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Hierarchy of current cumulants on a Sierpinski gasket
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By solving exactly the electrical-conductivity problem for a Sierpinski gasket, we calculate the
cumulants of all powers of the currents ~i ~

', the corresponding critical exponents D(a), and scal-
ing factors 2 ~', as well as the complete spectrum of singularities. For positive, even integer
powers of a, we obtain theoretically the scaling factors and corrections to scaling, and hence con-
clude that the sequence 2 is unlikely to be obtained simply. Finally, we introduce a general-
ized "grafted" gasket, which exhibits a tunable crossover from a fractal to a classical measure.

Originally introduced as a possible model for percola-
tion systems, the Sierpinski gasket has become, because
of its conceptual and calculational simplicity yet great
richness of structural details, one of the most frequently
studied nonhomogeneous deterministic fractals. Although
some scaling properties have long been known' s (e.g. ,
conductivity, diffusion, noise, elasticity, etc.), a complete
analysis of the hierarchy of exponents and of their singu-
larity spectrum has not yet, to our knowledge, been done.

I. A FIRST STEP: THE EXACT DISTRIBUTION

In spite of the fact that the Sierpinski gasket displays a
remarkably rich distribution of currents, we found that a
simple algorithm, which we shall describe elsewhere, al-
lows us to write, by inspection, the complete set of
currents. Specifically, we consider the case of the n th
iteration of a two-dimensional Sierpinski gasket (hereafter
called n -SG), all elementary bonds of which are unit resis-
tors. Unit current is injected into one of the external nodes
and flows out of a second, the third being left open. The
distribution of currents in the bonds of the gasket is
displayed in Fig. 1 for n =9,10. With a logarithmic

current abscissa, we observe that the distribution consists
of a quasicontinuous region as well as spikes at high and
low values of the current (Fig. I).

In the most general case, let j,k, —(j+k) be the
currents flowing inward at the three external vertices of an
n-SG. We want to compute, for arbitrary exponent a, the
curn ulant

where j is the current flowing in the mth bond and the
sum runs over the whole n-SG. We define the scaling fac-
tor X(a), independent of j and k, as

X(a) = lim S„'~~ (j,k)/S„'(j, k).

Equivalently, S„'(j,k)cx:A, "(a), for any external bound-
ary condition (j,k fixed). The scaling factor k(a) is relat-
ed to the fractal scaling exponent, D(a). Since the length
L„of the n SG is L„-=2",we have S;(j,k) ~L„',where

D (a) = log [).(a) ]/log(2).

II. SYMMETRY CONDITIONS
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FIG. 1. Histogram of the currents in a 10-SG (upper curve,
O) and a 9-SG (lower, +) showing the distribution function
dN/d(lnI) vs the current amplitudes I. (N. B., the isolated
points at left and right correspond to "spikes, " separated from
the "continuous" curves, which dominate the cumulant behavior
for large negative and positive exponents, respectively. )

When a =0, the sum S„reduces to the mass (number of
bonds) of the n SG; sinc-e there are no dangling ends,
S„=3". Therefore k(0) =3, and we have D(0)
=log(3)/log(2) as the fractal dimension of the gasket.

The case a 2 measures the electrical energy dissipated
in the gasket. For fixed boundary conditions, this sum
gives the scaling of the resistance. S„(j,k) is a second-
degree homogeneous polynomial in j and k. Let us write

S„(j,k) =A„j +B„jk+C„k .

The invariance of S„under the change (j,k) (k,j)
(plane symmetry) gives A„=C„. The threefold symmetry
(j,k) (k, —(j+k) ) implies

A„j +B„jk+A„k =A„k B„jk+A„(j+k—),
yielding A„=B„,and thus,

S„(j,k) =A„(j +jk+k ).
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The most general expression of the energy dissipated
must be proportional to this last polynomial. The vector
space of second-degree homogeneous polynomials invari-
ant under the symmetries of the gasket is one dimensional.
We may now examine the relation between A„and A„
for two consecutive generations. Minimizing the dissipa-
tive energy of a n-SG with respect to the current flowing
through one of the nodes connecting two of the three con-
stitutive (n —1)-SG provides us with the recursion rela-
tion

A„-(5/»A„, , (2)

Now, going from the (n —1)th to the nth generation is
straightforward since the currents in the middle of each
side are (j—k)/3, (2j+k )/3, and (2k+ j)/3. Thus,

thus S„(j,k) (5/3)S„~ (j,k) 0.-(5/3)", k(2) 5/3, and
D(2) log(5/3)/log(2).

The fourth moment of the distribution of intensities
S„(j,k), related to the flicker noise, can be handled in a
very similar way. There is still only one polynomial satis-
fying the symmetries so that

S„(j,k) A„(j +2j k+3j k +2jk3+k4).

quence k(a) in a closed form.
Higher terms can be treated in a very similar fashion:

First, select a basis of polynomials satisfying the required
symmetries, say P; (a 1, . . . , m), then, according to the
recursion formula (3) compute the matrix M,p, such that

P,'((j—k)/3, (2j+k)/3) +P; ((2j+k)/3, (2k +j)/3)

+P;((2k+ j)/3, (k —j)/3) =M,pP$ (j,k).

