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The electronic energy spectrum of a one-dimensional chain with periodic and disordered poten-
tials in the presence of a constant electric field F is studied. Under certain conditions the spectrum
shows the resonant states predicted by Wannier. These Stark-ladder resonances (SLR) are studied in

detail for different potentials, amount of disorder, 8; and length of the chains, L. Thermal popula-
tion effects on the resonances are also considered. The different potentials correspond to rectangles
with random widths and different heights, that include the extreme 5-function limit. The Poincare-
map method is used to calculate the reflectivity and transmittivity of the chains. Use is made of dif-
ferent scattering theory criteria to characterize the resonances. For electrons incident on the chain
with energies, E (FL, the electrostatic potential energy produced by the field, Levinson's theorem is
used to calculate the density of states from the derivatives of the phase shifts with respect to E. For
energies E )FL, the transmission coefficient T is calculated as a function of E, and the SLR appear
as equally spaced maxima of T as E is varied. From resonance and ensemble averages the following
results are presented: (i) When L is fixed, there is a minimum value of F above which the reso-
nances are clearly present. (ii) The effect of disorder is to perturb the mean properties of the reso-
nances. The mean separation distance between resonances is affected by disorder, and it grows
linearly with 8; and the variance grows as well. The half width at half maximum (HWHM) of the
resonances grows as 8". (iii) In the periodic as in the disordered cases, the HWHM goes to zero as

—8(H, V ) /F—e . (iv) As the temperature ~ is varied, the height of the resonances decreases as ~ '. As
a function of the height of the potential barriers, Vo, it is found that the results qualitatively remain
the same. However, quantitatively the results change, for instance, for fixed E, the HWHM in-

creases as Vo decreases. Finally, a critical discussion of the results is given to assess the possible ex-
perimental observation of these resonances in disordered quasi-one-dimensional devices.

I. INTRODUCTION

The possibility of studying experimentally the transport
properties of very small structures that behave like quasi-
one-dimensional systems has led to a fruitful cross fertili-
zation between theory and experiment. One of the very
interesting possibilities offered by these samples is that of
seeing resonant tunneling (RT) in disordered systems.
This idea, originally considered by Lifshitz and Kirpi-
chenkov, ' has been extensively developed by Azbel and
collaborators. Several experiments have intended to
detect RT in ultrasmall silicon structures. In a recent ex-
periment by Fowler et al. , some evidence is given for the
appearance of RT in these systems. However, there are a
number of questions that remain to be answered with re-
gard to the theoretical explanation of their results. One of
the possible difficulties in observing RT is that in one-
dimensional disordered systems these resonances have a
width that is expected to decrease exponentially with the
size of the sample. This comes from the fact that in the
infinite size limit the resonances should become bound
states and therefore their widths should be zero.

In this paper we study another type of resonances, pro-
duced by a constant electric field, that have some advan-
tages over the ones studied by Azbel and collaborators.
They have also some experimental disadvantages that we
will discuss at the end of the paper. These resonances
were first proposed by Wannier in periodic systems, and
are known as Stark-ladder resonances (SLR's). The
SLR's are the analog of the Landau levels which appear in
a system of electrons subjected to an externally applied
magnetic field. The SLR's are equally spaced poles of the
Green function associated to the Schrodinger operator in
the presence of a constant electric field. The separation
distance between SLR's is directly proportional to the
field strength F. The existence of the SLR's have been
controversial for some time, but by now some of their
properties in periodic systems at zero temperature seem to
be theoretically on firm ground. The experimental condi-
tions to see SLR's are very stringent and, although several
experiments have claimed to see the SLR's, there is no
convincing evidence supporting these claims.

Recently, there have been a number of papers dealing
with the properties of electrons in disordered potentials
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subjected to a constant electric field. ' The model con-
sidered in these papers is defined by the Schrodinger equa-
tion,

d2
+ V(x) Fx —4(x) =EN(x),

dx

where + is the wave function, E is the electronic energy,
F =e8' with e the electronic charge and 8' the electric
field strength. We have taken atomic units with
fi /2m = l. In the F =0 case with random V(x), it has
been rigorously established that in this model all the elec-
tronic states are localized with wave functions with an en-

velope that decays exponentially with distance. The spec-
trurn of the infinite system is pure point, i.e., discrete, and
the resistance increases exponentially with the length of
the sample. ' For F&0, it has been found that the elec-
tric field has a qualitatively dramatic effect in the elec-
tronic properties of the model. These changes are strong-
ly dependent on the type of potential V, and a ratio be-
tween the electrostatic energy gained by an electron
traversing the sample of length L and its incoming ener-

gy, i.e., X=FL/E, ' the energy being measured from the
top of the ramp potential produced by the electric field.

