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Transport properties of random and nonrandom substitutionally disordered alloys.
I. Exact numerical calculation of the ac conductivity
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Results of exact computer simulations for the zero-temperature ac conductivity of one-
dimensional substitutionally disordered alloys are reported. These results are obtained by (i) solving
for the eigenvalues and eigenvectors of a Hamiltonian associated with a specific configuration of
500 atoms on a linear chain, (ii) evaluating the ac conductivity of this configuration by using the
Kubo-Greenwood formula, and (iii) averaging the resulting conductivities over 20 to 50 different
configurations (the number of configurations depends on the type of disorder). In all cases conver-
gence (i.e., a stable result) was obtained and confirmed by another independent approach (the recur-
sive method). For not too weak disorder (defined precisely in the text), these results exhibit a great
deal of fine structure that includes high peaks and gaps where the conductivity vanishes. These
features are reminiscent of, and are correlated with, the similar kind of behavior of the densities of
states of one-dimensional substitutionally disordered alloys. Thus we find that the fine structure in

the ac-conductivity spectra of one-dimensional systems provides a rigorous testing ground for judg-
ing the validity of analytic theories for calculating the transport properties of substitutionally disor-
dered systems.

I. INTRODUCTION

The transport properties of substitutionally disordered
alloys are of great technological and theoretical interest,
and a great deal of effort has been expended in their
study. Most of this effort consists of attempts to general-
ize well-founded theories for the study of single-particle
Green functions of disordered systems to the study of
two-particle propagators. This is the first of two papers
along this line, concerned specifically with the zero-
temperature ac conductivity of substitutionally disordered
alloys. The purpose of these investigations is to present
exact computer simulations as well as a coherent method
for calculating the transport properties away from the
mobility edge of substitutionally disordered systems, the
ac conductivity in particular. ' This method is general
enough to be applicable to materials describable by Ham-
iltonians of various kinds including tight-binding (TB) or
muffin-tin (MT) potentials, and is characterized by well-
defined, controlled levels of approximation. The method
is based on the single-site coherent-potential approxima-
tion ' (CPA) and some of its generalizations, in par-
ticular the embedded-cluster method, ' which have
proved very successful in calculating single-particle prop-
erties such as the density of states (DOS) of elementary
excitations in substitutionally disordered systems. It is
our purpose to bring the calculation of the two-particle
properties (transport properties) of such systems on a par
with corresponding calculations of the single-particle
properties.

Analytic methods for the approximate evaluation of the
single-particle Green function associated with substitu-
tionally disordered systems have been developed in conju-
gation which the existence of a large number of experi-

mental results and computer simulations. Comparison of
the results of experiments with those of theory serve as a
guide in sorting out such theories on the basis of accuracy
and physical content. When coupled with the require-
rnents of analyticity and computational feasibility such
comparisons become a powerful tool in testing and direct-
ing the development of alloy theory. As a result, there
has evolved a selected number of approximate methods
that have withstood these tests, and so allow the rather ac-
curate determination of the DOS's of substitutionally
disordered alloys. It is particularly the comparisons of
theoretical results with those of exact computer simula-
tions for disordered one-dimensional materials that have
provided the most severe tests and have caused the demise
of several, originally promising, approximations.

In contrast, although there exists' a wealth of experi-
mental information on the ac conductivity of disordered
alloys that spans the entire concentration range for many
systems, we have been unable to find comparable first-
principles calculations of the ac conductivity. Similarly,
only scanty information is available on the ac conductivi-
ty of model disordered systems through computer simula-
tions. This has prohibited direct and meaningful tests of
analytic, approximate theories. It is the purpose of this
first paper to provide, as comprehensively as possible, a
set of simulation results for the ac conductivity of one-
dimensional-model disordered systems that are character-
ized by various types of disorder and probability distribu-
tions. These results will then be used in the following pa-
per' as a standard by which to judge the validity and ac-
curacy of various analytic approximations for calculating
the transport properties of disordered materials. We also
hope that they can be used in a similar manner by other
investigators.
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The ac conductivity was chosen as the prototype of
transport quantities, as well as being computationally reli-
able in calculations for model disordered systems. Reli-
able computer simulations of the dc conductivity for a
linear chain, on the other hand, require a large sample
size" (10 sites) and thus far have made useful computa-
tions extremely difficult. (This difficulty is associated
with the localization property of electronic states in disor-
dered systems. ) The calculation of the ac conductivity,
however, bypasses the localization problem via the assis-
tance of photon-stimulated conduction.

