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Topology of the resonating valence-bond state: Solitons and high-T, superconductivity
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We study the topological order in the resonating valence-bond state. The elementary excita-
tions have reversed charge-statistics relations: There are neutral spin- —,

' fermions and charge ~ e
spinless bosons, analogous to the solitons in polyacetylene. The charged excitations are very light,
and form a degenerate Bose gas even at high temperatures. We discuss this model in the context
of the recently discovered oxide superconductors.

In a recent paper, Anderson' proposed that La2Cu04 is
in a "resonating valence-bond" (RVB) state, and that the
high-T, superconductivity observed in the material when
doped with Ba or Sr must be understood in terms of this
unusual insulating state. We show here that the resonat-
ing valence-bond state has topological long-range order,
and characterize its topological excitations. We propose
an exotic mechanism for superconductivity.

Our paper draws three main conclusions. (1) We argue
that electron-phonon interactions can stabilize a resonat-
ing valence-bond state. A highly simplified schematic of
this state is shown in Fig. 1(a). The state does not possess
a broken symmetry, but on a bipartite lattice it has a topo-
logical long-range order. It has a gap to both spin and

charge excitations. (2) The elementary electronic excita-
tions in the RVB state have reversed charge statistics and
charge-spin relations: There are neutral spin- 2 fermions
and charge + e spinless bosons. At finite temperatures,
these topological solitons destroy the long-range order
(see Fig. 2). (3) The bosons have a mass on the order of
the electron mass, and a binding energy set by electronic
energy scales, so they will exist and be highly degenerate
even at high temperatures. Naively, one might think that
the condensation of charge + e bosons would lead to Ilux
quantization in units of hc/e. However, the solitons are
topological, and hence can only be created or destroyed in
pairs; this seems to imply that if flux quantization occurs,
the quantum is hc/2e, consistent with Yang's" general
analysis of oA'-diagonal long-range order. It is plausible
that this RVB state occurs in Sr- or Ba-doped LazCu04,
and that in the doped material condensation of the
charge-e bosons could occur at high temperatures.

The active electronic states in La2Cu04 are associated
with the two-dimensional square lattice of Cu ions. Each
Cu has one active orbital and (in the undoped insulator)
has one associated electron. Exchange between Cu ions is
mediated by the oxygen atom midway between them;
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FIG. 1. (a) To first approximation, the resonating valence-
bond state is a coherent superposition of states like the one de-
picted here. Lines denote strong "valence" bonds, across which
the electrons form singlet pairs; each site is strongly bonded to
precisely one neighbor. The real RVB state is "dressed" by vir-
tual soliton-antisoliton pairs. (b) An elementary resonance be-
tween two valence-bond configurations. This resonance lowers
the energy of the superposition by J„,.
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FIG. 2. The existence of a topological defect (here, a black
soliton) can be deduced from a large loop enclosing it.
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there is thought to be a large Coulomb energy associated
with placing two electrons on the same copper. The natu-
ral model for this material is the half-filled Hubbard mod-
el. There is a structural transition in the insulating state
at 533 K, in which the intermediate oxygen atoms buckle
out of the plane; initial experiments suggest that the su-
perconducting state is associated with the suppression of
this lattice distortion. Thus we are led to look at
Hubbard-Peierls models for phases without broken
translational symmetry but with a gap to charged excita-
tions. (Our analysis of the statistics of the elementary ex-
citations is, however, independent of the mechanism by
which the RVB state is stabilized. )

Figure 1(a) shows a highly simplified schematic of the
resonating valence-bond state, which should be interpret-
ed as a snapshot in a path integral. Each lattice site is oc-
cupied by a single electron (large Hubbard U), and parti-
cipates in one singlet "valence bond" with a nearest-
neighbor site. Associated with each valence bond is a lat-
tice deformation which increases the hopping energy
across that bond; these phonons stabilize the RVB state
with respect to the Neel state (which cannot take advan-
tage of lattice deformations to lower its energy). The
RVB state is a coherent superposition of the various ar-
rangements of valence bonds; the resonance energy from
tunneling between these arrangements stabilizes the RVB
phase with respect to the spin-Peierls phase (which is a
crystalline arrangement of bonds).