When V(x) is a set of 6 functions located in a periodic
lattice, with random strengths and X & 1, the states are lo-
calized and the transmission coefficient T, as a function
of the length of the sample L, has essentially an exponen-
tial decay. When X& 1, T has a power-law decay as a
function of L, with an exponent that depends on 1/F.
There is a critical field F, above which the states are ex-
tended, however. ' ' For random potentials of finite
height, it was found that the X «1 regime is qualitative-
ly similar to that of the 5-function case. Quantitatively,
however, the results are different, and depend explicitly
on the analytic properties of the potentials. When X & 1,
the transmission coefficient tends to a constant as L tends
to infinity. ' This constant has a nonlinear dependence on
F as L becomes infinite. One of the questions addressed
in this paper is to which extent the SLR's depend on the
type of potential V(x). The goal of this paper is to
analyze the properties of SLR's in periodic but mainly in
disordered systems. The models considered are defined by
Eq. (I) with different forms for the lattice potential V(x).
We use different scattering theory criteria to characterize
the SLR s, their dependence on disorder and their statisti-
cal properties.

The scattering problem can be divided in two parts:
when the electron is incident below and when it is incident
above the ramp produced by the electric field. In the
former case, the reflection coefficient is equal to one and
information on the resonances is obtained from the phase
shifts of the S matrix, which in this case coincides with
the reflectivity coefficient. ' For energies above the bar-
rier, of more interest experimentally, ' we calculate the
transmission coefficient as a function of energy. For rela-
tively large values of the field, but below the critical fields
mentioned above, the SLR's appear as maxima of T. The
maxima, although close to one, are not always one. This
is clearly related to the fact that T, which is proportional
to a product of wave-function amplitudes, in the disor-

II. METHOD OF CALCULATION

In this section we define the models to be studied. The
Poincare map (PM) for random rectangular potentials in a
field is derived. The methods to calculate the reflectivity,
transmittivity, and their corresponding phases, together
with their derivatives in terms of a simultaneous solution
of two PM's, are discussed.

A. Definition of the models

The potential V(x) considered in this paper, has the
property that it can be expressed as V=+„V„(x), and

V„ is given by, (see Fig. I)

V (x)= ~

Vo, if x El„=b„,with n even

0, if x H I„=a (b„+,+b„,) /—2, (2a)

with n odd,

where I„=x„+&—x„. Thus, b„with n even is the width

dered case as well as in the ordered case with a field, does
not have to lead to T equal to one at resonance, as hap-
pens in the purely periodic case with F =0, since either
the disorder or the electric field can produce localization
of the wave function (see further discussion below). Fur-
ther information on the properties of these resonances is
obtained from an analysis of the resonance circles. The
half width at half maximum (HWHM) of the SLR's, de-
fined in terms of the maxima of T, is analyzed in both
cases as functions of F and the amount of disorder. The
role of thermal population effects in the independent elec-
tron model is considered in the spirit of Ref. 2. We
present numerical and heuristic analytic analyses of the
effects of temperature on the SLR's. Some of the results
on the 6-function potential were announced elsewhere. ' '
Here details and extensions of those results are given, and
a detailed study of other potentials, as well as the thermal
population effects on the SLR's are discussed.

The outline of the paper is as follows: In Sec. II we de-
fine the models considered in this paper. The Poincare
map for a general potential V is discussed, the explicit al-
gorithm to calculate the reflectivity and transmittivity is
given as well as a method to reliably calculate the deriva-
tives of their phases. In Sec. III we consider the zero-
temperature properties of the SLR's above and below the
ramp, with the approach developed here. In the periodic
case explicit comparison is made between the results ob-
tained here and those of Bentosela et al. who use a Green
function approach to calculate the SLR's for energies
below the ramp. The disordered case is considered in Sec.
III as well. To obtain statistically significant results we
take a double average: one with respect to different reso-
nances in the same sample, and the other one among sam-
ples with different random potentials drawn from the
same probability law. In Sec. IV we consider, numerically
and analytically, the effects of temperature on the SLR's.
Finally, in Sec. V a critical discussion of the results is
presented with an assessment as to what is needed to see
experimentally the SLR's in quasi-one-dimensional sys-
tems.
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There are two cases which are distinct from the scattering
theory point of view: (a) when 0& E &FL, and (b) when
FL &E. In case (a) the transmittivity tends to zero as
x ~—oo, and the reflection coefficient R =

~

r
~

= l.
The S matrix is simply equal to r, and can be written as,

FIG. 1. The random rectangular potential used in the calcu-
lations presented in this paper. The variables l„, K„, and b„are
defined in Eq. (3).

of the nth barrier and a is the spacing between the centers
of the barriers. In the disordered case, b„ is a random
variable chosen with a uniform probability law,

1/8' if b, —W/2 &b„&b,+ W/2

0, otherwise,
(2b)

FL, ifx&0
N

V(x) Fx =,FL F—g I„e(x-—na)+ g V„(x)
n=1

0 if x~L

Here e(x) is the usual step function and Na =L. Notice
that in Eq. (3) the zero of energy is chosen at the bottom
of the ramp. There are some calculations for which
choosing the zero at the top is more convenient, as will be
discussed later on.

B. Poincare-map approach

The problem of interest here is to calculate the scatter-
ing properties of a wave incident upon the potentials
present in the sample in the interval 0(x (L. For a
wave incident from the right with unit amplitude, there is
a reflected and a transmitted wave, which have the expres-
sions,

0'( x ) = .
iK+ x —iK+ x

re + +e +, ifx+oo
—tK xte, ifx~ —~ .