The zero-temperature ac conductivity of one-
dimensional disordered systems was studied in three pre-
vious computer simulations. ' ' In the first simula-
tion, ' a single array of randomly positioned 6-function
potentials was considered in an attempt to study the trans-
port properties of structurally disordered systems. This
work focused on the low-frequency conductivity and aver-
aged the ac conductivity over ten configurations. The au-
thors concluded that the conductivity spectrum was not
well defined because their results varied drastically from
configuration to configuration.

There may have been two reasons for this instability:
first, the special choice of the Fermi level as the lowest
eigenvalue of the spectrum, i.e., the consideration of a
strictly one-electron system; second, the small size of the
sample used whereas —as demonstrated —a large sample
size is required for investigating the low-frequency con-
ductivity. "' However, as the second simulation' has
shown, if one is interested in the high-frequency regime
and does not restrict the Fermi energy to the lowest level,
stable results for the ac conductivity can be obtained for a
disordered linear chain with about 400, or more, atoms.
The averaged ac conductivity converges to well-defined
values as the number of configurations increases.

The computer simulations just mentioned do not pro-
vide a sufficiently wide basis for the calibration of analyt-
ic, approximate theories. We modified and applied the al-
gorithm used in the second computer experiment' to
various one-dimensional TB substitutionally disordered
systems with various types of disorder and degrees of
short-range order. Using the formalism of linear-response
theory, we calculated the ac conductivity on the basis of
the Kubo-Greenwood formula. For not too weak disor-
der, the results exhibit a great deal of fine structure that
includes high peaks and gaps where the conductivity van-
ishes. These features are reminiscent of the comparable
structure of the DOS spectra of one-dimensional substitu-
tionally disordered alloys. Such numerical calculations
provide a testing ground for analytic theories, and allow
the selection of those approximate methods which can ac-
count for the effects of local environment fluctuations and
the so-called vertex corrections in the calculation of the
transport properties of disordered systems. The vertex
corrections can be shown to vanish in the single-site
coherent-potential approximation' (CPA) for single-band
TB systems, but are nonzero in multisite calculations, ' or
for multiband materials. ' Any satisfactory analytic
theory must provide a precise prescription for the calcula-
tion of these vertex corrections. In the following paper, '

the results obtained on the basis of such theories will be

presented and analyzed in comparison with the exact re-
sults presented in this paper.

Away from the low-frequency regime we expect that
finite-size effects in our simulations are negligible. How-
ever, for comparative reasons, we also applied the recur-
sive algorithm used by the third computer experiment, '

in which these effects are minimized, to calculate the ac
conductivity of the same model disordered systems. The
results can agree quite well qualitatively and quantitative-
ly with those mentioned above, but the rather strong
dependence' of the results on the choice of the small
imaginary energy part used in this approach may lead to
the failure of the fundamental sum rules of the conduc-
tivity function. This suggests that the algorithm used by
the second computer experiment' is more suitable for the
comparative calculations with which we are concerned.

The outline of this paper is as follows. In Sec. II vari-
ous models concerning one-dimensional substitutionally
disordered alloys are defined. A discussion of the role of
computer simulations for the ac conductivity and the
methodology used in obtaining the results reported in this
paper are presented in Sec. III. In Sec. IV we will exhibit
these results and discuss various constraints imposed on
the simulations. Finally, the results obtained by the recur-
sive method, and the applicability and generalization of
our methods are discussed in the last section.

II. MODELS OF SUBSTITUTIONAL DISORDER

Within a single-band TB formalism, the Hamiltonian
of a substitutionally disordered alloy can be written in the
form

0=ye li& &i I+ y ~, Ii) &i
I

. (2.1)
I /, J

Ii&j )

Here,
~

i ) denotes an eigenstate associated with the site
i and c; is a site-diagonal energy which can vary random-
ly from site to site. The variation of c; is referred to as
diagonal disorder. The transfer integrals WJ represent
the hopping strength of an electron from site i to site j
and in general depend on the chemical occupations of site
i and j, as well as on their local environment. The depen-
dence of 8';~ on the configuration of an alloy is referred
to as off-diagonal disorder (ODD) and reflects the fact
that the alloy components are characterized by different
bandwidths in their pure states. In random alloys, the
species of atoms occupying the sites of a lattice are statist-
ically independent. If the chemical species occupying lat-
tice sites are correlated, the system is said to exhibit
short-range order (SRO). In more complicated systems,
such as compositionally modulated alloys (CMA's), the
concentration of a species varies periodically along a par-
ticular direction with a wavelength that is commensurate
with the lattice. We consider explicitly several classes of
substitutional alloys.