To examine the competition between the Neel and the
RV8 states, consider the Heisenberg Hamiltonian
(describing the Hubbard model in the large U limit) in-
cluding the effects of lattice deformations:

4(tp au J)'—H=g " S S+—(u; —uj)', (1)
&i,j & ~

where u; is the displacement of the ith atom, u;j is the
change in the length of the bond between sites i and j, to is
the electron hopping matrix element, a is the electron-
phonon coupling constant, U is the on-site repulsion be-
tween electrons, and E is the spring constant. The naive
energy for the Neel antiferromagnetic state (i.e., ignoring
quantum corrections) is —2t)/U per site. The naive ener-

gy for our RVB state is obtained by balancing the strain
energy against the gain in electronic energy; the RVB en-
ergy is lower than the Neel state when a /KU& —,', at
which point the strong-bond hopping matrix element is
—', tp. Quantum corrections (spin waves versus resonance)
further favor the RVB state. '

The RVB state is a quantum liquid of valence bonds.
Under what conditions is it lower in energy than crystal-
line arrangements of valence bonds (i.e., spin-Peierls
states)'? The most natural spin-Peierls state looks like a
stack of antiferromagnetically aligned polyacetylene
chains: All bonds are aligned along the same axis, with no
next-nearest-neighbor bond pairs. Presumably, this crys-
talline arrangement minimizes the energy for large ion
mass, but without breaking bonds it cannot resonate with
any other valence-bond configuration. A typical valence-
bond configuration has a large density of next-nearest-
neighbor bond pairs. These pairs can resonate between

horizontal and vertical configurations (Fig. 2), which
lowers the energy of the appropriate superposition by an
effective tunnel splitting J„,. If the difference in energy
density between the spin-Peierls state and a single typical
valence-bond configuration is less than order J«„ the
RVB phase will be preferred. In the adiabatic limit, a
simple WKB (Wentzel-Kramers-Brillouin) estimate (ions
of mass M tunneling a distance u through a barrier of
height aut/U& hco*) gives

J„,= to*exp[ —A(t /U)/(hco*)],

where 2 is a constant of order unity and
co*=Ma /KULAK/M is the renormalized phonon fre-
quency. (This estimate suggests J„„is small. In the ab-
sence of phonons, J«, would be of order t /U. Doping can
also stabilize' the RVB state by a delocalization reso-
nance energy of order xt p, where x is the soliton density. )

We can see already a schematic of the RVB state's to-
pological long-range order. Color the lattice sites alter-
nately black and red, in a checkerboard pattern; each
bond connects two sites —one black, one red. Consider a
large loop which cuts no bonds. For a perfect valence-
bond configuration, " the number of enclosed red and
black squares must be the same, independent of the size of
the loop. Unbonded sites (dangling bonds) are the topo-
logical defects. So long as the loop passes through perfect
regions, the difference between the number of black and
red squares enclosed is equal to the difference between the
number of black and red defects (Fig. 2): Dangling bonds
(free spins) on black squares act as antiparticles to dan-
gling bonds on red squares.

These dangling bonds are entirely analogous to the neu-
tral solitons in polyacetylene. They have spin —,

' and
charge 0, are created in pairs by breaking a bond, and
(because the RVB state has no crystalline long-range or-
der) act as free particles. As in polyacetylene, the defect
will presumably extend over several sites, and be quite
mobile. Upon doping, the added electrons or holes will
bind to the free spins, forming a charged soliton. (In the
absence of electron-electron interactions, charge conjuga-
tion symmetry implies that a dangling bond has a midgap
state; the charged soliton binding energy is then of order
2au. With interactions, these states will split apart, but
the extra electron will presumably prefer to avoid break-
ing an extra bond, giving a binding energy of order
2t /U. ) The charged defect has spin 0 and charge ~e.
The charged defect will certainly delocalize over several
sites; its size R is determined by balancing the delocaliza-
tion energy (of order —t[1 —(a/R) ]) against the ex-
change energy [of order (t /U) (R/a) per site], so
R/a (U/t) I/(d+2)