(4)

i.e., the width fluctuates around a fixed value b, . The in-
terpotential separation a is kept fixed throughout the cal-
culations. This type of potential interpolates between the
5-function case, and the finite potential barrier limit. The
5-function case is obtained in the limit Vo~ao, b„~0
with Vob„=P„, finite and fixed. As in previous
works, ' ' ' ' the electric potential —Fx is approxi-
mated by a ladder with excellent results. The total poten-
tial V(x) Fx, is then -given as (see Fig. I)

r —e2&@E) (6)

in which 5(E) corresponds to the phase shift of the re-
flected wave. An analysis of the behavior of 6 as a func-
tion of E yields information about the location of the res-
onances. However, to find the location of the resonances
with precision we use Levinson's theorem, which gives the
density of states, n (E), simply in terms of the derivative
with respect to E of the phase shift,

n (E)=2~5'(E) .

4(x)=A„e " +B„e " =qi„+(x)++„(x),

This is the approach followed here to find the energy
spectrum for case (a). An alternative calculational ap-
proach, used in the periodic case by Bentosela et al. , is to
find the poles of the Green function analytically contin-
ued to the unphysical sheet.

Case (b) is more interesting from the experimental point
of view, and we will concentrate on that case for the most
part in this paper. In this case the quantity of experimen-
tal interest is the transmission coefficient T. However, it
is shown that the derivative with respect to E of the phase
of the reflectivity, as well as an analysis of the resonance
circles give added information about the properties of
these resonances.

To calculate the quantities of interest in case (b), we can
use either the transfer-matrix approach, like the one used
in Ref. 12, or the PM method introduced for the 5-
potential problem in the F&0 case in Ref. 10. It turns
out, that it is not easy to use the transfer-matrix approach
to calculate the derivatives of the phases with respect to
E, since it entails the derivative of a product of N 2X2
matrices. The PM method, on the other hand, gives a un-
ified treatment for the calculation of all the quantities of
interest in both regimes, since taking a derivative of the
PM itself is relatively easy and yields accurate results.
Therefore, the PM method was used in the calculations
presented in this paper.

To derive the Poincare map corresponding to Eq. (I),
with the potential given in Eq. (3), we proceed as follows:
Define the wave-function amplitude at site n as
'+„=4(x =na). A PM gives a relation between the
wave-functions +„&, 4„+&, and (II„. To find this rela-
tion, start by writing the solutions to the Schrodinger
equation in the step where the potential is equal to V„,

In these equations r and t are the reflectivity and
transmittivity coefficients, respectively. The wave vectors
are defined as K+ ——(E —V+ )

'~ where V+ ——0 and
V =FL. Since there is conservation of probability, r

where K„=(E—V„)' . For simplicity of notation we
have defined the waves to the left +„, and to the right
+„+ within the nth region. Using the boundary conditions
for the continuity of %(x) and the continuity of its deriva-
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tive at each lattice site, the following equations result:

sin( !„K„)
4„+,——cos(l„K„)%„+

n

4„'+
&
———K„sin(l„K„)4„+cos(l„K„)0„'

(9)

(10)

with ' denoting the derivative with respect to x. This set
of first-order finite difference equations are equivalent to
Hamilton's equations in classical mechanics. Substituting

from Eq. (10) into Eq. (9), we obtain the second-order
difference equation,

K„,sin(l„K„)
4„+,—— cos(l„K„)+, cos(l„&K„&)

K„sin( l„&K„&)

K„~sin(l„K„)
+n-]

K„sin(I„,K„,)

This is the PM studied in this paper. It is a second-order linear finite difference equation, that can be solved given two
initial conditions, say 4, and 4p. In the 6-potential limit, the PM given in Eq. (11) reduces to,

K„&sin(aK„) sin(aK„)
4„+,—— cos(aK„)+, cos(aK„~)+f3„

K„sin(aK„& )
" " K„

K„)sin(aK„)
+n-iK„sin(aK„~ )

(12)

which is the map studied in Ref. 10. When there is no
field applied, and V= Vp, Eq. (12) reduces to

sin(aKp)
4„+&

——P„+2 cos(aKp )
0

(13)

where Kp =VE. Equation (13) is the PM derived by Bel-
lisard et al. ,

' and contains all the information about the
band structure of the periodic Kronig-Penney model.
Similarly, Eq. (11) has all the band-structure information
contained in Eq. (1), and this fact is essential to under-
stand the properties of an electron in a lattice potential
subject to an electric field. In the early studies of (SLR's),
a one-band approximation was used, and therefore a num-
ber of criticisms to those studies ensued.

By changing the values of Vp and 1„ in Eq. (11), we can
go from the extreme 6-potential limit to a finite height
rectangular potential. Of course, in this map equation the
case of continuous potentials is not included. However, as
found in Ref. 12, the localization properties of disordered
rectangular and continuous potentials have characteristics
that are qualitatively similar, although quantitatively they
do depend on the specific analytic properties of the V's.

