGI+ g QG)T~)

6 (~a) 6 (~p) 6 (~a) 6 (~p)
(3.12)
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For a~P, the operators T and T~ are considered statist-
ically independent and are averaged separately. Within
appropriately defined approximation schemes, each such
average can be made to yield a negligible contribution.
Therefore, we may define a quantity I as

(g GJGg/')=r. s ~. (3.13)

The physical meaning of the above assumption is that the
vertex operator is cluster diagonal, and it can be written in
the form

sion can plausibly be used within the ECM. The decou-
pling assumption may also be used to simplify the internal
average in Eq. (3.13), by considering only the case a =/(3:

I = T G J+ I~ GT
P (~a)

(3.18)

When projected on a cluster space, the above equation
yields a system of linear equations for the unknown ma-
trix elements of I

It is useful to rewrite Eq. (3.18) in the form
r=gr. . (3.14) I =(T G(J+I —1 )G T ) (3.19)

This property allows us to calculate the quantity K, Eq.
(3.5), by performing a k-space integration over the first
Brillouin zone (BZ), i.e. ,

which can be solved formally by using the relations

r.= T. ' f dkG (k)[J (k)+I ]G (k)
+Bz Bz

E= dkTr J kG k J k+I G k
1

Bz BZ

(3.15)

—GI G T (3.20)

Here OBZ is the k-space volume of the first Brillouin
zone, and G (k) and J (k) are the k-space cluster Green
function and current matrix which are defined as

G (k)= gG ~e

P

Notice that the matrix I appears in the middle of the
right-hand side of Eq. (3.20) which reflects the fact that
the matrix is not column independent. These equations
can be solved as follows. Writing out the ij element of
Eq. (3.20) explicitly, we have the relation

J~(k) = g J~~e
P

(3.16)

r;, =((T f " G(k)J(k)G(k)T ); )
BZ

where R and R// are the centers of clusters a and P. For
example, in the MCPA, G(k) can be written in the form

((T f [G(k)],„r„;[G(k)T ]„)
BZ

G(k)=[(G ) '+b, —W(k)] (3.17)
—(T G)/ r//(G T )/ ) . (3.21)

where (6 ) and b, have been defined before, and W'(k)
is a k-space cluster hopping integral. A similar expres-

Introducing a symbol 5;J. =6;k6~J, we can write this equa-
tion in the form

6i — T f [G(k)]
k, 1 BZ

[G(t)T'/, )+((T'G)g(G T )( ) I'/i
ik

5,
"' T f G(k)J(k)G(k)T

k, l BZ
(3.22)

The system of these linear equations is now formally in a canonical form, which can be solved by a standard routine,
through appropriate redefinitions of the various matrix quantities. For example, Eq (3.22) ca.n be rewritten in the matrix
form

II Tj G(k—) (G(k)T ) +((T G)(GT )) I'"= T f G(k)J(k)G(k)T
dk- dk—

BZ BZ

col

(3.23)

where denotes direct matrix product and the superscript "col" for column denotes the following quantity:

(3.24)
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To conclude this subsection, we summarize the procedure
for calculating the zero-temperature ac conductivity of a
disordered system. The steps to calculate E, Eq. (3.2) or
(3.15), are as follows: (i) determine the Green function G
by using some approximate scheme such as the CPA or
the MCPA; (ii) calculate G(k) by using Eq. (3.17), and
then evaluate the cluster current operator, J; (iii) perform
the configurational average over the cluster t matrix in
Eq. (3.24), and solve the simultaneous linear equations for
the matrix elements of I; and (iv) perform the integra-
tion in Eq. (3.15) over the first Brillouin zone. From a
knowledge of IC the ac conductivity, Eq. (3.2), then fol-
lows.

is the full vertex function and A is the irreducible vertex
function. Both I and A are two-particle operators, i.e.,
four-point functions in a space-time representation, and
are connected by the equation

I =GAG+GAGl (3.32)

where the proper identification of contractions among
operators is understood. Note that we use the notation of
direct product to signify that there is no correlation of the
indices of the separate operators.

We will now show that Eq. (3.32) can be used to estab-
lish the Ward identity, i.e.,

B. Ward identity
A = (5X)/(5G ), (3.33)

G = G+GTG, (3.25)

As discussed in the preceding section, the evaluation of
the average of the product of two one-particle Green func-
tions requires an evaluation of a vertex function. The
Ward identity is an exact relationship between vertex
functions and single-particle self-energies. Leath
analyzed diagrammatically the connection between the
CPA self-energy and the vertex correction given by Vel-
icky. He showed that the particularly simple form of
macroscopic conservation laws developed by Baym is
very instructive and can indeed be used to derive the ver-
tex corrections from the self-energy in the single-site
CPA. In this section we first give the definition for the
irreducible vertex function and establish the Ward identity
(in operator form) under the condition that the average of
the t matrix vanishes, i.e., (T) =0. We then show that
the decoupling schemes together with the assumption Eq.
(3.13) satisfies the Ward identity in the cluster approxima-
tion.

For the sake of clarity, we group all the relevant equa-
tions here. The starting point is the operator equation

T '=(V —X) ' —G (3.34)

or

T =(V —X)+(V X)GT .— (3.35)

Starting with

TT '=1,
we have

5T = —T(5T ')T .

Using Eqs. (3.34) and (3.35), we have

5T= —T[5(V—X) ' 5G]T—
= T(5G)T —(1+TG)(5X)(1+GT),

while Eq. (3.27) leads to the result

5(T) =(5T)=O.
We then have the equation

(3.36)

(3.37)

(3.38)

(3.39)

where 5 denotes a functional variation. We first rewrite
Eq. (3.26) in the form

where the T operator is given by the form

T =( V —X)[1—G( V —&)] (3.26) i.e.,

5X= ( T5GT ) —( TG(5X)GT ), (3.40)

As in the preceding section, V is the random potential and
X is the exact self-energy operator which is determined by
the condition

5X/5G = ( T T ) —( TG(5XI5G )GT ) .