A. Class I: Random disorder

1. Binary alloys

(a) Diagonal disorder Let A and B rep.resent the alloy
components of a binary alloy 2, B, , where czcA cB
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lE~ —&s
I (2.2)

(c~ ——1 —c~) is the concentration of species A (8). The
site energy e; in Eq. (2.1) can assume the values E„or
Ez, i.e., the site energies characterizing the chemical
species A or B. The hopping integrals 8,z depend solely
on the distance between sites i and j and are independent
of the chemical occupation of these sites. The relative
magnitude of the difference in site energies and the hop-
ping integral signifies the scattering strength,

where a is an order parameter with the values a ~ 0
(a &0) signifying clustering (ordering), and a=0 denoting
a random alloy. Thus clustering (a & 0) refers to the ten-
dency of atoms of a given kind in the alloy to surround
themselves by like atoms, whereas ordering (a &0) signi-
fies the opposite effect. Thus for a=1 the alloy separates
into pure- A and pure-B phases. For u = —1 and cA

——0.5
perfect long-range order occurs where atom A has only B
atoms as nearest neighbors and atom B has only A atoms
as nearest neighbors.

where to is equal to one-half of the bandwidth of either
constituent in a pure system.

(b) Off-diagonal disorder In a.ddition to the random
parameters we specified in the case of diagonal disorder,
the hopping integral 8'~ is now also a random variable.
In general, the hopping integral depends on the local envi-
ronment of sites i and j in a very complicated way. We
limit ourselves to the case in which 8;~ depends only on
the chemical occupancies of and the distance between sites
i and j. If a system possesses only nearest-neighbor in-
teractions, three additional parameters are needed to
specify this kind of disorder: the hopping integrals O'AA,

8'A~, and 8'zz, between two atoms of type A, one A and
one B, and two atoms of type B, respectively.

2. Ternary alloys

When the number of alloy components increases, the
total number of parameters needed to describe the alloy
increases correspondingly. In a ternary (three-component)
alloy, the site energy c; can be EA, Ez, or Ec with proba-
bilities cA, cg, or cc, respectively, with cA+cg+cg ——1.
Diagonally and off-diagonally disordered systems can be
defined in the manner indicated in the preceding para-
graphs.

B. Class II: Short-range order

P~~ =c~+« I —c~ »
PAB = 1 PAA

Pgg ——cg +a( 1 —cg ),
PBA 1 —PBB

(2.3)

Perfect substitutional disorder is seldom achieved:
Correlations between atoms on neighboring lattice sites
cannot usually be ignored. In a binary alloy, for example,
it may be energetically favorable to surround an 2 atom
by B atoms, rather than by atoms of the same type. The
resulting system then exhibits what is known as short-
range order (SRO) effects. In our calculations, we chose a
commonly used description of the degree of SRO in terms
of the pair distribution probabilities P &, a, f3=A, B, of
the occupation of near-neighboring sites. If a site is occu-
pied by an atom of type A, a neighboring site will be oc-
cupied by an A atom with a probability PA A and occupied
by a B atom with probability PA&. The pair distribution
functions of neighboring sites can be defined by the equa-
tions

C. Class III: Compositionally modulated alloys

Compositionally modulated alloys (CMA's) have a
composition profile which varies periodically in a given
direction with a wavelength that is commensurate with
the lattice. The physical properties of CMA's have been
found' to deviate substantially from those of homogene-
ous alloys of similar average composition. Within a TB
description, the Hamiltonian of compositionally modulat-
ed alloys can be written in the form of Eq. (2.1). A CMA
can be characterized by the concentration of each species
within a period of the modulation. For example, if the
length of a period is three lattice spacings, we can use cA,

1

cA, and cA to parametrize the modulation, where the2' 3

subscripts 1, 2, and 3 refer to consecutive planes within
one period. The specific parameters we used in the vari-
ous simulations of the ac conductivity of CMA's will be
given explicitly in Sec. IV.