The reflection and transmission coefficients are ob-
tained from the expressions,

R
gp+ —1

From the PM given in Eq. (11), it follows that,

NN[@ XX@ ]
2'~ I~ —1

e
(15)

Notice that at the site n = —1, the potential is FL, and at
N + 1 it is zero. The calculation of +N is simply obtained
from Oz as,

+N =+N —+N (16)

From Eqs. (15) and (16), all quantities of interest can be
obtained i.e., t and r with their corresponding phases, as
well as their absolute values square, T and R. A quantity
of possible experimental interest can be defined as a
Landauer-type formula,

p(+ &)=-R
T '

with p a generalized dimensionless resistance. For an ar-
bitrary field, the validity of this formula has not been
given, but it does reduce to the appropriate Landauer for-
mula in the limit when the F is sufficiently small. ' For
0& E &FL, the density of states is calculated from the
phase shift as given in Eqs. (6) and (7). Using the fact
that 5(E)= —,

' 1m[in(%'z/%v)], where Im stands for imag-
inary part, the density of states n (E) is thus obtained
from Eq. (7) as

1n(E)= Im
4m

qyl +
N

+N

+N

This expression involves 4N and its derivative with
respect to E. Since the calculation of 4N is done numeri-
cally, the derivative of 4N could be calculated numerical-
ly as well. This procedure is, however, inaccurate and
time consuming. Instead, n (E) can be obtained from tak-
ing the derivative of the PM given in Eq. (11) and iterat-
ing the resulting finite difference equation until O'N is ob-
tained. To iterate this PM, 4& and 4'0 have to be given.
These are just the derivatives of the initial conditions
needed to calculate 4'~. Thus, to calculate n (E) reliably
it is necessary to iterate two PM's simultaneously. The
derivatives of the phase of the reflectivity, named 0„(E)
above the ramp, also give relevant information about the
resonances above the ramp potential, and are calculated in
the same way.

III. ZERO- TEMPERATURE RESULTS

In this section the Stark-ladder resonances are studied
in detail at zero temperature. In Sec. IIIA the periodic
case is considered for energies above and below the elec-
tric field potential. In the 5-function limit, and for
E &FL, a direct comparison of the results obtained from
o'(E) to results obtained by Bentosela et a/. is given. The
calculations are extended to different potentials above the
ramp. It is found that for E)FL, the derivative of the
phase of the reflectivity, 0„'(E), has extrema that coincide
with the maxima of the transmission coefficient as a func-
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FIG. 4. Transmission coefficient as a function of energy E
for three different values of Vp.'(a) Vp=100, ( ) p

——b) V =20, and
(c) Vp ——10. All the chain parameters are the same as those in
Fig. 3.

FICx. 5. (a) 0„'(E) vs E for the parameter values a = 1,
F =0.8, N =100, and @=2. In (bi and (ci there is a restricted
energy range of T and 0,'(E) for the same parameters as in (a).
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vs E, plotted in an energy range that contains one resonance. In all
the figures the parameter values for a and X, are 1 and 100, respectively. (a) presents the results for the periodic case in zero field.
The direction of growth in E is shown with an arrow. (b) shows the results when there is disorder with 8'=0.06, and F =0. The
case shown in the figure corresponds to a resonance with 0'(E) &0. In (c) the periodic case is considered with F =0.8. Notice that in
this case 8'(E) &0, and the orbits are more complicated. Close to the origin

l
r

l
is near zero. In (d), the same parameters as in (c)

are used but with disorder of W=0. 2. Notice that the magnitude of
l

r
l

is smaller than in (c) but the structure of the SLR remains
stable.
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ferent marks in the figures correspond to the different energy ranges covered. The figure shows resonances and advanced resonances.
Notice the complexity of the curves.

maxima and the HWHM for the different cases, together
with their variances, are given in Table I. The results are
obtained from resonance averages which had typically 30
resonances. The results presented in Table I correlate well
with the Wannier prediction.

Contrary to what happens in the periodic case with
F=0, the maxima of T are not always one. Also, the
HWHM of T is significantly larger in magnitude than the
HWHM of 5'(E). To further understand the properties of
T, Fig. 5 shows the behavior of 0,'(E), for the parameters
used in Fig. 3. The extrema of 0„'(E) correspond, almost
exactly, to the location of the maxima of T. For instance,
the location of the resonance at E =98.889387 obtained
from T, corresponds to the maximum of 8„'(E) at
E =98.889 552. The agreement between the two numbers
covers typically 5 orders of magnitude. In contrast to the
behavior of 6'(E„) for E (FL, 8„'(E„) can have not just
maxima but also minima as a function of E. This can be
understood from looking at r in the complex plane. In
Fig. 6, Im(r) versus Re(r), 0„(E), and