Thus we have

(3.41)

(T)=o. (3.27) 5X/5G=(1+(TGGT)) '(TT) . (3.42)

(Ge G) =G@G+GeGA(Ge G) (3.29)

Thus, Eq. (3.27) implies that the disorder averaged Crreen
function (G ) is equal to the Green function of the effec-
tive medium, i.e.,

(G)=G .

Following the work of Leath and Velicky, " we have
the forms

On the other hand, from Eqs. (3.31) and (3.32) we obtain

( TGGT) =GAG+GAG(TGGT), (3.43)

from which it follows that

GAG = (1+( TG GT ) ) ( TG GT ) . (3.44)

By comparing Eqs. (3.42) and (3.44) and properly identi-
fying the various (implicit) indices, we have

and A = (5X ) /(5G ), (3.33)

( GG) =GG+GI G,
where

r=(TGe GT)

(3.30)

(3.31)

which is the Ward identity. Therefore, the self-energy
and irreducible vertex function determined by the exact
condition, Eq. (3.27), satisfy the Ward identity. The mac-
roscopic conservation laws are all preserved.
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where X is a functional of the cluster Green function
G . The Ward identity then takes the form

A~ =6X~/66 (3.46)

The steps leading to Eq. (3.41) can be duplicated within
our cluster theory and give the equation

A =(I+(T GRG T )) '(T T ) (3.47)

As is well known, the exact condition [Eq. (3.27)) can-
not be achieved in practical calculations, requiring the use
of various approximation schemes at different levels. We
will consider a general cluster approximation by assuming
that the self-energy is cluster diagonal, i.e.,

(3.45)

ten in the form

Gcc =(EI H—G —Ac ) (3.51)

[G«];~ =[(EI Hc —b—,c) '];J

and also

(3.52)

For single-band systems, all quantities except the energy
E are n &n matrices for n-site clusters. Here, H& is the
intracluster part of the disordered Hamiltonian, while the
cluster renormalized interactor 6& describes the interac-
tion of the cluster with the surrounding medium and in
the absence of off-diagonal disorder is independent of the
particular atomic configuration represented by H~. Thus,
A~ can be found easily by noting that G&z, the cluster-
diagonal Green function for the effective medium, can be
evaluated in two different forms

with the analogous iterative equation

We have

(I+(T G@G T ))I =(T GSG T )

+ g ( T G I'PG T )l,

i.e.,

(3.48)

(3.49)

[G«],=G;,

G ke "dk,
QBz BZ

(3.53)

where H& is the intracluster Hamiltonian for the effective
medium, G(k) is the effective-medium Green function in
the k representation, and R;& is the vector from site j to
site i From. Eqs. (3.51) and (3.52) we obtain,

1 =(T GG T )+ g (T G I'~G T ) .
P~a

(3.50) b c=EI Hc —(Gcc )—
so that

(3.54)

For clarity, a number of indices such as site and angular
momentum symbols have been suppressed. Equation
(3.50) is exactly the formula Eq. (3.18) obtained in the
preceding subsection by using a random-phase-like ap-
proximation, except that here we have removed the
current operator. A single-site version of the above result
is then an alternative proof for the Ward identity given by
Velicky.

We have proved that the Ward identity is exactly satis-
fied if we determine the effective medium by requiring
that the average t matrix vanishes, which indicates that
the disorder average is consistent with macroscopic con-
servation laws. The cluster Ward identity was then used
to derive the equation for determining the full vertex
function which leads to the result obtained in the preced-
ing subsection. Thus the random-phase-like decoupling
scheme and the assumption,

(3.13)

used in the preceding subsection are consistent and fully
justified.

C. The conductivity in the embedded-cluster method

In the ECM one calculates exactly the Green function
for a cluster of atoms embedded in an effective medium
which is determined in some optimal way. In substitu-
tionally disordered alloys numerical investigations have
indicated that an appropriate embedding medium is that
determined within the CPA. Then the TB Green function
for a cluster C of atoms embedded in the medium is writ-

G« (H. H. +G ——)— (3.55)

Once 6&& has been determined, the corresponding local
DOS associated with any site in the cluster and for any
cluster configuration is obtained in the usual way,

n; (E)= ——Im[ Gcc (E)]n
1

(3.56)

1—Tr(JG JG) —(JG JG)oo
n

(3.57)

where 0 denotes the central site of the cluster. Results can
then be obtained by averaging over all cluster configura-
tions.

where i denotes the site of interest. Averaged results can
be obtained by performing an ensemble average over all
cluster configurations.

The above program can also be carried out in the calcu-
lation of the average of the product of Green functions,
e.g. , (J G J G). The standard approximation, i.e., cumu-
lant expansion, is to replace averages of products by prod-
ucts of averages and attempt an independent calculation
of the vertex corrections, e.g. , (J G J G ) —( G )J( G )J.