III. METHODOLOGY

(i ~H
~
j)=e;5;,=Wi(5;J+)+6;+) J) . (3.1)

The Hamiltonian matrix can be directly diagonalized by

In the numerical simulation of the DOS, we followed
the common procedure of setting up a linear chain with
the specified disorder characterized by specific values of
the concentrations and the SRO parameters. The DOS
was then calculated using the negative eigenvalue
theorem' for the infinite chain. This method is very effi-
cient even for a linear chain with a large number ( —10 )

of atoms. In contrast, the frequency-dependent conduc-
tivity involves a dynamical process that requires the
knowledge of both eigenvalues and eigenfunctions. The
exact computation (without introducing a small imaginary
number in the energy) of the ac conductivity by treating
directly a linear chain with even a moderate number of
atoms ( —10 ) is not feasible with today's computers. Ap-
proximations are needed to carry out the calculation.

In our simulations of the ac conductivity, we consider a
linear chain as a collection of M segments of X atoms
each, with M between 20 and 50, and N between 400 and
800. Each segment is taken to represent approximately a
single configuration of the alloy. The number of configu-
rations we used in our simulations depends on the size of
a chosen frequency interval and the type of disorder con-
sidered.

The matrix elements of the Hamiltonian, Eq. (2.1), of a
given configuration (with only nearest-neighbor interac-
tions) are described by the relation
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calculating the eigenvalues and eigenfunctions in the site
representation. In this representation the eigenstate

l p)
can be expressed as a linear combination of the basis set of
[ l

i ) ), where i refers to site i, namely

lp&=2&i lp& li& (3.2)

and (i
l p ) is the ith component of the eigenvector

l p)
in the site representation.

We applied, with appropriate modifications, the algo-
rithm described in Ref. 13 to calculate the ac conductivity
of a given configuration. Assuming the validity of
linear-response theory, we evaluated the Kubo-Greenwood
formula,

Reo(co)=(2me a/L)cog(f fp) l (a—
l
x

l P) l

~

a, P

x '6(fico+ E Ep )—, (3.3)

x=a i i i (3.4)

where a is the lattice spacing. The real part of the zero-
temperature ac conductivity, Eq. (3.3), can then be re-
duced to the form

where x is the position operator for an electron in a chain
of length L. E and

l
a) are eigenvalues and eigenstates

of H, i.e., H
l
a) =E

l
a), and f is the Fermi distribu-

tion function. The principal numerical task is the evalua-
tion of the eigenvalues and eigenfunctions of the system
under study. The dynamics is determined by the dipole
transitions between two eigenstates associated with dif-
ferent energies.

In the tight-binding model we define the position opera-
tor x as

2

Reo(co) = g[B(p E)—B—(p, Ep)]5(fuu—+E E&) g—(i
l
a)i (P

l

i )
2&e Q %co

N —1
(3.5)

co+ Eco
Reo(cu) = Reo(co')de' . (3.6)

This expression shows that the number of configurations
needed to obtain a well-defined ac conductivity value de-
pends on the size of Ace. Choosing a very small frequency
interval either requires an impractically large number of
configurations, or might cause the process to not converge
to the right value. For each comparison we fixed the size
of the frequency interval, choosing the intervals so that
each contained at least four eigenvalues on the average.
The number of configurations we used also varied with
the type of disorder. We used 20 configurations for the

where p is Fermi energy and the Fermi distribution func-
tions, at zero temperature, are replaced by the unit step
function [B(x)=1 for x ~0 and B=O otherwise]. The ac
conductivity can be computed directly from a knowledge
of the eigenvalues and eigenvectors of a given segment.

For the case of short-range interactions, the Hamiltoni-
ans corresponding to segments larger than some minimum
length should provide an adequate representation of a
configuration of the entire chain. Finite-site effects also
become negligible as the disorder increases and the eigen-
states become more localized. We tested these conjectures
by carrying out calculations for different combinations of
M and N and judging against the rate of convergence of
the averaged ac conductivity. The results were found to
be stable for values of M and N of around 20 and 500,
respectively. Thus the averaged conductivity converged to
the ac conductivity of the original linear chain. A
smoothing operation was finally performed because of the
discreteness of the eigenvalues. The value of Reo.(co) can
only be defined at regularly spaced intervals of width Ac@.