i
r

i

are plotted as
E changes for the cases (a) F =0, W =0, (b) F=0,
W&0, (c) F&0, W =0, and (d) F&0, W&0. The first
thing to notice is that in the periodic case all the reso-
nances pass through zero, and the angular velocity 0„'(E)
is always increasing and the change of 0„'(E) at resonance
is sharp. When 8'&0, there are values of E for which
0„'(E) is large but negative, as seen in Fig. 6(b). Also,
when 0„'(E) is positive, the resonances are not as sharp.
For F&0, it is seen that as 0„(E) approaches zero, the
magnitude of r is not always zero at resonance. The mag-
nitude of 0„'(E) is an extremum when the magnitude of r
reaches its minimum value. When 0'„(E) is positive, the
phase grows rapidly when the orbit is closest to the origin,
and when it is negative it has an abrupt decrease [see Fig.
6(c)]. In the former case, if Wigner's relation between
0'„(E) and the time delay is assumed, the value of 0„'(E)
gives the time the incident wave spends inside the scatter-
ing region before it comes out, whereas 0,'(E) &0 means
that the wave in fact moves faster inside the scattering re-
gion than in free space. The number of advanced states
is smaller than those for which 8'„(E)~0, though. In Fig.
6(d) the same energy range as in Fig. 6(c) is considered but
with 8'=0. 1. There it is seen that the disorder modifies
the sharpness of the resonances. Finally in Fig. 7 a larger

region of energy is shown where maxima and minima in
0'„(E) appear as E is changed. The resonances thus corre-
spond to the points in the orbits of Re(r) versus Im(r)
closest to the origin, and depending on the sign of the an-
gular velocity at that point the resonance represents a re-
tarded or an advanced scattered wave. In the curves of T
versus E, it is seen that each one of the SLR's can be
separated from the others and can be approximated by a
Breit-Wigner-type form with maxima and HWHM which
are weakly dependent on E. Thus, for the nth resonance
within a given set of SLR's, T can be approximated by

A„(I „/2)
(E E„) +(I „—/2)

(19)

where 3„ is the amplitude characteristic of the nth reso-
nance, and I „and E„correspond to the HWHM of T
and the location of its nth maxima.

Figure 8 shows the behavior of the HWHM of T as a

0.9

0 7—

0.5—

0, 1

0.9 1.2 1.3
1/F

FIG. 8. The half width at half maxima (HWHM), or I, of T
as a function of 1/F shown in a semilogarithmic scale. The pa-
rameters used are a =1, N =100, and 8'=0.0. The curves
correspond to the value for Vp of Vp=10 ()&), Vp=20 (+), and
V, =100 (o).
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TABLE II. Parameters in Eq. (20) for V =100
periodic and disordered cases

3.00

Vp

100
20
10

1.8384
2.1282
3.4507

2.1656
2.0826
1.8879

1.7864
2.0674
2.8922

2.1388
2.0095
1.5894
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—3.00-
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function of F, for different heights of the potential

e resu ts can be expressed approximately as

I „(F)=A(VO) (20)
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FICy. 10. The logarithm of the resistance as defined in E .
for the parameters a =6 8'=0 X—, =0
region where the SLR' s are clearly visible.
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FIG. 13. The logarithm of the resistance with parameters as

in Fig. 10 in the disordered case with 8' =2.

where n is the number of resonances in t e ith sample,
f 1 M the number of samples. Theand j runs rom

variance is obtained from,

56 58 GQ

E

FIG 11 Plots of 6'(E) for two energy scales for the same pa-~ ~

rameters as in Figs. 3(a) and 3(b), but with 8'=2.

semble and resonance averaged quantities.ities. We start by
ith otentialsnumerically generating a set of chains wi p

f E . (3). Typically the ensembles had 20
members leading to good statistics. The expressions or
the mean values, denoted by ( ), and their corresponding
variances o e qus of the uantities of interest are obtaine as o-
lows. Call Y the quantity to be averaged, then t e mean
value is given by,

1(v)=
Mn

( Y. ) is the mean value of F for the ith sample.Here, ; is e
~ ~

enThe be avior o eh f th mean separation distance betwe
res onanonances grows linearly with W with a very small slope,
indicating t a ehat the Wannier states are still visible o

lueHowever, the fluctuations about the mean va ue
increase significantly as W increases (see Fig. . n ac,

he SLR's tend to disappear since the locali-
zation of the wave function induced by disorder starts o
dominate the localization produced by the field. T is re-
sult will be discussed further in the last section. ( as a
function of W grows quadratically, but with fluctuations
that are signi ican y sm'f tl smaller than in the case of ( b,E ).
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FIG. 12. The transmission coefficient T as aas a function of E,
for the same parameter values as in . 'g.Fi . 11 with FL &E.

FIG. 14. Resonance and ensemble averagvera ed ( h(E) ), as a
f 8 for N =100, a =1, and F =0.8. Notice the in-function o 8, or

crease of the fluctuations about the mean va ue as i

The calculation was one or ed f the three different values of Vo

used in Fig. 8. with the same notation.
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FIG. 15. The HWHM of the transmission coefficient I as a
function of W shown in this figure for the different values of
Vo as in Fig. 14 and with the same parameters for N, a, and F.

In Fig. 15 the averaged HWHM as a function of 8' is
shown. The slopes in these curves, m, for the different
cases are m(Vo ——100)=0.002418, m(Vo=20)
=0.11438, and m ( Vo ——10)=0.75540, the largest being
the Vo ——10 case.