The scaling factor A, (a) will then be the largest eigenval-
ue of the matrix M. Thus k(a) will be a root of an mth-
degree polynomial (the characteristic polynomial of M),
and m increases with a (i.e., a 8 still has m 2, but
a 10 or 12 has m =3, etc.). The expression for A, (a) thus
appears algebraically more and more complex with in-
creasing order. The calculation becomes more tedious but
does not present any fundamental difficulty.

This exact analytical treatment can, however, only be
carried out for positive, even integer values of a. For other
cases, we can proceed by way of the exact distribution
known from our numerical algorithm. In this way, we
derive the asymptotic form

S„(j,k) -S„—
~ ((j—k)/3, (2j+k)/3)

+S„"—
~ ((2j+k)/3, (2k+ j)/3)

+S„~((2k +j)/3, (k —j)/3),
giving

(4)

k(a) =1+4(2 '), a ~ +~. (s)

For a & 0, we find that the ratio S„'+~ (1,0)/S„'(1,0) os-
cillates quite strongly as a function of n. Thus, only more
approximate values of A, (a) can be derived. Since, howev-
er, the asymptotic value for a —~ depends only on the
weakest current spike of the distribution, we can obtain
the form

so that X(4) —", and D(4) -log( '9' )/log(2).
The results X(0) 3, A, (2) = —', , and X(4) —", have been

previously derived by other methods. Above a 4 (a an
even integer), X(a) does not keep such a simple form. The
scaling relation, simple in (2) and (4), becomes more com-
plex as corrections to scaling appear.

For a 6, the symmetry conditions select a two-
dimensional vector space of homogeneous polynomials.
We can choose, for instance, the basis

P6(j, ) -j +3j k —5j k +3jk +k

P6(jk) j k +2j k +J k

Thus,

S„(j,k) -A„P6(j,k) +B„P6(j,k)

and the recursion formula (3), valid for any value of a, al-
lows us to derive the evolution of (A„,B„) in a matrix
form:

85 240 A
24 225

This matrix has two eigenvalues, X(6) [155
+2 (2665) 1/243 and p (6) [155—2(2665) ' ]/243,
giving the dominant scaling factor and a first correction to
scaling. This last result casts serious doubts on the possi-
ble existence of a simple expression yielding the whole se-

X(a)=(1.609)3 ', a (6)

III. THE SPECTRUM OF SINGULARITIES

We can now inscribe our results in the framework of the
spectrum-of-singularities approach, recently developed by
Halsey et al. , and also illustrated experimentally, for sys-
tems with self-similarity properties which need to be de-
scribed by an infinite set of critical exponents.

The reader is referred to Ref. 4 for full details. In Hal-
sey et al. , the authors suggest the use of a normalized
probability distribution pj. as the fundamental measure of
the system, and then study the behavior of the cumulants
of various powers of this probability:

where z&
—logZ(q)/logL thus plays the role of a "frac-

tal dimension" describing the scaling of the cumulant. In
terms of rq, they then define a singularity strength
a~ dz~/dq, and the density of the singularity spectrum
f(av ) qaq —zz. zz is also related to the dimensions Dz
(initially introduced by Hentschel and Procaccia ), de-
fined by z~ (q —1)D~.

To apply their formalism to our particular problem we
use as a natural definition of the measure pj, the fraction
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FIG. 2. Spectrum, f(aq) vs aq, of the singularities of the
Sierpinski gasket distribution. The left end of the curve corre-
sponds to q + , the right one to q

—. At these points the
value of f is, respectively, the fractal dimension of the hottest,
and coldest, bonds. The apex value for q 0 gives the fractal di-
mension of the SG. [The tangency of the dashed line f(a) a,
to the spectrum for q l, and the derivative relation

q df (aq)/daq, are generic properties coming from the normali-
zation of the measure. ]

FIG. 3. The grafted nth-generation Sierpinski gasket (n
GSG) is obtained by connecting three (n —1)-GSG by means of
linear elements, like AB, of length y". (Here n 3.) The classi-
cal SG results if y 0.

of the total energy dissipated in the jth bond of the n-SG,
i.e. , p~ ij /+~i/n Thi.s definition (which differs from
other approaches to the problem ) has the merit of using a
fundamental physical quantity which also preserves nor-
malization as an essential feature of the analysis. Thus,

x(q) -pij+ gi 'q'
J , m

and, using the same analysis as for Eq. (1), we derive

rq - [q log[) (2)] —log[A, (2q)]]/log2 qD(2) —D(2q),

where aq and f(aq ) are trivially obtained from their defi-
nitions above.