The conductivity of a given interval was calculated as the
integral

random case but 50 for the other cases. The final com-
puter output is the average of the results over all configu-
rations.

In summary, our simulation procedure is as follows.
(1) Set up a linear chain with 20X 500 (up to 50&&500)

atoms with the given parameters for the model Hamil-
tonian, Eq. (2.1).

(2) Segment the chain into small configurations, each
with 500 atoms.

(3) Diagonalize the Hamiltonian matrix of each config-
uration by calculating the corresponding eigenvalues and
eigenvectors.

(4) Calculate the ac conductivity by using Eq. (3.5) with
the smoothing procedure, Eq. (3.6).

(5) Finally, average the ac conductivity over all configu-
rations (segments).

IV. NUMERICAL RESULTS

Real materials are usually characterized by more than
one of the various features of substitutional disorder de-
fined in Sec. II. A satisfactory analytic theory should be
general enough to calculate the transport quantities of all
such materials. In this section we present and discuss the
general features of our computer simulations for the ac
conductivity of one-dimensional-model systems. Compar-
isons between analytic theories and the simulation results
will be made in paper II.'

The ac conductivity of linear chains with several types
of disorder were calculated by using the procedure
described in the preceding section. It was found that the
number of configurations needed to obtain stable results
depends on the type of disorder. For random, diagonally
disordered systems we performed the average over 20 con-
figurations, each configuration consisting of 500 atoms.
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For other cases, in which the convergence was slower, 50
configurations were used. For each configuration the nu-
merical work is straightforward involving the computa-
tion of eigenvalues and eigenvectors and the dipole transi-
tion matrix elements for different possible transitions.

All our simulations used two different scattering
strengths for each type of disorder. For a binary alloy
Ao 58O 5 with nearest-neighbor hopping, W= 1, we con-
sidered two cases: In case I, weak scattering, we set
Ez ———Ez ——1.0, i.e., 6=1; and in case II, strong scatter-
ing, we set E& ———Ez ——2.0, i.e., 6=2. As we will see, lo-
calization effects are more prominent in case II, in which
the simulation results show more spiky structure.

There are two main factors in the linear-response re-
gime which dominate the contributions to the zero-
temperature ac conductivity. One is the number of al-
lowed dipole transitions among different levels, which is
closely related to the joint DOS, and the other is the
strength of the dipole transition matrix element

~

(a
~

x
~
P)

~

. The first contribution can be described by
the available joint DOS

and strong scattering cases defined above; for the case of
strong scattering, this is shown in Fig. 1(a). This symme-
try is reflected in the ac conductivity spectra as functions
of the Fermi energy, p, which are symmetric about
p=0. 5. For example, the spectrum for the case p=0. 2 is
identical to the spectrum for the case p =0.8 and provides
a direct check on the reliability of the smoothing opera-
tion used in the numerical calculations. The top row of
Fig. 2 depicts the spectra of the weak scattering case for
p =0.2, 0.4, and 0.5. The bottom row of Fig. 2 shows the
analogous results for case II (strong scattering). Two im-
portant features appear in these figures: The spectra for

0.60
((I)

O. 40—

D(ro) = J dE +5(E E)6(E—+Pm Ep) . —
p ~ ~2 a, P

(4.1)

Notice that our definition of the available joint DOS is
the contribution arising from the integration over the al-
lowed range for photon-assisted transitions. Comparing
Eq. (4.1) with Eq. (3.5), we conclude that the joint DOS
does not describe completely the ac conductivity of alloys.
The dipole transition matrix elements

~
(a x

~
P)

~

will
have dominant contributions to the ac conductivity when
the energy difference

~

E Ep
~

is lar—ge. In Fig. 1 we
show the DOS spectrum, the joint DOS, and the ac con-
ductivity spectrum for a strong scattering case. The
structure of the joint DOS, Fig. 1(b), and the ac conduc-
tivity spectrum (the real part) can be understood in broad
terms by the spectrum of the DOS, Fig. 1(a). The main
structure of the ac conductivity spectrum consists of two
main peaks separated by a dip at co=0.5. The dip is due
to the gaps in the DOS, n(E), at E=+2.0, while the
peaks in cr(co) correspond to the structure in n (E) above
and below those gaps. The ac conductivity, Fig. 1(c), de-
creases much faster than the available joint DOS at higher
frequencies which reflects the effects of the dipole transi-
tion matrix elements.

