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Chaos in spin glasses: A renormalization-group study
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The Migdal-Kadanoff renormalization-group scheme is used to investigate chaotic behavior in
the ordered phase of a three-dimensional Ising spin glass. The spin order is sensitive to a temper-
ature change 8T at length scales L*—(Y/abT) 'tr, where Y and o are temperature-dependent am-
plitudes associated with the interfacial free energy and entropy, respectively, ( ds/2 —y is the
Lyapunov exponent characterizing the chaotic behavior, dg is the fractal dimension of the inter-
face, and —y is the scaling dimension of the temperature at the zero-temperature fixed point.

Phenomenological scaling' " has proved to be a simple,
yet powerful, tool for the investigation of the nature of or-
dering in Ising spin glasses with short-range interactions.
The basic idea is that for all T & Tg the behavior of the
system at large length scales is controlled by a zero-
temperature fixed point. The zero-temperature scaling
approach leads to many novel predictions. One of the
most striking concerns the "chaotic" character of the or-
dered phase in an Ising spin glass, in which the relative
orientations of spins is increasingly sensitive, as the spin
separation is increased, to small perturbations in external-
ly controlled variables, such as the temperature.

In this Rapid Communication we investigate this
phenomenon within the context of a simple, explicit
renormalization-group transformation —the Migdal-
Kadanof renormalization-group scheme (MKRG).
Here we can explicitly follow, numerically, the evolution
of the bond probability distribution. We find that, at
T =0, two neighboring bond pools, initially differing
infinitesimally, diverge exponentially under iteration. Ex-
ponential divergence of neighboring trajectories is charac-
teristic of chaotic behavior, and the rate of divergence en-
ables us to identify the corresponding "Lyapunov ex-
ponent. " In a second study, we follow the parallel evolu-
tion of two identical bond pools started at slightly
different temperatures in the ordered phase. After initial
transients, associated with the flow to the zero-
temperature fixed point, have died away we again find ex-
ponential divergence of the pools with the same Lyapunov
exponent as before. In both cases, after sufficiently many
iterations (the number required depending on the initial
separation of the pools) the two pools become completely
uncorrelated, although they correspond to the same distri-
bution with (essentially) the same scale width.

Before discussing the MKRG results in detail, it is use-
ful to review the general arguments for chaotic behavior.
We first consider the effect on the ground state of adding
a small random perturbation, of relative strength e, to
each bond. If J is a measure of the width of the unper-
turbed bond distribution, then the energy cost, in the ab-
sence of the perturbation, of an excitation (i.e., overturned
region of spins, or "droplet" ) of linear dimension L (mea-
sured in units of the lattice spacing), is of order JLy. The
exponent y characterizes the scaling behavior of the bond
distribution at the zero-temperature fixed point; in

renormalization-group language, —y is the scaling dimen-
sion of the temperature. In the presence of the pertur-
bation, the excitation which origina11y cost energy may
now be energetically favorable, since there is an addition-
al contribution of order 4- eJL from the perturbation,

~st/2

where L ' is the surface area of the excitation and ds is
the "fractal dimension of the interface. " Since, on gen-
eral grounds, g=ds/2 —y &0, the ground state is un-
stable against the perturbation on length scales
L & L*—I/ e/~. The reader will recognize the above as
essentially an Imry-Ma argument. The chaotic response
to temperature changes follows immediately from the
chaotic response to bond perturbations at T=O: Two
identical bond pools at slightly different temperatures
iterate (in the ordered phase) to two zero-temperature
pools with slightly different bonds. Under subsequent
iteration these pools diverge as discussed above.

The MKRG recursion relation for d =3 is

4K'= g tanh '(tanhK~;tanhKz;)

corresponding to the decimation process shown in Fig. l.
In Eq. (1), K~; =Jt;/T, etc. , and J~;, J2; are the two bonds
on the ith of the four "parallel paths" in Fig. 1. (We have
specialized to dimension d=3 and length-scale factor
b =2. For general d and b the number of parallel paths is
b~ '. ) We have chosen to use the "series-then-parallel"
MKRG. The alternative "parallel-then-series" MKRG is
expected to give similar results.