We have shown that for a finite cluster the conductivity
can be calculated in terms of Tr( JGJG), where the trace
is over the cluster basis. For a specific configuration, a
central-site approximation to the exact result, Eqs. (3.15)
and (3.23), can be made, i.e.,
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IV. NUMERICAL RESULTS

A. General comments

Soon after Velicky carried out a consistent description
of transport processes in diagonally disordered concentrat-
ed alloys based on the CPA, several authors discussed the
case of more general single-band model Hamiltonians that
include the model used by Blackman et al. ' A remark-
able property of the model Hamiltonians investigated is
that, in the dilute limit, only the s-like partial waves of
the scattering due to an isolated impurity have nonzero
scattering amplitudes and, hence, the total scattering am-
plitude is isotropic. Consequently, the vertex corrections
vanish in a single-site theory, in spite of the presence of
off-diagonal disorder. Niizeki et al. ' investigated a dif-
ferent extension of the CPA from that due to Blackman
et al. ' They considered that the off-diagonal elements of
the single-band Hamiltonian with additive randomness,
Eq. (2.10), are generally random variables and are not
correlated with the randomness of the site energies. Such
a Hamiltonian may yield, in the dilute limit, impurity po-
tentials giving anisotropic scattering amplitudes, and
hence may give rise to nonzero vertex corrections in the
single-site CPA.

The most general case of ODD which has been treated
properly within the CPA is that considered by Blackman,
Esterling, and Berk' (BEB). They investigated the model
in which the hopping integrals assume values O'.J~ de-
pending on the species of atoms a,P occupying sites i and
j. These authors used a locator technique which provides
a particularly suitable formalism for setting up this gen-
eralized problem. With the aid of a simple matrix device,
they derived expressions for the single-particle propaga-
tors that behave correctly in the dilute limits, and interpo-
late properly between various limits. Blackman' has
shown how the formalism of BEB can be used in the cal-
culation of the transport properties of substitutionally
disordered alloys in the presence of general ODD.

The matrix formulation of the conductivity presented
in the preceding section is general enough to encompass
TB alloys with both diagonal and off-diagonal disorder.
It can also be used with Hamiltonians described by more
general potential functions such as those of a MT type.
In this latter case, the formalism allows one to obtain in a
concise and economical manner results identical to those
obtained earlier by Butler for the case of the CPA, as
will be shown in detail in a future publication. In addi-
tion, it allows a straightforward generalization of Butler' s
single-site CPA approach to clusters of sites and the
straightforward evaluation of local environment effects,
i.e., cluster vertex corrections.

Rea(co) = J dE f dk[J(k)ImG(k;E+fico)
1

XJ(k )ImG(k;E)],

0 20

p - 0.2 p= 0.5

020
(c) X2

(4.1)

where J(k) and G(k;E) denote the Fourier transforms of
the current operator and the CPA Green function, respec-
tively. This is precisely the equation for the real part of
the conductivity derived by Velicky and Levin. It can
be shown rather easily, under the random-phase-like ap-
proximation of Sec. IIIA, that Eq. (4.1) provides a com-
plete description of the conductivity within the CPA for
single-band TB systems.

We checked the validity of Eq. (4.1) by using it to cal-
culate the ac conductivity of one-dimensional substitu-
tionally disordered alloys with only diagonal disorder and
only nearest-neighbor hopping, 8'=1.0. In Fig. 1 the re-
sults of the CPA calculations (solid lines) are compared
with exact conductivity spectra (histograms), obtained by
the methods presented in paper I. The top row of Fig. 1

depicts the results for weakly scattering alloys,
c.z ———c.z ——1.0, while the bottom row corresponds to
strongly scattering alloys, ez ———cz ——2.0. Conductivity
calculations were carried out for two values of the Fermi
energy in units of the bandwidth, p=0.2 for the left
column of Fig. 1 [(a) and (c)] and p, =0.5 for the right
column [(b) and (d)].

As is seen in the top row of Fig. 1, the ac conductivity
of weakly scattering alloys resembles that of pure systems,

B. The ac conductivity within the single-site CPA

1. Diagonally disordered systems
0.0 0.2 5 0.50 0.75 I.OO 0.0 0.25 0.50 075 I.OO

It can readily be shown that in the case of single-band
TB systems, even in the presence of ODD, ' vertex
corrections vanish identically within the CPA. In this
case, the real part of the ac conductivity, Eq. (2.38), takes
the form

FIG. 1. Comparison of the ac conductivities between the ex-
act results (histograms) and CPA results (curves) for two cases
of alloys Ao &Bo 5. Case I, weak scattering with c& ——c& ——1.0,
8' = 1.0, (a) the Fermi energy p =0.2, (b) p =0.5; case II, strong
scattering with cz ——c~ ——2.0, 8'=1.0, (c) @=0.2, (d) p=0. 5.
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i.e., it is strongly peaked at co-0, and the exact ac con-
ductivity results vanish at co=0 in agreement with the re-
quirement that the dc conductivity of one-dimensional
disordered systems be strictly zero. On the other hand,
the CPA yields a nonvanishing result for the ac conduc-
tivity as can be expected from the translational invariance
of the CPA effective medium. We note that for weakly
scattering alloys, the ac conductivity calculated in the
CPA behaves approximately according to the Drude for-
mula,

oof Reo(co)de= ni,
0 2ma

(4.3)

into account in a single-site theory like the CPA. As we
will see later, a multisite approach to the conductivity is
necessary for a proper representation of local environment
effects.

As a general complex quantity, the conductivity tr(to)
satisfies the well-known Kramers-Kroning relations. In
addition, the real part of o.(co) satisfies the sum rule,

o(co) =o(0)/[I+to r (co)], (4.2)

where tr(0) denotes the static conductivity of the system
and r(co ) the relaxation time. Taranko et al. and
Wysokinski et al. have presented examples in which the
definition of the relaxation time given by Eq. (4.2) appears
to be senseless. These examples illustrate that the
relaxation-time approximation, i.e., the Drude formula, is
not adequate for the discussion of transport in strong
scattering alloys. An examination of the exact computer-
simulation results in Fig. 1, and the results presented in
paper I, confirms these conclusions, indicating strongly
that Eq. (4.2) is inappropriate for most of the cases that
we investigated. On the other hand, the CPA results are
seen to provide a not too inaccurate representation of the
exact result of weakly scattering alloys.