In all our conductivity spectra, the average conductivi-
ties are given in units of 2~e a/A, and the frequency is
given in units of the whole bandwidth. The frequency in-
terval Ace used in the smoothing procedure is equal to»,
of the corresponding bandwidth. Each interval range con-
tains four eigenvalues on the average for a configuration
of 500 atoms. We now discuss the qualitative features of
our simulation results according to the order in which the
models were defined in Sec. II.
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A. Class I: Random disorder

1. Binary a110ys

(a) Diagonal disorder The DOS spe. ctra are symmetric
with respect to the middle of the band for both the weak

FIG. 1. Exact computer-simulation results for the case of a
strong scattering binary alloy A05Bo 5 with E~ = —E& ——2.0,
W= 1.0: (a) density of states, (b) joint density of states per num-
ber of atoms squared, and (c) average ac conductivity. The Fer-
mi energy is at the middle of the band, i.e., p=0. 5, and the fre-
quency is in units of bandwidth.
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0.20—

!Lt. = 0.2 p, = 0.4 = 0.5

I(
O. IO -. -

b

l

0
0.20

O. I 0—
b

0 0.5 0.5 0.5

FIG. 2. Average ac conductivity of random binary alloys, A05B0 5 for three values of the Fermi energy p labeling the columns
from left to right. Top row, weak scattering alloys, 5=1.0 (case I): bottom row, strong scattering alloys, 6=2.0 (case II). The
scattering strength 5 is defined in Eq. (2.2), and cases I and II are defined in Sec. IV.

the weak scattering cases resemble the spectrum of a pure
system, i.e., peak centered at zero frequency. When the
disordered increases, the peak at the origin shifts to higher
frequency and the magnitude of the ac conductivity de-
creases. As is well known, even the slightest amount of
disorder suffices to localize completely the states in a
one-dimensional system. It follows that the dc conduc-
tivity should vanish for one-dimensional substitutionally
disordered alloys. As already mentioned, it requires a
large sample size" to obtain reliable results for the dc
conductivity of disordered systems. Therefore, we did not
attempt to calculate the ac conductivity near co=0. The
smallest frequency co we used is —,', of the whole band-
width.

(b) Off diagona! disor-der In order to . see both the ef-
fects of pure off-diagonal disorder, and the effects of mix-
ing diagonal and off-diagonal disorder, we carried out two
different computer simulations for off-diagonally disor-
dered alloys. Here, the fluctuations in the hopping pro-

cess cause slower convergence than in the purely diagonal
disorder case. The results of Fig. 3 were obtained by
averaging the ac conductivity over 50 configurations. The
off-diagonal effects also make the DOS spectra, and in
turn the conductivity spectra, asymmetric. Thus the re-
sults are presented over a broader frequency range for the
Fermi energy than for diagonally disordered systems, i.e.,
p=0.2, 0.4, 0.5, 0.6. The results in the top row of Fig. 3
correspond to systems with both diagonal and off-
diagonal disorder, whereas those in the bottom row corre-
spond to systems with only ODD. Comparison of the two
rows shows clearly that strong diagonal disorder increases
dramatically the structure in the ac conductivity curves,
as it is known to do in the DOS curves.

2. Ternary alloys

It is interesting to observe the effects in the conductivi-
ty spectrum when the number of alloy components is in-

0.20

p, = 0.2 p, = 0.4 p. = 0.5 ~ = 06 (x2)