To use Eq. (1) in practice, we construct a pool of N
bonds, (J; J, where typically N is between 10 and 10,
drawn from some initial distribution characteristic of
spin-glass behavior (we used N=4X 10, and a Gaussian
distribution of zero mean and unit variance), and thence a
pool fK; j, with K; =J; )/T, of dimensionless cou-
plings. Eight members of the latter pool are selected at

FIG. 1. MKRG transformation for d=3 corresponding to
length scale factor b =2.
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random and combined, according to Eq. (1), to give one
metnber of a new pool. The process is repeated until a
new pool [K; ')j [J;(' /Tj of N couplings is produced.
This corresponds to one iteration of Eq. (1). For T & Tc,
all couplings flow to zero under repeated iteration, i.e., the
probability distribution P(K) approaches b(K) for
n ~, where n is the iteration number. For T & T&, the
couplings flow to infinity: P(K) approaches, for n ~, a
fixed shape, but with a width which increases by a factor
2» at each iteration, with y =0.25. (Equivalently, one can
say that the temperature T scales to zero under iteration,
asymptotically decreasing by a factor 2» at each itera-
tion. )

To illustrate the chaotic ordered phase, we consider first
the MKRG equations at T-0. These are obtained via
the replacement

tanh '(tanhKi tanhK2) sgn(KiK2)min( I Ki I

in Eq. (1). We take two pools [J;j,[J j, where J -J;
+ ex;, with e 10 and J;,x; independent Gaussian ran-
dom variables with zero mean and unit variance, and fol-
low the evolution of the quantity

d( ) g (J«& —J,'«&) &/g [(J«))2+ (J,'«&) &] (2)
C

with increasing iteration number n. (It is important to
note that when eight members of the pool [J;«)j are
chosen at random to compute one member of the pool
[J;t"+')j, the corresponding eight members of the pool
[J «)j are selected to compute the corresponding member
of the pool [J «+') j.) The result is shown in Fig. 2. Note
that if the pools are regarded as points in an N-
dimensional space, the numerator in Eq. (4) is the square

of the Euclidean distance between the pools after n itera-
tions. The denominator normalizes d&„) to unity when the
pools are completely uncorrelated.

From Fig. 2 one sees that the growth of d«& is initially
exponential, corresponding to a power-law dependence of
d(„) on length scale L 2", d~„)= (ez/2)L z~, with
(=0.75. The result for g is consistent with the prediction
of the Imry-Ma argument given above, g ds/2 —y, since
ds d —1 2 for the MKRG, and y=0.25. The result
for ds follows from recognizing that any minimal energy
interface drawn throu h the basic unit of Fig. 1 will cut
exactly four bonds (2 ' bonds for general d) and identi-
fying this number with 2 '.

After a large number of iterations n *, such that
L —=2" = I/ ei~, d(„) saturates at unity, corresponding to
completely uncorrelated pools, i.e., to an instability of the
ground state to the perturbation on length scales greater
than L . This is in complete accord with the results of the
exact numerical studies of d 2 systems presented in Ref.
5. In that case, however, the results were inferred from
data obtained for relatively small values of L (L ~ 10)
and large values of e, such that eL~ O(1), whereas with
the MKRG we can go to effectively enormous values of L,
and hence small values of e, without difficulty. In addition
we can study d 3 and the chaotic response to a change in
temperature, the latter being absent for d 2 due to-the
absence of a phase transition at a nonzero temperature
(since y & 0 for d -2).s

To investigate sensitivit to temperature, we again com-
pute dt„), Eq. (2), where J;j, [J j are now pools of initial-
ly identical bonds at different temperatures T, T+bT.
The results are shown in Fig. 2 for three diA'erent temper-
atures (all below Tc), with e=ST/T equal to 10 in
each case. After initial transients associated with the flow
of the pools to zero temperature have died away, d ~„~

2

again diverges exponentially with n, with the same ex-
ponent (i.e., the same g) as in the zero-temperature study.
After a large number of iterations, d&„) again saturates at
unity, indicating an instability of the spin-glass order es-
tablished at a temperature T to a temperature change bT,
on length scales greater than L cr- I/(BT) 'i~.