The overall picture changes drastically, however, with
increasing scattering strength. As is seen in the bottom
row of Fig. 1, the ac conductivity of strongly scattering
alloys peaks away from cu-0 and the structure in the ex-
act results increases over that corresponding to the weakly
scattering case. It is clear that the Drude formula, Eq.
(4.2), is no longer valid. Furthermore, the accuracy of the
CPA decreases with increasing scattering strength, as it is
known to do in calculations of the DOS. The high peaks
and valleys in the exact ac conductivity histograms of
strongly scattering alloys are mainly due to the correla-
tions in local statistical fluctuations and cannot be taken

where n& can be identified as the number of effective
charge carriers. In Table I we compare the sum rule
evaluated in the CPA with that evaluated in terms of the
exact ac conductivity. The CPA results are within 10%
of the exact ones, with the CPA overestimating the con-
ductivity in most, but not all, cases.

2. Systems upwith off diagonal -disorder

Our investigation within the framework of the CPA of
the conductivity of alloys with ODD relies on the formal-
ism of BEB (Ref. 17) as extended to transport quantities
by Blackman. ' Blackman showed that the formalism of
BEB provides the proper vehicle for the calculation of the
Kubo formula within the CPA for alloys with ODD. He
also showed that for single-band TB systems the vertex
corrections vanish as they do in applications of the CPA
to diagonally disordered alloys. The formalism of BEB
provides the most general treatment of s-wave scattering
in substitutionally disordered alloys and exhibits' the
proper behavior in all relevant limits of various physical
parameters. In particular, it satisfies ' the Ward identities
and yields exact results in the limits of zero concentration
or weak-scattering strength.

For alloys with ODD, the real part of the ac conduc-
tivity is given by a simple generalization of the scalar Eq.
(4. 1) to a matrix equation,

Reer(co) = —f dE f dk Tr[ W'(k)ImG "(k;E+fico) W(k)ImG (k;E)] .
Cc) P —~ (4.4)

W(k)= g Wo;e (4.5)

where

Here the k-space hopping matrix W(k) is defined by the
equation

TABLE I. Comparisons of the ac conductivity sum rule: p,
Fermi energy; "exact" stands for the exact results; "CPA" for
CPA results. The bandwidth is normalized to one. The param-
eters used are for case I, weak scattering with c,& ———c& ——1.0,
W=1.0; and for case II, strong scattering with E&

———c& ——2.0,
W =1.0.

'
~HA ~AB

lJ IJ

~~a ~as (4.6)
J J

The transfer integrals WJ~, a,P=A or B, describe the
occupation-dependent hopping between sites i and j. The
matrix G(k;E) is defined in an analogous fashion.

Case I

Case II

exact
CPA

exact
CPA

2.55 X 10-'
2.59 X 10-'

1.92X 1o
1.8QX1Q—~

@=0.5

3.81X 10-'
4.05X10 '

1.44X10 '
1.62 X 10-'
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0.20
(a) p =0.2 (b) Iu =0.5

—0.10—
t)

The results of ac conductivity calculations for one-
dimensional alloys based on Eq. (4.4) (solid curves) are
compared with exact numerical simulations (histograms)
in Fig. 2. In all cases, the hopping integrals were restrict-
ed to nearest neighbors and were assigned the values,
W"~=0 5 P'~ = P' ~=1.0 and P' =2.5. The top
row of Fig. 2 [(a) and (b)] corresponds to alloys with only
ODD, E„=es——0.0. The bottom row [(c) and (d)] depicts
corresponding results for alloys with both diagonal and
off-diagonal disorder, cz ———cz ——2.0. The columns in
Fig. 2 are labeled by the values of the Fermi energy, p, in
units of the bandwidth.

It is clear from the exact results (histograms) shown in
Fig. 2 that the introduction of ODD can introduce new
and complicating features into the ac conductivity as
compared with that of diagonally disordered alloys. Note
the tendency, in all figures, of the conductivity to peak
away from zero frequency even in the case of vanishing
diagonal disorder (top row in Fig. 2). In this case, the
CPA yields less-accurate results, with the discrepancy be-
tween exact and calculated dc conductivities at co=0 be-
ing particularly prominent. Further, note the presence in
the exact results of prominent peaks far away from zero
frequency in some cases, e.g. , at co-0.6 in panel (b). The
emergence of such peaks can be understood on the basis of
the DOS spectra (histogram) of these alloys which are de-
picted in Fig. 3 along with the corresponding CPA results
(solid curve). As it is seen here, the DOS is dense near the
center of the band and becomes quite dilute near the edges
in the region in which it consists almost exclusively of B-

0.50

UJ

L 0.25—
CO

l, .)II.JJ i))
—5.0 —2.5 0.0

kl lL I» I.

25 50

FIG. 3. Comparisons of the densities of states between the
exact result and the CPA result for the same model parameters
used in Figs. 2(a) and 2(b).

hopping contributions. The conductivity peak at co-0.6
[Fig. 2(b)] arises from density-density correlations in this
region which is very poorly described by CPA results.

The ability of the CPA to represent the ac conductivity
of off-diagonally, substitutionally disordered alloys de-
creases with increasing diagonal disorder, as is clearly
seen in the bottom row of Fig. 2. The failure of the CPA
at low frequencies is particularly noticeable. On the other
hand, as expected, integrated quantities such as the sum
rule, Eq. (4.3), are given to within 10% by the CPA even
in the case of generally disordered alloys.