0
0.20

—O.IO—3
b

0.5 0.5 0.5 0.5

FIG. 3. Average ac conductivity of binary Ao 5BO & alloys with ODD. Top row, alloys with both diagonal and off-diagonal disor-
der, E& = —E~ ——2.0, 8'~& ——0.5, 8'&~ ——1.0, and 8'~~ ——2.5. Bottom row, alloys with only off-diagonal disorder E~ ——E& ——0.0,
8'gg ——0.5, Wgg ——1.0, and 8'gg ——2.5.
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04
l

g =0.2
l

p= 0.4 g = 05
I

g =06

3 t02—
b

0
020

0.10-3
b

00 05 0.5 0.5 0.5

FIG. 4. Average ac conductivity of ternary alloys, Ao ~BO 3CO6 with only diagonal disorder. Top row, weak-scattering alloys,
E& ———E~ ——1.0, E, =0.0, and 8 = 1.0. Bottom row, strong scattering alloys, E& ———E& ——2.0, E~ ——0.0, and 8'=1.0.
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FIG. 5. Average ac conductivity of alloys with only diagonal disorder and nonvanishing short-range order. The rows in the figure
are labeled by the parameter a defined in Sec. II; the alloy parameters are those of case I (weak scattering) described in Sec. IV.
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FIG. 6. Results analogous to those shown in Fig. 5 but for case II (strong scattering).

creased from two to three. The figures in the top row of
Fig. 4 are the results obtained for the weak scattering case
of a ternary alloy. Here, we set Ez ———Ez ——1.0,
E&——0.0, 8'=1.0, and cz ——0. 1, c~ ——0.3, cc——0.6. For
the figures in the bottom row of Fig. 4 the values of E&
and —E& were changed to 2.0 while other parameters
were kept the same.

Once again, increased disorder results in increased
structure in the ac conductivity spectra for ternary alloys
as it does in the case of binary alloys. However, there
seems to be comparatively less structure in the ac conduc-
tivity associated with ternary than binary systems. This is
not a general result. It is simply due to the fact that for
the parameters chosen in the former case the alloy DOS is
somewhat smoother than for the two-component alloys,
resulting in an increased number of allowed dipole transi-
tions. Clearly, an increase in scattering strength would
lead to increased structure in the ac conductivity spectra.
Finally, also in this case the dc conductivity cr(0) appears
to vanish within the accuracy of the calculations.

B. Class II: Short-range order

In order to check the validity of the extension of analyt-
ic theories to alloys with short-range order, we carried out
ac conductivity simulations for different degrees of non-
randomness. The ordering parameter a used is defined in
Sec. II. We considered the effect due to SRO, from the
almost complete clustering case (a=0.9) to the almost
complete ordering case (a= —0.9) in four steps: a=0.9,
0.5, —0.5, —0.9. At each step, calculations for three dif-
ferent values of the Fermi energy, @=0.2, 0.4, 0.5, were
carried out. Figure 5 shows the results for the weak
scattering case, and Fig. 6 for the strong scattering case.
The parameters used in these calculations are given in the
figure captions.

We note that stronger scattering alloys, Fig. 6, produce
more structured ac conductivity spectra than weak-
scattering systems, Fig. 5, for almost all degrees of SRO,
i.e., values of the parameter u. An important exception to
this observation is afforded by the case of strongly order-
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FIG. 7. Densities of states for case II (strong scattering) and
strong ordering alloy, a= —0.9.

C. Class III: Compositionally modulated alloys

The results for the ac conductivity of compositionally
modulated alloys are presented in Figs. 8 and 9. The
CMS's considered were characterized by a modulation

ing alloys, a= —0.9, shown in the top rows of Figs. 5 and
6. The two sets of figures appear to be correspondingly
identical. This effect can be understood qualitatively in
terms of the joint DOS for strongly ordered alloys, an ex-
ample of which is shown in Fig. 7. For a value of p =0.5,
the joint DOS consists of practically a single peak result-
ing from the narrow structures in the DOS centered at
E=+2.0.

This is indeed the result reflected in the upper right-
hand panels of Figs. 5 and 6. The remaining features of
the various curves in these figures can be understood
along similar lines.

wavelength of three lattice spacings with corresponding
concentrations cA cA cA, and eB 1 A or

1 2' 3' l l

i =1,2, 3. for weakly modulated alloys, Fig. 8, the values
cA ——0.3, cA ——0.5, and cA ——0.7 were chosen, while forI 2 3

strongly modulated alloys, Fig. 9, we set cA ——0. 1,
cA ——0.5, and cA ——0.9. For each modulated strength, we

considered alloys characterized by weak scattering, 5= 1,
as we11 as by strong scattering, 5=2. The results for the
weak-scattering alloys are shown in the top rows of Figs.
8 and 9, while those for strongly scattering alloys are de-
picted on the bottom rows.