The averaged (1 ) as a function of F is shown in Fig.
16, with 8'=1. As in the periodic case the Zener-
tunneling-type result given in Eq. (20) remains. The
specific values for B and A are given in Table II. There is
a small but explicit quantitative change in the results.
The quantitative differences arise from an increase in the
fluctuations about the mean values as well as a decrease of
the lifetime of the SLR's in the case Vo ——10. Finally, the
dependence of the HWHM with respect to L is given in
Fig. 17. As in the case of W=O the mean value of (1 )
remains essentially constant for the range of L's con-

0,9—

0.7—

0.5—

FIG. 17. The same as in Fig. 9. for the same parameters ex-
cept that W=1.

sidered. Quantitatively, the fluctuations about the mean
values increase and the lifetime of the Vo ——10 case is sig-
nificantly reduced by disorder.

From the results presented in this subsection, we con-
clude that if the disorder is not too big the SLR s will ap-
pear in the electronic spectrum. The specific statistical
properties of the SLR's will depend quantitatively on the
properties of the potential but not qualitatively.

IV. LOW- TEMPERATURE EFFECTS ON SLR's

One of the most important factors that may determine
the feasibility of seeing the SLR's experimentally is the
temperature. Since the values of the fields necessary to
clearly see the SLR's are relatively large, the interaction of
the electrons with the phonons becomes important. Also,
of relevance are the thermal population effects related to
the distribution of energies of the electrons at finite tem-
perature. The phonon effects can be neglected in the limit
of sample size smaller than the inelastic mean free path
l;„. This condition may not be easy to fulfill experimen-
tally, however. In this regime, only the thermal popula-
tion effects are important, and we consider these effects in
this section. In fact, within the formalism used in this pa-
per, the contribution of the phonons is not easily incor-
porated, although phenomenologically it would be possi-
ble. In Sec. IV A the periodic case is discussed and in Sec.
IV 8 the disordered case is considered briefly.

A. Periodic case

0.109
I

1.2 1.3
1/F

FIG. 16. Resonance and ensemble average ( I ) as a function
of 1/F with W = 1, for the same parameter values as in Fig. 15
with the same notation.

T(p, r)= —f ~' T(E)dE .
dE

(21)

In the I' =0 disordered case the thermal population ef-
fects have been discussed extensively. Here we extend
these analyses to the F&0 case. Since we do not have a
Landauer-type formula for arbitrary F at finite tempera-
ture, we concentrate on calculating the thermal average of
the transmission coefficient, which is always well defined.
The transmission coefficient as a function of the chemical
potential p, and temperature ~, is given as'
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Here f (p, r) is the Fermi-Dirac distribution function
given as,

f(p, r) '={e " "+1),
and kz is the Boltzmann constant. Since —Bf(p, E)/BE

w 0.50-

opp JaLu~udau&~dua~uUL'LuJLILIJUaVJ~(JLU&
5.00 6.00 7.00 8,00 9.00 10.00

).00 —,

is a strongly peaked function of E, the integral wi11 be
essentially zero outside of an interval of width kz~. Thus,
to calculate T(p, r) for a given r, first a SLR is found at
~=0. The temperature range is chosen such that
kyar & (1 ). For a given energy in the range where there
are SLR's, typically we chose an interval of width 5k&~,
around the chosen energy E. The calculation of T(E) is
carried out for at least 10 different values, and the integral
is then evaluated numerically. Each point in the plots
shown in Fig. 18 is obtained this way. The values of the
temperatures considered are ~=0.0001, 0.001, and 0.01.
The other parameter values are given in the caption. No-
tice that the effect of increasing temperature is to reduce
the average height of the resonances. However, the de-
crease is not uniform as p changes. If we assume that
each one of the SLR's can be approximated by a Breit-
Wigner form, as given in Eq. (19), the contribution to
T(p, r) around the nth resonance can be written as

(r„/2)'
T„(p,r) —1

' T(E) dE .
BE (E —E )'+(I „/2)'

(22)

At sufficiently low temperatures we can approximate
Bf(p, E)/BE ——( I /r)e " ~'. When r is very low,
the main contribution to T„(p,, )rcomes from points
around the resonance at E„, such that the integral can be
evaluated asymptotically giving,

T„(p,r) ——e " T(E„)sin(I „p)1 —
~

& —p I
/'k~&

m 0,50-
T'(E„)cos(—1 „P) . (23)

I

where P = 1/k~ r, I „has been assumed small, and
T(E„),T„'(E„), are the transmission coefficient at reso-

ooo ~JgLLLI JLLI.JJI,UDUI t VUOLL|UL~uULJL)Ll4

5.00 6.00 7.00 8.00 9.00 10.00

1.00--

0.50—

... 'I)IIIIIIIIIR(LL!IuI~iIJI(tj) )II
9.00 10.00

FICx. 18. Thermal population effects of SLR's as seen in
terms of T(E). The parameters used are N =45, F =0.025,
&=0, Vo ——100, and a =6. Top figure, ~=0.0001, middle,
~=0.001, and bottom, ~=0.01.