If the many-body wave function has a quasiparticle in-
terpretation, the statistics of the quasiparticles can be
determined by considering the transformation of the wave
function under the exchange of two solitons as follows.
Turn on an external potential which localizes the solitons
near points Qp and Rp. Schematically, the quasiparticle
wave function should be approximately of the form

~(g, R) =[e(g —g.)e(R-Rp)
~ e(g —R,)e(R —gp) 1/~2,
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FIG. 3. Quasiparticle statistics: Statistics are usually determined by the change in the sign of the wave function when the identities
of two particles are permuted. Statistics can also be determined by adiabatically dragging two identical quasiparticles along a path
which exchanges their positions (Ref. 12), and examining the resulting change in the phase of the many-body wave function. (a) An
elementary step which adiabatically transports a soliton from site a to site b. The electron hopping matrix elements t„and t,b are
slowly changed from their initial values (t,b» t„) to their final values (t,b «t, ); this moves the valence bond from cb to ac and the
soliton from site a to site b. The sign change in the wave function is unambiguous only if the solitons transverse a closed loop. Howev-

er, keeping the wave function real and using the most natural sign convention, we find that charged solitons pick up a +1 per move
and neutral solitons pick up a —1 per move (calculated analytically for U 0 and numerically for the Ua0 Hubbard model). (b)
Transporting single neutral solitons around loops produces phase changes. We carry a single red soliton around a closed path which
encloses one plaquette. If the soliton is charged e, the phase of the wave function is unchanged; however, if the soliton is neutral,
the change in the sign of the wave function is ( —1)~, where N is the number of moves of the type shown in (a). (The final move,
which takes two horizontal bonds to two vertical bonds, must be done carefully to avoid a degeneracy in the many-body ground state.
When this is done, it yields no phase change. ) The neutral solitons therefore behave like particles with a negative hopping matrix ele-
ment. This sign change can also be written (for a loop) as ( —1)~ where N' is the number of enclosed plaquettes, as if the neutral
soliton were in an external gauge field with half a flux quantum per plaquette. (c) In this path, we exchange two red solitons in such a
way that the bonds return to their initial configuration. One soliton moves from a to b along the top path, and the other moves from b
to a along the bottom. If the solitons are charged, the wave function is unchanged; if the solitons are neutral, the wave function
changes sign. (This path encloses an even number of plaquettes; as noted above, neutral solitons following paths enclosing an odd
number of plaquettes will pick up an extra factor of —1.)

where Q and R are the quasiparticle coordinates. By
slowly varying this external potential the quasiparticles
can be moved adiabatically along a path which exchanges
Qo and Ro [Fig. 3(c)]; before and after exchange the
Hamiltonian is the same. From the net sign change of the
wave function we have determined that the charged soli-
tons are bosons and the neutral solitons are fermions, as
described in Fig. 3.

How are these considerations related to high-T, super-
conductivity? First, the scale of the binding energy of the

elementary bosons is no longer set by the phonon Debye
frequency, but rather by an electronic energy, —2to/U.
Second, just as for solitons in polyacetylene, the effective
mass of the bosons can be very small, making for large
quantum eff'ects. ' In two dimensions, ' the adiabatic
eA'ective mass of a soliton is proportional to the square of
the lattice deformation: M* =M(u/a) . To estimate
M*, we use parameters for La2Cu04. We take to 0.5
eV and a —3 eV/A from band-structure calculations. 's

These parameters imply that a lattice displacement

u, -to/(6a) 0.03 A is needed to stabilize the RVB state
with respect to the Neel state. The Cu-Cu distance is
a-3.79 A, so at critical coupling M /M=5X10
Thus, as in polyacetylene, the soliton mass is comparable
to an electron mass; at optimal doping densities bosons of
this mass would still be highly degenerate at the measured
T, . The large binding energy and degeneracy tempera-
ture of our charged solitons, both several hundred K,
make this a promising starting point for a complete
theory. '
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