C. Cluster calculations

0.20

(c)

—O. I 0—

1 ri )

0,0 0.25 0.50 0.75 $.00 0.0 0.25 0.50 0,75 I.OO

FICx. 2. Conductivity results of the type depicted in Fig. 1,
but for alloys with off-diagonal disorder. The hopping integrals,
8'» ——0.5, 8'&~ ——1.0, and 8'~~ ——2.5, are the same for all fig-
ures except the site energies are different: for (a) and (b)
c,& ———c& ——0.0, for (c) and (d) c& ———c& ——2.0.

As discussed earlier, the extension of the CPA to the
calculation of transport properties was implemented im-
mediately after the introduction of the CPA. The dc con-
ductivity, ac conductivity, and Hall coefficients were cal-
culated by many investigators ' for simple model sys-
tems. However, the accuracy of the methods was un-
known due to the lack of reliable computer experiments,
thus prohibiting its further development. In the preceding
section we concluded that single-site theories fail to pro-
duce the peaks and dips in the exact conductivity spectra.
The results are even worse in some cases with strong off-
diagonal disorder. The CPA provides a good first approx-
imation to the calculation of the average of the product of
the Green functions in substitutionally disordered systems
but its accuracy decreases with increasing disorder,
scattering strength, or increasing short-range order (SRO),
i.e., nonrandomness, in a material. This limitation results
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from the fact that the CPA neglects statistical correla-
tions among different sites. In order to account for the
effects of local statistical fluctuations, it is necessary to
extend the CPA to a multisite or cluster theory. Several
such theories ' have been proposed, including self-5 —7, 15

consistent and non-self-consistent approaches. Although
well-founded self-consistent theories exist, their numerical
implementation becomes difficult even for moderate size
clusters in simple, single-band disordered systems. A
great deal of work is still required to establish their com-
putational feasibility.

Among non-self-consistent theories, the ECM (Refs.
5—7 and 15) has proved to be very successful in calculat-
ing the one-particle Green function associated with a clus-
ter of atoms in substitutionally disordered alloys. Based
on the same idea, we calculated the ac conductivity associ-
ated with the central site of such clusters, as indicated by
Eq. (3.57). This generalization of the ECM provides us
with an accurate description of the ac conductivity spec-
tra. To test the effect of the embedding medium, we also
carried out a simple molecular cluster calculation which
replaces the effective medium by vacuum. We first dis-
cuss the molecular-cluster calculations and then present
our results obtained by using the ECM for systems with
diagonal disorder and short-range order.

1. Molecular-cluster calculations

cept that the cluster current matrix and Green function
have strictly intracluster matrix elements. To calculate
Eq. (4.8), it is sufficient to calculate Tr(J G J G ). One
plausible approximation is to replace ( I /N)Tr( (J G J G ) )

by (JG J G)oo, which represents the local quantity associ-
ated with the central site. Thus the steps in calculating
the ac conductivity of a molecular cluster reduce to (1)
calculating (J G J G)oo for every cluster configuration, (2)
averaging the results over all configurations, (3) evaluat-
ing the conductivity by using (JG J G)oo and Eq. (4.8).
Results of such calculations are depicted in Fig. 4. Figure
4(a), depicts the case with Fermi energy p =0.2, and Fig.
4(b) that with p =0.5. The other parameters are
cz

———cz ——2.0 and 8' = 1.0. Again, the histograms are
the exact results and the curves represent the results ob-
tained in the molecular-cluster calculation. It is seen, at
least qualitatively, that the method reproduces most of the
peaks of the exact simulation results. However, the strong
dependence of the results on the small imaginary energy
part makes quantitative comparisons unreliable. In gen-
eral, the peaks are sharper than those of the exact ones
and their value are too small at low frequencies. Howev-
er, this partial qualitative success suggests that local envi-
ronment effects are important in picking out the fine
structure in the conductivity spectra. The generalized
ECM, presented in the following subsections, takes local

The difficulty of interpreting the ac conductivity spec-
tra of an infinite crystal by molecular-cluster calculations
lies in the discreteness of the DOS which generates 5-
function peaks in ac-conductivity spectra. Two pro-
cedures can be employed to transform the discrete spectra
into continuous ones by broadening these peaks. The first
procedure was used in our computer simulations in paper
I. The number of energy levels inside a frequency inter-
val, bc@ in Eq. (3.6) of paper I, should be large enough to
make the procedure statistically meaningful. Clusters
with computationally feasible sizes normally do not satis-
fy this condition. Thus, we use the second procedure by
assigning a small imaginary number q in the energy to
broaden the 5-function peaks appearing in the DOS spec-
tra into Lorentzian shapes. The general requirements,

are easily fulfilled with the values
p=0. 1 and Ace= „',

We consider a binary disordered alloy 3o 5Bo 5 with the
cluster Hamiltonian,

0.20

0.10
D

0.00
0.10

(b)

H=c EC (4.7) 0.0 5

where c (c) is the cluster creation (annihilation) operator
and c. is the cluster energy defined earlier. Thus, the sys-
tem is represented by a single cluster. A straightforward
application of our cluster-field theory results in the fol-
lowing formula:

Reo.(co) = —I dE Tr[( JImG "(E+fico)
1

m. Xa e

0.0 0
0-0 0.2 0.4 0.6 0.8 1.0

XJImG ~(E) ) ] .

(4.8)

All the quantities are the same as previously defined ex-

FIG. 4. Calculated ac conductivity (curves) of a random
binary alloy Ao &Bo 5 obtained by using finite cluster (seven sites)
calculations for E~ ———c~ ——2.0, 8' = 1, and (a) p =0.2, (b)

p =0.5. Histograms are the exact simulation results.
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environment effects into account, as does the molecular-
cluster calculation, but avoids the uncertainty resulting
from the small imaginary energy part by introducing an
effective medium with complex self-energy, e.g. , the CPA
medium.