This result can be expressed more precisely, and more
generally, in terms of the "interface free energy" F;„,and
the "interface entropy" S;„t. The former may be defined,
for a particular sample, as the difference in free energies
between periodic (p) and antiperiodic (a) boundary con-
ditions,

FInt -Fa —FP

Then

10 20 30 40

Number of Iterations

FIG. 2. Square of the normalized distance between bond
pools dt„& [Eq. (2)] as a function of MKRG iteration number n

+, T 0; &, T 0.25; &, T-0.5; O, T 0.8333. The T 0 re-
sults show the growth under iteration of an initially small
difference (of relative size 10 6) between the pools; the T&0
results are for initially identical pools at temperatures T, T+8T
with 8T/T 10 2 [(F,—F ) ]'i y(T)L», L —~, (3)

For spin glasses, these quantities may have either sign,
and it is convenient to consider the scale dependence of
the root-mean-square values. ' For all T & Tc, the large-
scale behavior is controlled by the zero-temperature fixed
point, so that F;„t eventually scales with linear dimension
L as L». A "generalized stiff'ness coefficient" Y(T) may
be defined by' '
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(J (n)) 2

N, .
—Y(T)2"', n (4)

Y has its maximum value at T=O, and vanishes like
(T —Tc) "», where v is the correlation length exponent,
for T Tc.

How does S;„t scale with L for large L'? Suppose
S;„t-L".Since F;„,plays the role of an eA'ective coupling
at scale L, 6F;„t= —S;„tBT—L"BT is the change in that
coupling induced by a temperature change BT. The sys-
tem will reorganize at scale L* when the relative change
in the coupling hF;„JF;„,-L* " ~ bT is of order unity,
i.e., when 8T-L* ~ " . But the general arguments given
above (and the explicit results of the MKRG) imply that
such reorganization occurs when 8T—L* ~. Thus
x —

y =/= ds/2 —y, giving x =ds/2. This result, first
suggested in Ref. 4, is seen to be a consequence of the flow
to the zero-temperature fixed point at large length scales.

The above considerations allow us to derive a more
quantitative relation between L* and bT. By analogy
with Eq. (3) we can introduce an amplitude function
o(T) for S;„,via

Within the MKRG this becomes, in analogy with Eq. (4),
using ds =2 (for d =3),

]/2N

g (J(n) Jr(n))2
N

1
h

provided BT«2 "~. With this insight one recognizes, from
Eq. (2), that d(„&/(bT) is simply the ratio of the mean-
square interface entropy to the mean-square interface
free energ~. Determining the length L* by setting
[(8F;«) ],'„equal to [FI2t]P is equivalent to setting d(„&
of order unity ( —,', to be precise) in the MKRG and gives
L* = (Y/o BT) '/~. The function a (T) should vanish

where [ ],„ indicates an average over samples and the fac-
tor —,

' is for later convenience. Within the MKRG, a
member of the pool [J;")] plays the role of (F, F~—)/2 for
a sample of linear dimension L =2". Hence, within the
MKRG,

' 1/2
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FIG. 3. Temperature dependence of a typical MKRG cou-
pling normalized by 2", after n iterations. 0, n 8; &, n 10; &,
n 12.

linearly with T for T 0, while for T T~ it should
vanish as (Tc —T) " ' . ' Thus for T~ 0, L*
—(T(/T//T)'rr, while for T Te, L /e —l(Te —T)/
BT] '

h, where g is the correlation length, provided
T« Tc
The striking fact that S;„t=—dF;„JdT scales as a

higher power of the length than F;„t implies that F;„t must
develop, as L increases, ever more structure as a function
of T and become, in the thermodynamic limit, non-
differentiable everywhere in the interval (O, TC). The
characteristic temperature resolution of the structure is
given by BT—(Y/cr)L ~. To investigate this within the
MKRG we look at the temperature dependence of a typi-
cal member of the bond pool, normalized by 2"~, as a
function of iteration number n. Typical results are shown
in Fig. 3, for n =8, 10, 12, and provide a vivid illustration
of the onset of chaos with increasing n.
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' This follows from finite-size scaling near Tg.

[F2 ] ' f(L ' "(Tc—T) )
implies

[S2t] '/ L '/"s(L i/"(Tc —T)) —L (Tc T)

for L ' "(Tc—T) && 1.