Several of the features exhibited by the curves in these
figures are quite similar and analogous to those associated
with the random alloys of comparable strength, Fig. 2.
On the other hand, increased modulation strength appears
to increase the structure in the ac conductivity curves, as
is seen immediately by comparing Figs. 8 and 9 with Fig.
2. For example, note the prominent peak at co =0.5 in the
lower right-hand panel of Fig. 9, and compare this with
the relatively weak structure in the corresponding panel of
Fig. 2. These features can be understood simply in terms
of the DOS's of CMA's (Ref. 8) in complete analogy with
the case of random alloys.

Recently, Saso et al. ' applied the recursive method to
investigate the low-frequency behavior of the dynamical
conductivity, o(co), for electrons on very long (10 sites)
disordered chains. They established that at low frequency
the analytic results originally established by Berezinskii '

are asymptotically exact in the limit of weak disorder.
Their results naturally explain the failure of the first com-
puter experiment' mentioned in the Introduction. We
also applied the recursive algorithm to calculate the ac
conductivity of model systems and obtained reasonable
agreement with the results obtained by the method of Ref.
17. One typical result is given in Fig. 10 for a strong
scattering alloy (5=2.0, case II) and @=0.5. It is easily

0.20

p, = 0.2 p. = 0.5

3 OIO
b

0
0.20

O. IO--
b

'o 0.5 0.5

FIG. 8. Average ac conductivity of weakly modulated alloys, C& ——0.3, C~ ——0.5, and Cz ——0.7, for case I (top row) and case II
1 2 3

(bottom row).
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FIG. 9. Results of the type depicted in Fig. 8 but for strongly modulated alloys, C& ——0. 1, C& ——0.5 and C& ——0.9.
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FIG. 10. Comparison of typical o.(co) spectra obtained with
the recursive method (histogram) and by the method of Ref. 13.
The parameters used are 6=2.0 (case II), p=0. 5, and y =0.001
in the recursive algorithm. The sample size is 10000 sites.

seen that in this case the agreement between the results
obtained by the two methods is excellent. However, the
peaks in Fig. 10 obtained by the recursive technique (his-
togram) are very pronounced and their widths depend
rather strongly on the small imaginary number y used in
the energy, i.e., E~E+i y, which in general makes quan-
titative comparison somewhat difficult.

V. DISCUSSION AND CONCLUSIONS

We have presented exact computer-simulation results
for the ac conductivity of one-dimensional substitutional-
ly disordered alloys characterized by various types of dis-
order. Our aim is to provide a comparative basis on
which one can test the validity of analytic but approxi-
mate methods for calculating the transport properties in
disordered materials. Some of the comparisons will be re-
ported in II.

Our results are rigorously valid at zero temperature.
The simulation of the ac conductivity for a system at fi-
nite temperature can be easily obtained by extending the
formalism of this paper. In that case, however, the effect
of electron-phonon scattering must be included in the
Kubo-Greenwood formula. It will be interesting to ob-
serve the competing effect between the electronic and vi-
brational structure through computer simulations. Simu-
lations for multiband or higher-dimensional-model sys-
tems are also feasible, which would yield results that can
be used to probe the transport properties of these systems.

In the past, results of computer simulations for the
DOS's have been helpful in assessing the weaknesses and
strengths of approximate theories like the CPA (Refs. 2
and 3) and its generalizations (Refs. 4—8). We expect that
the ac conductivity simulation results will play a similar
role in calibrating the application of the CPA and its ex-
tensions to the calculation of the ac conductivity. Our an-
alytic calculations for the ac conductivity of model sys-
tems show that the single-site CPA theory gives average
results but cannot reproduce the fine structure which ap-
pears in many ac conductivity spectra. Such structure is
caused primarily by correlation effects which cannot be
taken into account within the single-site CPA theory. In
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order to take correlation effects into account a multisite
or cluster extension of the CPA is needed. Such cluster
extensions would allow the calculation of the vertex
corrections which are often quite important and should be
included properly. The simulation results presented here
have been useful for understanding the structure of vertex
corrections and directing our analytic cluster calculations
which are reported in II.
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