2. Embedded-cluster calculations

The basic principles involved in applying the ECM to
the calculation of transport properties have been given in
Sec. III B. We emphasize that the method allows the ex-
act incorporation of vertex corrections which are other-
wise difficult to compute in self-consistent theories. In
our calculations we considered clusters of moderate size,
three to nine atoms, embedded in a CPA effective medi-
um. The proper treatment of such a cluster requires the
performance of k-space integrals, a procedure which is
necessary in realistic three-dimensional calculations.
However, in connection with one-dimensional-model sys-

tems, such as the ones used in our calculations, an alterna-
tive, simpler procedure becomes possible. Because 6;~ de-
cays rapidly with increasing distance

~ R;J ~, it suffices to
consider a finite cluster of CPA effective sites surround-
ing the embedded cluster. This procedure is certainly not
exact but can be expected to approach the exact limit with
increasing medium cluster size. The effects of the trunca-
tion of the surrounding CPA medium manifested them-
selves in terms of slightly negative ac conductivity spectra
(-0.1'//o of maximum values) in some frequency regions
in which the exact simulation results vanish or are nearly
zero. Increasing the size of the surrounding CPA cluster
decreases the size of the negative calculated results, but
complete elimination was not achieved within our finite
truncation schemes. The following figures present the re-
sults of calculations carried out using CPA medium clus-
ters with 50 sites, containing the clusters of real atoms in
their center. For an alloy, the ac conductivity takes the
form

1
Reo(co) =

2+ 2 2 ~ p

N
dE g [(J0;Img, z(E +Pm)J&kImG ko(E) )],

j,k= —N
(4.9)

where X is half the size of the CPA medium cluster.
Thus, the procedure to calculate the ac conductivity in the
ECM consists of the following: (1) Choosing the size of a
cluster to be embedded in the CPA medium; (2) calculat-
ing the matrix element (J G J G)oo for every configura-
tion; (3) performing the average over all configurations;
and (4) carrying out the energy integration over the al-
lowed transitions. The averaging process depends on the
type of disorder considered, since the weight of a given
configuration varies with the disorder type.

We first concentrate on the strong scattering case with
c.z ———c.z ——2.0 and 8 =1.0. The results for two dif-
ferent Fermi energies are presented in Figs. 5 and 6. As
usual, all exact simulation results are plotted in histo-
grams and the calculated results are given by smooth
curves. In Fig. 5 we show the results for the Fermi energy
p =0.2.

Figure 5(a) shows the result (smooth curve) obtained by
using a cluster with three-sites. The curve is still close to
the CPA results, but is seen to begin developing a certain
amount of structure. Increasing the cluster size to seven
sites, Fig. 5(b) suffices to pick out almost all of the sharp
peaks and valleys in the exact spectra. Analogous results
are seen in Fig. 6 for the case of p=0. 5. Increasing the
cluster size yields successively more-accurate results, in-
cluding properly the effects of local statistical fluctuations
and the associated vertex corrections.

Our results indicate that for strong-scattering alloys,
even a moderate size cluster (approximately seven sites)
suffices in capturing the fine structure of the simulated ac
conductivity spectra. When the scattering strength de-
creases, i.e., in the weak-scattering limit, even single-site

0.2

O.t

J

I

r+ '
f

0.2
(b)

0.1

0.0
0.0 0.5 1.0

FIG. 5. Results of the type depicted in Fig. 4 except those
obtained by using the ECM; (a) three-site calculation; (b) seven-
site calculation. Both figures with Fermi energy p =0.2.
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probability of the occurrence of configuration K. Clearly,
any degree of SRO can be included in the average through
the quantities PK. Figure 7 depicts the results of nine-site
ECM calculations in binary strong scattering alloys with
different degrees of SRO. Here SRO effects are con-
sidered from the almost complete clustering case (a=0.9)
to the almost complete ordering case (a= —0.9) in four
steps, +=0.9, 0.5, —0.5, —0.9. As is seen here, the agree-
ment of the ECM results with their exact counterparts is
quite good. For the strong clustering case, Fig. 7(d), the
ECM results are relatively inaccurate due to the limitation
of cluster calculations in dealing with pure systems.
However, even in this case, the ECM gives a good descrip-
tion of the ac conductivity spectra.

0.10

(a)

0.05—

0.10—

V. DISCUSSION AND CONCLUSIONS

0.05—

0.00
0.0 0.2 0.60.4 0.8

FIG. 6. Results of the type depicted in Fig. 5 but for p =0.5.

theories can give accurate results, e.g. , top row of Fig. 1.
Now the peaks and dips can be regarded as perturbations
away from a uniform medium and are well described (in
an average way) by the CPA. Thus, in this case, even a
relatively small cluster (approximately three sites) can be
expected to yield accurate results.

3. Alloys with short-range order 0.60 (a)
a = -0.5 X3 a=- 0.9

As discussed in paper I, perfect substitutional disorder
is seldom achieved: often correlations between atoms on
neighboring lattice sites cannot be ignored. In a binary al-
loy, for example, it may be energetically preferable to sur-
round an 3 atom by a 8 atom than by atoms of the same
type. The resulting system exhibits what is known as
short-range order (SRO) effects, which are known' to in-
fluence the DOS and the conductivity spectra. Such ef-
fects cannot be taken into account at all within single-site
theories such as the CPA but can be described to any
desirable degree of accuracy within a cluster theory. The
ECM provides a method for calculating the cluster aver-
age of the site-diagonal element of the Green function
products at the central site of the cluster, denoted by 0,
given by the expression

0.4 0

3
o 0.20—

0.20
(c} (d)

a= 0.5 a= 0.9

3 0. 1 0

0.0
1.0 00.5

FIG. 7. Calculated ac conductivity (curves) of a binary alloy
with short-range order obtained by using the ECM for @=0.4;
(a) o.= —0.5, (b) a= —0.9, (c) o.=0.5, (d) a=0.9. Histograms
are the exact simulation results.