—4 —3,5 —3
log 7

FICz. 19. Log-log plot of the rate of change of T,„as a
function of ~. The slope is almost exactly —2. The parameter
values are N =45, F=0.025, a =6, 8 =0, Vo ——100 (03 and
10 (X3.



35 STARK-LADDER RESONANCES IN ORDERED AND. . . 8941

0 .151

O 1QQ

+ PQ

X 1Q

LLJ

C]~ 0.15—
0

—3
I—
Cl

0

0.149
0 10 15 20

10 k~~

FIG. 20. (AE) vs r for the same parameter values as in Fig.
19 with Vo ——20 (+).

nance and its corresponding derivative with respect to E.
This is a general result for any resonance that can be ex-
pressed by a Breit-Wigner form. For the SLR case
E„=Fna Equat. ion (23) makes explicit the fact that dif-
ferent resonances produce different changes in T„(p,r).
Since we have taken I P & l, the oscillatory behavior of
T„(p,r) is outside of the range considered in our numeri-
cal results. However, from measuring the average rate of
change of the maxima of T as a function of ~, the results
obtained in Fig. 19 agree with the ~ prediction of Eq.
(23) at resonance for the extreme 6 potential and for
&o =10

Figure 20 shows the average separation distance ( hE )
as a function of ~, for a restricted temperature range, for
the rectangular potential barriers with heights Vo ——100,
20, and 10. These results indicate that the mean separa-
tion distance between SLR's remains constant as ~ in-
creases, and the corresponding fluctuations remain con-
stant as well. In Fig. 21 the corresponding results for the
HWHM are given in the same temperature range as in
Fig. 20. Notice the scale in the vertical axis of the figure.
In contrast to (b,E ), ( I ) increases slightly as r increases,

01

—3,5
log T

FIG. 22. The same as in Fig. 19 with all the parameters the
same but with W=1.

in agreement to what is seen visually, that the SLR's be-
come wider as ~ increases. The fluctuations of I are,
however, smaller.

B. Disordered case

In Sec. III it was seen that the SLR's are essentially
stable against small amounts of disorder. Therefore we
expect that at finite temperatures the results obtained in
Sec. IVA should change quantitatively but not qualita-
tively. In Fig. 22 the average of the rate of change of the
maxima of T with respect to ~ as a function of ~ is
shown. The ensemble has 20 samples, and 8'=1. As in
the W=O case, the slope of the curves is very close to
—2, but the intercept with the vertical axis is different.

Figures 23 and 24 present the results of a resonance and
ensemble averaged (b,E) and (I ) as a function of tem-
perature. Again notice the scale in Fig. 24. In both fig-
ures it is seen that there is a very small variation of the re-
sults as r changes. However, the fluctuations about the
mean values have increased more than threefold as com-
pared to those of Figs. 21 and 22.

In summary, we see that increasing the temperature has
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The parameters are equal to those
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by 10
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FIG. 23. The same as in Fig. 20 with the same parameters

except W = 1.
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FIG. 24. The same as in Fig. 21 with disorder 8'=1 and all
the other parameters the same.

the effect of decreasing the magnitude of the natural
linewidth of the SLR s, while the average separation dis-
tance between SLR's remains equal to Fna. The effect of
disorder is that of increasing the fluctuations about the
&=0 results, thus making them harder to see.

V. SUMMARY AND CRITIQUE OF THE RESULTS

In this paper a thorough analysis of the Stark-ladder
resonances (SLR s) in one-dimensional periodic and disor-
dered systems has been given. Using different scattering
theory criteria, the SLR's have been analyzed as a func-
tion of different parameters: the length of the sample L,
the magnitude of the field F, the height and width of the
potentials Vo and b, the amount of disorder 8' and the
temperature ~. Only thermal population effects have been
considered. The analysis has been carried out in the re-
gions for which the electron incoming energy E is either
smaller than FL or larger. Both regimes are different
with respect to their scattering properties. The experi-
mentally relevant regime corresponds to E)FL. The
SLR's were analyzed in both regimes when the potentials
were periodic and of different heights. For E&FL, the
phase shifts of the S matrix were analyzed to obtain the
properties of the SLR's. Above the barrier (i.e., for
E)FL) the SLR's were analyzed in terms of the maxima
of T as a function of E. The half width at half maximum
was used to characterize the properties of the SLR's.
Each one of the SLR's for E)FL can be approximated
by a Breit-Wigner-type form. It was found that there is a
minimum value of the field above which the SLR's are
clearly visible (see also Ref. 6). The properties of the
SLR's, above and below the potential produced by the
field are different, e.g. , for E (FL there are two SLR's
that are clearly visible, while for E)FL there is only one,
for the same energy mesh. Also the HWHM of 6'(E) or
of T(E) are different, several orders of magnitude smaller
in the former than in the latter. We concentrated mostly
in the analyses of the SLR's as seen for E)FL, which is
the regime of experimental interest, and not studied previ-
ously. When the temperature is increased, the natural

linewidth of the SLR's increases while the maxima of the
transmission coefficient decreases essentially as 1/~, for
low temperatures.

