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We study the eA'ects of multiple scattering on the elastic incoherent cross section of neutron
backscattering. The cross section is found to be enhanced within a narrow cone centered around
the backscattering direction. An antienhancement of intensities is predicted, provided that spin-
flip scattering is dominant.

Recently, coherent backscattering of waves by random
media has attracted much attention, after recent experi-
ments ' of light scattering showed that the scattered in-
tensity is enhanced within a narrow cone centered around
the backscattering direction. This enhancement is known
to originate from the constructive interference between
the time-reversed path and the original path for a back-
scattering geometry. It is closely related to Anderson lo-
calization, because the enhancement of backscattering in-
tensity gives rise to a reduction of the difl'usion constant.
This comparison with Anderson localization was given by
Khmelnitskii and Bergmann. Much theoretical work
has already been done on the backscattering of light.
In comparison with photons, coherent backscattering of
neutrons has not yet been studied either experimentally or
theoretically.

The first point that makes neutrons difI'erent from pho-
tons is that neutrons have a long mean-free path in ordi-
nary materials. The mean free path can be estimated by
l —(1/4tr

~ b! )V/N, where b is the scattering length of
the nuclei, V is the volume of the sample, and N is the
number of nuclei that scatter neutrons. Using typical
values, V/N —(2 A) and b —10 A, l is of order 0.7
cm. Assuming that sample sizes are at most of order l, we
expect that multiple-scattering effects come mainly from
double scattering and the effect of localization is small.
This does not mean of course that there is no coherent
enhancement of the backscattering intensity. We will use
the second-order Born approximation to calculate the
backscattering intensities of neutrons which should be
sufficient for lowest-order multiple scattering.

The second point that makes neutrons difI'erent from
photons is that a neutron is a spin- —,

' particle and interacts
with the nuclear spin. A spin-flip event, the flipping of a
nuclear spin by a neutron, is equivalent to a measurement
of position and can be expected to destroy coherence. The
interaction between neutron and matter may be written as

with

dQ dQ
[~i(1—t)+ ~i(t —l) ~

=N[(m)'+ 'a' I(I+1)],-

A, =A, +SA, , (~A)'=((SA;)');

B I(I+ 1) =(B I; (I;+1));
(4)

(5)

where (. . . ); denotes a configuration average, and
o ~ ( t t ) and cr i ( t f ) denote the non-spin-flip cross
section and the spin-flip cross section, respectively. The
polarization P' of the scattered neutrons is proportional to
the incident polarization P, where P =(Ii —Iq)/(Ii+I2)
with I ~, Iz being the numbers of neutrons in t- and J-spin
states, and the ratio is given by

P"'/P = d/dn [~(t —t) — (t —l)l
d/di1[~(t- t)+~(t- l)l
(dA) —,'~ B I(I+1)

(6)
(hA ) + —' 8 I(I+ 1 )

nuclear spin operator of the i'th nucleus. As will be shown
later, if the spin-dependent part of the interaction is dom-
inant, the backscattering intensity is suppressed by des-
tructive interference, while only constructive interference
is observed in light-scattering experiments. '

We are interested in elastic incoherent scattering of
neutrons with very long wavelength (k) 10 A). Bragg
scattering does not occur in the backscattering direction
for long wavelengths. We assume that the nuclear spins
are pointing in random directions and that the nuclei are
fixed at lattice points. Lattice vibrations may give rise to
a reduction of intensities by the well-known Debye-Wailer
factor. This efI'ect is expected, however, to be small at low
temperatures for neutrons with long wavelength.

We first summarize the usual results of the first-order
Born approximation. The cross section of elastic in-
coherent scattering is given by

bi. =&i+ 2 B;a I (2)

Here 2 cr is the spin operator of the neutron, and I; is the

where m and r are the mass and the position vector of the
neutron, r; is the position vector of the ith nucleus, and b;
is a scattering amplitude operator defined by

We now discuss coherent backscattering due to double
scattering using the second-order Born approximation.
Figures 1 and 2 illustrate the processes of non-spin-flip
transitions and spin-flip transitions, respectively. Process
a in Fig. 1, for example, shows an incident neutron with
spin t and momentum k;, which is scattered by nucleus j,
changes its spin from t to J, propagates from the site j to
l, is scattered by nucleus l, changes its spin from J to t,
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As for spin-flip transitions, there are two processes c and d (Fig. 2), whose amplitudes are given by

yJ' = —,
'

BJQ(s& +m~ + 1 ) (I~ —m 1 ) (A o+ 6'AI —
—,
' 8(m() pI',

zj'=(Ao+8A, + —,
'

BImj) —,
' BIJ(II+mI+1)(II mi—)y

(14a)

(14b)

At first glance, one may think that there are no interference eA'ects, because spin-flip transitions give rise to a chan e of
nuclear spin states and thus contribute to incoherent scattering. However, interference efl'ects can occur between yc and
]4[Id, because the same final state is realized after the scattering event. Note that for large BI they have opposite phase so
they interfere destructively. Averaging over mj and mI, we find for the cross section

+d(t ~) g~ jl+ &g~2

j,l

=N—(3') —,
' 8 I(I+ 1)[(hA) +,'2 8 I(I+1)+[(AA) —,'2 8 I(I+1)]g1(KR)j . (15)

Note that when (hA) is smaller than» 8 I(1+1),the factor in front of g~(KR) is negative. It is this term that gives
rise to antienhancement of the backscattering intensity due to interference between the scattering processes of Fig. 2.