( (J G J G ) )oo =g Px (J G J G )oo
K

(4.10)

where K denotes a cluster configuration and PK is the

In this paper we have presented a cluster-field theory
which allows the unified treatment of a number of prob-
lems associated with substitutionally disordered materials.
The formalism developed in this paper is applicable to
disordered, as well as ordered, materials describably by
either tight-binding or muffin-tin Hamiltonians, and can
be used to calculate expectation values of one-body and of
many-body operators. The usefulness of this approach
was illustrated through the derivation of a cluster-
conductivity formula for disordered materials, and nu-
merical calculations based on that formula.

More generally, the formalism of Sec. II and the Ap-
pendix provides a rigorous foundation for dealing with
physical problems in terms of appropriately chosen cluster
quantities. In the proper limits it reduces to well-
developed and well-understood methods for the study of
disordered materials, such as the CPA for alloys with di-
agonal and off-diagonal disorder, the molecular CPA, and
the embedded-cluster method, and allows the calculations
of the single-particle and two-particle propagators within
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any of these methods. Our cluster approach leads to com-
putationally feasible algorithms, matching the art of
modern vectorized computers which make the rnanipula-
tion of large matrices practicable.

The approximation scheme presented in Sec. III for cal-
culating the conductivities of substantially disordered sys-
tems is model independent. After determining the single-
particle cluster Green function in a cluster space we can
calculate the conductivity by using the approximation
scheme. The approximation is analytic, in the sense that
the Ward identity is fulfilled.

We explored the strengths and weaknesses of various
analytic theories in calculating the ac conductivity of sub-
stitutionally disordered alloys by means of numerical cal-
culations. The availability of computer-simulation results
allowed us to make quantitative calibrations for approxi-
rnate theories, such as the CPA and the formalism of
BEB, and their cluster generalizations.

In the weak-scattering limit the mean free path of an
electron is much larger than the interatomic spacing, and
single-site theories are expected to give good descriptions
for the ac conductivity in this case. We confirmed the
above statement and indicated its failure when the scatter-
ing strength and disorder increase. The Kubo-Greenwood
formula is general for a quantum system and capable of
dealing with quantum interference effects, i.e., when the
electron mean free path is comparable to the lattice spac-
ing. The proper inclusion of site-site correlations in clus-
ter theories indicates that short-range effects are respon-
sible for the fine structures of the conductivity spectra.
At the same time, some important questions are left out in
the simple model used in our calculations, such as, for ex-
ample, the calculations of the ac conductivity for realistic
systems and the localization problem associated with
disordered materials. It is to be noted that CPA-based
calculations for three-dimensional systems can yield quite
accurate results as is exemplified by the recent calculation
of the residual resistivity by Butler et al. The calcula-
tions of the ac conductivity for real materials along with
the k-space evaluation of the vertex corrections in realistic
systems are currently in progress and results will be
presented in future publications.
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APPENDIX: CLUSTER PERTURBATION THEORY

this Appendix a rigorous perturbation theory based on our
cluster-field theory; in particular, we give a detailed dis-
cussion of the generalized Wick's theorem, i.e., matrix
Wick's theorem.

Before giving the formal exposition of the cluster per-
turbation theory, we define a "cluster" unit matrix and a
"cluster" exponential function. They are introduced in or-
der to facilitate our matrix formulation. At this point it
is important to remind the reader of the two main in-
gredients in our cluster theory: (1) the existence of a spe-
cial matrix H which allows us to consider all the physical
problems exclusively in terms of cluster quantities, and (2)
the connection between the cluster and the single-site pic-
ture is made possible through the H matrix. In an n-site
cluster theory, a cluster unit matrix E is defined by the
expression

1E=—I
n

(A 1)

where I is the usual n Xn unit matrix, i.e., I;~=6;J. The
cluster exponential function e is then defined in the form

ce 1e"=E+ g-A(II A)" (A2)

where A is an arbitrary n & n matrix and H is the matrix
introduced in Sec. II. The above definitions were motivat-
ed so as to fulfill the following properties:

Tr(IIE) =1, (A3)

e
' — =Tr(II e-") . (A4)

The first relation, Eq. (A3), implies that the appearance of
H E in the cluster theory can be removed, e.g. ,
Tr(HA IIE)=Tr(IIA). Mathematically E can be ex-
tended to represent the set {E, E H E, E H E H E, . . . J.
The second relation, Eq. (A4), will be used extensively
when we derive the cluster perturbation theory.

In Sec. III B we defined by "single-cluster" Green func-
tion and discussed its relation to observable properties.
That analysis in no way solves the fundamental many-
body problem and we must still calculate G for nontrivia1
physical systems, e.g. , systems with nonlocal or many-
body interactions. As a general method of attack, we
shall show how to evaluate the Green functions within
perturbation theory. This procedure is most easily carried
out in the interaction picture, where the various terms
entering the perturbation expansion can be enumerated
with a matrix Wick's theorem. For the sake of clarity, we
formulate the perturbation theory at zero temperature; the
finite-temperature Matsubara formalism, which has been
used in Sec. III C to derive a general finite-temperature ac
conductivity formula, can be formulated analogously.