Adding disorder has the effect of perturbing the proper-
ties of the resonances. For small amounts of disorder the
SLR's are stable. However, the SLR's for E &FL are less
stable than the SLR's for E )FL, for the same amount of
disorder. As the disorder increases, the fluctuations about
the mean values increase as well. Although the SLR's are
clearly visible for each sample with a disordered potential,
statistically sound results were obtained from resonance
and ensemble averaged quantities. When the disorder is
increased significantly, the SLR's essentially disappear.

The results given above can be understood from the fol-
lowing physical reasoning: In the periodic case without a
field, an electron with energies within a band can move
freely across the sample. When the periodic system is
subjected to an electric field, the electron is confined to a
region in space of the order of lz ——E/F. This confine-
ment is produced by the band edges in the E versus x
plot, e.g. , the tilted band picture introduced by Zener.
The electron is accelerated by the field across the tilted
band. When it gets to the ends of the band, the electron is
reflected and thus is able to complete closed orbits in
momentum space. Quantizing these closed orbits in
momentum space a la Bohr-Sommerfeld is what produces
the Wannier states. However, there is a possibility of tun-
neling from one of the bands to the others, thus convert-
ing the Wannier states into resonances. The time spent by
the electron trapped within a band is inversely proportion-
al to I"„(F)=He ~ [Eq. (20)]. This result implies that
changing F slightly produces an exponential change in the
time spent by the electron within a band. This exponen-
tial behavior of the lifetime is essential to be able to see
the SLR's experimentally. When disorder is added to the
system a new length becomes important, the localization
length l~„(X). When F&0, l~„becomes a strong func-
tion of X =FL /E. The behavior of 1~„(X)/l~
(F =O, E, W') depends strongly on the type of potential
considered. ' ' ' The explicit dependence of l&

(F =O, E, W) has been considered in Ref. 19. When the
disorder is small l~„))lF, the electron is able to complete
closed orbits and thus the appearance of SLR. As the
electron tunnels to other bands the effects of disorder are
felt and the properties of the SLR's are qualitatively
modified. As the disorder is increased, and 1~„becomes
comparable to /F the electron is not able to complete
many closed orbits and the SLR's essentially disappear.

In the disordered case, when the SLR's are clearly visi-
ble, the HWHM is stable as L increases, provided the
field F &F, . In fact, in the disordered 5-potential case, in
the regime X ) 1, the power law decay of T helps stabilize
the HWHM of the SLR's. ' ' A qualitatively similar ef-
fect occurs when the potential Vo is of finite height. The
magnitude of the height of Vo has an important quantita-
tive effect in the HWHM. Thus, I is larger for smaller
Vo's thus making the SLR's more likely to be seen when
the potential is of finite height. '

We now discuss the limitations of the model studied in
this paper as compared to real experimental conditions. It
is clear that temperature will play a significant role in the
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possible observation of SLR's experimentally. Since the
electric fields at which the SLR s are clearly distinguish-
able are relatively high, the coupling of the lattice to the
electronic SLR states will be of relevance, and could even
destroy the SLR's. However, it is not clear as to how to
include the phonon effects in a detailed theory at the same
level of rigor as the analysis of SLR's presented here. The
results of Secs. III and IV will remain valid if the inelastic
mean free path I;„ is much larger than the dimensions of
the sample L Of.course, the l;„may be also a function of
F. In the presence of a field F there are at least four
lengths that are important: l;„, lF, l~„, and l, ~

the elastic
mean free path, which is sometimes related to 1)„. Thus,
experimental conditions have to be produced such that
passing a current of the order needed to see the SLR's
does not melt the wire before the resonances are seen.

As mentioned above, in order to be able to see the
SLR's experimentally, it is necessary that I;„)L such that
the phonon effects do not destroy the phase coherence
needed to have the SLR's clearly defined. Experimentally
this implies ultralow temperatures and ultrasmall wires.

The length lF is important because it defines the
lengths for which the electronic trajectories are localized
by the field, and thus the appearance of SLR's. Also, lF
separates the regions for which localization effects are im-
portant from those from which the field is important. We
have seen that the thermal averaging as defined in Sec. IV
does not destroy the SLR's and only modifies its main
features. Of course, the finite ~ analysis has been done 'n
analogy with the small field calculations, without having
a connection with an experimentally measurable quantity,
although the average of T as given in Eq. (21) is always
well defined.

Another experimental shortcoming of the model stud-
ied here is that electron-electron interactions have been
neglected. Resonance tunneling, when there is screening
has not been studied in detail as yet. Thus, the calcula-
tions presented here are more appropriate for a semicon-
ductor than for a metal.

One more aspect of the model studied here is that it is
one dimensional. In a recent paper the density of states of
a one-, two-, and three-dimensional periodic lattice in a
field F has been calculated. There it was found that
SLR's are sharply defined only in one dimension. Thus,
the likelihood of seeing the SLR s is higher in one dimen-
sion than in higher dimensions. In this respect, it is possi-
ble that the SLR's could also be seen in superlattices, since
these systems can be approximated as one-dimensional.
The bandwidth can be tailored at will, and thus the dissi-
pation effects can be minimized, as well as the magnitude
of F necessary to see the SLR's can be reduced.
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