Using Eqs. (9), (11),and (15), we find the multiple-scattering correction to the total cross section to be

2 [ (t- t)+~'(t- t)+ '+'(t- j)]2 2"
=%—(3nR)([(hA) + —,

' 8 I(I+1)]

+ [[(~) + —,', Bzs(I+ I)] + —,
' 8 I(I+1)[(hA) —,'2 8 I(s+1)]jg1(KR)) . (16)

In Fig. 3, (d/dA)oz" is plotted as a function of KR, where the first term of Eq. (16) is normalized unity. When the nu-
cleus has no spin la I(I+ I ) =0], the enhancement of the cross section is maximal, since the destructive interference
term is zero [the last term of Eq. (16)1. This situation is similar to light scattering experiments. ' As the interaction
between the neutron spin and nuclear spins becomes large, the destructive interference term grows larger and eventually
overwhelms the constructive interference term and a dip appears. This reminds one of the effect of spin-orbit coupling in
the weak localization of the electron which is also caused by destructive interference.

The polarization of the scattered neutron is given by

pl
P

P' N ,' a's(s+1)———(3~R) ~ (m)' —
,', a's(s+1)—

(~A) '+ ,' a'I(s+1)—
(m)' —,' a's(s+1)—

+ [(~) + &'& 8 I(I+ I )]g~(KR) &, (17)(~) + 4 8 I(I+1)

where (P'/P)o represents the result of the first-order Born
approximation. In Fig. 4, we show the calculated results
of P'/P as a function of KR, using the typical values,
(~) + —,

' 8 I(I+1)=(10 4) R =4x I() g, V/~
(2 A) . If we have no nuclear spin, then the polariza-

tion of the scattered neutron should be the same as the in-
cident polarization (P'/P =I). When the interaction be-
tween the neutron spin and nuclear spins grows large,
P'/P deviates from the results of the first-order Born ap-
proximation and is enhanced in the backscattering direc-
tion.

We now comment on the possibility of experimental
realizations. To observe the effect of double scattering, a
large sample is favorable, because the ratio of the total
cross section due to double scattering to that due to single
scattering is proportional to a sample size; the ratio is

4
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On the other hand, to observe coherent enhancement of
backscattering intensities over appreciable angles near the

FIG. 3. The multiple-scattering correction (d/dQ)al't to the
total cross section as a function of ECR. The first term of Eq.
(16) is normalized to unity. Curve a: 821(I+ 1) 0, b:
(hA) = —„81(I+1),c: (AA) 0.
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backscattering situation, a small sample and a large wave-
length of neutrons are favorable, because the angular
width can be estimated as beSX/R. Neutron optics has
developed so rapidly over recent years' that it would be
possible to use ultra-cold-neutrons with a wavelength
X-400 A. In this case, if R-4&& 106 A, then b8-10
rad and cr2t"/o~" —4.7 x 10 for V/N (2 A) and
(AA) + —,

' B I(1+1) (10 A) . If the sample is
smaller than this, b8 increases, while cr2"/oI" decreases.
What substances are suitable to experiment? Magnetic
atoms must be excluded, because our theory has neglected
the effects of magnetic scattering due to the interaction
between the magnetic moment of neutrons and that of
atoms, which is large for magnetic atoms. Compounds of
hydrogen may be better, because the nucleus has a large
incoherent (spin-flip) cross section.

In summary, we have found that the elastic incoherent
cross section is enhanced near the backscattering direction
due to interference effects. If we compare neutron back-
scattering enhancement with photon backscattering
enhancement, then a difl'erence arises because neutrons
have a long mean free path so only double scattering is
relevant, and because antienhancement occurs if the in-
teraction between neutron spin and nuclear spins is dom-
inant. The spin effects would be complicated when multi-
ple scattering higher than double scattering is effective in

large samples. For light, the polarization effects may play
a role similar to the spin effects of neutrons in anisotropic
media which, for example, contain optically active sub-
stances. The analysis of these cases is left for the future.

FIG. 4. The ratio of the polarization of the scattered neutron
to that of the incident neutron as a function of KR, by using the
typical values, (bA)2+ —, B21(I+ I ) (10 4 A)2, R 4x 106

A, and V/IV (2 A) . The straight lines with "First Born"
represent the results of the first-order Born approximation.
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