The Hamiltonian of a physical system can usually be
written in the form

In the body of this text we limited ourselves to the
single-particle Hamiltonian, i.e., Eq. (3.1), without consid-
ering nonlocal or many-body effects. However, nonlocal
potentials or many-body interactions are present in realis-
tic systems. For the sake of completeness, we present in

H=Hp+ V, (A5)

where H p is a cluster Hamiltonian which may be solved
exactly and the perturbation part V can be reduced, fairly
generally, to the form
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v= g(c.)'v.t'c' .
a, P

(A6)

In the interaction representation, cluster operators and
wave functions are denoted by a caret. A cluster operator
has a time-dependent characteristic, i.e.,

cluster operator O(t) .As a general rule, the II matrix is
present between any consecutive operators and plays the
role of cluster interactions.

The time evolution operator U(t) is now changed to the
cluster form, U(t),

O(t) =e'"-"H O H e
'"-" (A7) (A9)

where e is the cluster exponential function defined above
and 0 is an operator in the Schrodinger picture. The
above definition is motivated by the following relation:

which has the standard connection with U(t),
U(t)=Tr[IIU(t)]. Note that U(0)=E. It follows that
U(t) satisfies the following equation:

U(t) = —i V(t)U U(t, ) .at— (A 10)

iTr(II H o)t —iTr(II H &)t

=Tr(He )Tr(II O)Tr(He )

Integrating both sides of the equation with respect to
time, we have

=Tr[II O(t)], (A8) U(t)=U(0) —i f dt, V(t)II U(t, ) . (A 1 1)

where we have associated each scalar operator O(t) with a If this equation is repeated iteratively, we obtain

t
U(t)=E —i f dt, V(t, )+(—i) f dt, f dt V(t, )II V(t )+

QO 'k —r=E+ g ( —1) f dt, . f dtk V(tI)II V(t2) II V(tk) .
k=i

(A12)

By introducing the time-ordering operator T, Eq. (A12)
can be abbreviated in the form

(A13)

S(t, t')Il S(t', t")=S(t,t"),
and can be abbreviated in the form

(A18)

(A19)
In order to carry out the cluster perturbation theory, a

cluster S matrix is conveniently introduced by the follow-
ing definition:

The cluster creation (or annihilation) operators in the
Schrodinger and interaction pictures are connected by the
relation

S(t, t ') = U(t) II Ut(t'), (A14)
c (t) =S(O, t)H c (t)II S(t,O) . (A20)

which characterizes the time evolution of the wave func-
tions %(t') into %(t), i.e.,

Let us denote by
~

) (
~

)0) the ground-state of H (Ho).
We then have the relation (i.e., Gell-Mann —Low theorem)

e(t)=S(t t')Hq(t').

The cluster S matrix has the following properties:

S(t,t)=E,
St(t, t ) = U(t')H U'(t) =S(t,t),

(A15)

(A16)

(A17)

i ) =s(0, — )
i ), . (A21)

At this stage we can express the cluster Green function in
terms of the unperturbed cluster Green function and ob-
tain the form

G f'(t t') = i ( T[c (t)II[—c I'(t')]
I )

= —ie(t —t') (
~

S(—,t)IIc (t)IIS(t, t')Hc ~(t')HS(t', — )
~

)

+ie(t —t), ( ~S( —,t )Hct'(t )HS(t, t)Hc (t)HS(t, — )
~
), .

Multiplying both sides of the above equation by o(
~

S( oo, —oo )
~

)0 II, we have

,( ~S(,— )
~
),HG.II(t, t')= —ie(t —I'), ( ~S(,t)Hc (t)HS(t t')Hct'(t')HS(t', — )

~ ),
+ie(t' t), ( S(,t')IIc (t')IIS(t',—t)IIc (t)IIS(t, — )

~
), .

Following the usual abbreviation, we write the above equation in shorthand form,

(A22)

(A23)
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o( ~S(,— )
~
),HG ~(t, t')= —t, &

~
TIc (t)Hc~(t')S(, — )j ), , (A24)

where the time-ordering operator T arranges the various pieces in their rightful place. Notice that the matrix factor
0(

~

S( oo, —oo )
~

)o cancels vacuum polarization diagrams.
The remaining task is to construct rules for evaluating time-ordered brackets like

T[H(c ) (t)J t'ct'(t)H[c&'(t')]tJ'sc (t')I (A25)

which can, in general, be accomplished in terms of Wick's theorem. A generalized Wick's theorem is needed in our clus-
ter theory because all the operators are written in matrix form. We now give the basic ingredients of such a generalized
Wick's theorem by presenting the following two general rules.

(1) The matrix Wick's theorem is a restricted version of the usual single-site Wick's theorem because in general both
noncommuting matrices and operators are present. Some related examples of the definitions of time-ordered products
are

c (t)H ct'(t') ", t ~t'
T[c.(t)H[ct (t )]'I = —[[et'(t')] IIc (t))T,

(A26)

II c (t)J ~ct (t)H cr(t')J ~ c'(t'),
TIH[c (t)]'J i'ct'(t)H[c~(t )]'J» c(st)I=. ——

H[c~(t')]'J»cs(t )H[c (t)] J ~ct'(t) t &t'.

The normal-ordered product needs to be changed accord-
ingly.

(2) For a given time-ordered product, e.g. ,

Tro(
~

T[II[c (t)] J tc~(t)H[c~(t')] J~scs(t')I
~

)o,
(A28)

only the completely contracted terms need to be evaluated.
This results from the general property of the usual Wick's
theorem that the expectation value of each incompletely
contracted term vanishes. Therefore the terms left in the

above example are

Tr( (
~
TI H[c (t)] J tc~(t)H[c~(t')]tJrscs(t')I

~
) )

and

Tr( (
~

T[c (t')H[c (t)] J ~ci (t)H

X [c~(t')]tJrs(t') ] ~
),) . (A30)

The first term represents a disconnected diagram and the
second term has the form Tr(G J G J). More cotnplicated
time-ordered products can be contracted analogously.
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