Then, using the exactly calculated values of the current
distributions for all n ~ 10, we are able to obtain numeri-
cally the entire curve of f(aq) corresponding to all values
of q (Fig. 2). We note in particular that from the asymp-
totic forms (5) and (6), the limiting values a+
=logk(2)/log(2), f(a+ ) 0, a — log(15/3) /log(2),
and f(a ) =0.686 result. These correspond to the phys-
ical situation that, for a very large n-SG, we find exactly
four bonds that carry the highest current (q + ~), each
with a current of 0.5, while there is a fractal set of lowest-
current-carryin bonds (q —~) each carrying a
current 3 I"+' . In addition to the limits just stated, the
function f(aq) has the standard properties: df/daq =q,
f(a~) =a~, etc. We find indeed that the range of a and f
characterizes in very compact form the singularity proper-
ties of the current-carrying n-SG.

IV. THE "GRAI 1ED"SIERPINSKI GASKET

The grafted Sierpinski gasket (GSG) is a fractal struc-
ture which is a generalization of the ordinary SG. The n-
GSG (nth generation) is constructed out of three (n —1)-
GSG's connected by three linear elements of length y"
(Fig. 3 ) where y is a free parameter. All the symmetries
of the usual gasket are preserved. The scaling behavior of

the various moments of the distribution of currents exhib-
its some curious features. The length of a n-GSG L„ fol-
lows the recursion formula

L„=2L„~+y",
whereas the mass M„obeys

M„=3M„~+3y".

If y (2, then L„~2"and M„~3", giving the usual SG
fractal dimensionality dI =D (0) =log(3)/log(2). If
2 &y & 3, then L„~y", M„~3", and thus dr=log(3)/
log(y). And for y & 3: L„~y",M„~y", and di =1. Thus,
varying y from 2 to 3, the fractal dimensionality can be
tuned continuously from that of the SG to 1. This last di-
mension refers to that of the linear elements and there the
mass, length, resistance, noise, etc. , all scale the same way.
Thus it has only one exponent, namely, 1.

We can proceed and compute the resistance R„of an n-
GSG. An argument very similar to the one described in
Sec. II (the symmetries are identical) gives

therefore, R„~A(2)" with a scaling factor A(2)
=max( —', ,y ).

The critical index log[A(2)]/log[max(y, 2)] varies con-
tinuously from that of the SG [A(2) =X(2) for y & —', ] to
that of the one-dimensional elements for y & 2.

This feature is true for all moments. The scaling law
obeyed by S„' is always controlled by the highest of y and
X(a).

For any given x, we can construct a GSG with y =X(x).
Then the scaling factor of order a, A(a), will be
A(a) =X(a) (that of the SG) if a & x, and A(a) =k(x) =y
ifa &X.

The series of factors and thus of critical exponents is cut
at order x and remains constant thereafter. The spectrum
of singularities (described in Sec. III) of the GSG is only a
subpart of the SG spectrum. It stops for a value a =x.



35 HIERARCHY OF CURRENT CUMULANTS ON A SIERPINSKI GASKET 901

ACKNOWLEDGMENTS

It is a pleasure to acknowledge useful discussions with H. J. Herrmann, D. Stauffer, E. Guyon, and G. Toulouse, and to
thank the Ecole Normale Superieure (Paris) for computer time.

'Permanent address: Department of Physics, Pomona College,
Claremont, CA 91711.

Y. Gefen, A. Aharony, B. B. Mandelbrot, and S. Kirkpatrick,
Phys. Rev. Lett. 47, 1771 (1981).

zR. Rammal and G. Toulouse, J. Phys. (Paris) Lett. 44, L13
(1983);R. Rammal, G. Toulouse, and J. Vannimenus, J. Phys.
(Paris) 45, 389 (1984); J. P. Clerc, A. M. S. Tremblay, G. Al-
binet, and C. D. Mitescu, J. Phys. (Paris) Lett. 45, L913
(1984); D. J. Bergman and Y. Kantor, Phys. Rev. Lett. 53,
511 (1984); B. O'Shaughnessy and I. Procaccia, ibid 54, 45.5
(198S).

R. Rammal, C. Tannous, and A. M. S. Tremblay, Phys. Rev. A
31, 2662 (1985).

U. Frisch and G. Parisi, in Proceedings of the Varenna Summer

School LXXXVIII, 1983 (unpublished); R. Benzi, G. Paladin,
G. Parisi, and A. Vulpiani, J. Phys. A 17, 3521 (1984); T. C.
Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and
B. Shraiman, ibid 33,. 1141 (1986); M. H. Jensen, L. P. Ka-
danoff, A. Libchaber, I. Procaccia, and J. Stavans, Phys. Rev.
Lett. 55, 2798 (1985); J. A. Glazier, M. H. Jensen, A. Lib-
chaber, and J. Stavans, Phys. Rev. A 34, 1621 (1986).

sR. Rammal, J. Phys. (Paris) Lett. 45, L1007 (1984).
sH. G. E. Hentschel and I. Procaccia, Physica D 8, 435 (1983).
7L. de Arcangelis, S. Redner, and A. Coniglio (unpublished) in-

troduce a similar scaling approach for a hierarchical fractal.
One should beware of the fact that our definitions of aq and
f(aq) follow Ref. 4 and thus differ somewhat from similar
quantities used in this reference.


