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The application of the Scher and Zallen criterion to continuum systems, made of metallic parti-
cles of radius R~ and insulating particles of radius RI, is examined in view of the many cases of
its misuse. It is argued that in the R~ &&Rl limit an excluded-volume determination of the per-
colation threshold should be used. For the R~ = Rg case the Scher and Zallen critical fractional
volume is maintained in the continuum only when the particles are spherical and of equal size. In
the more common case of R~ &&RI, a hard-core soft-skin particle model provides the best avail-
able description of the system.

Seventeen years ago Scher and Zallen ' found that the
occupied conducting-volume fraction needed for the onset
of percolation shows a "remarkable insensitivity to lattice
structure. " In three dimensions the Scher and Zallen
(SZ) invariant was found to be 16% of the total volume.
In the many works3 s which have applied this criterion,
little attention has been given to the fact that this invari-
ant was found for lattices composed of a disordered mix-
ture of metallic spheres of radius RM and insulating (or
missing) spheres of radius Rt, such that Rst =Rt. Corre-
spondingly, this criterion has been misused in many dis-
cussions where it was treated as a much more general in-
variant than it actually is. In particular, the above value
has been compared with experimental results obtained on
systems in which metallic (or conducting) particles were
embedded in a continuous insulating matrix, on systems
made of metallic and insulating particles for which
RM &Rt, and on systems where the conducting particles
or the insulating parts cannot be approximated by a
spherical shape. Two recent examples are typical. In one,
the fact that the critical conducting-volume fraction p,
was close to that of the SZ value was misinterpreted as in-
dicating spherical conducting particles, while in the oth-
er the different experimental result was described as
"near the theoretical value. " In the corresponding sys-
tems the SZ conditions are not fulfilled and, thus, a priori,
the SZ value is not to be expected. As we shall show
below, the p, values obtained in these systems have very
little to do with the SZ criterion; rather, they are associat-
ed with other, special, properties of the systems. We also
note that the large deviations of the percolation threshold
from the SZ value in granular metals and systems of
particle mixtures, ' have not been explained thus far.

That the SZ value does not hold beyond lattice systems
of equal size spheres (for which it was found) is apparent
from the experimental results on three-dimensional com-
posites which show fractional volumes as low as 2% and
as high as 60%. Hence, if percolation thresholds are to
be derived, one has to consider more details of the system
with the hope of finding trends in the effect of the system
parameters on these thresholds. " ' This paper presents

an attempt to find such trends and to call attention to the
limited applicability of the SZ criterion. In particular, we
show that three regimes, defined by the Rss/Rt ratio,
determine three diA'erent approaches for the evaluation of
the critical fractional volumes. We further show that the
use of the appropriate percolation approach can yield in-
formation regarding the transport mechanism in the cor-
responding composite. Finally, we suggest that existing
phenomenological theories provide a good description of
composites for the regimes where the SZ criterion is not
applicable.

Let us start with the R~ &&Rl limit. In this case, the
metal particles fill the nonspherical voids between the in-
sulating particles in a situation that resembles a conduct-
ing liquid filling the pores in a sedimentary rock. Under
these conditions, as we have shown recently, " the total
pore space can be made as small as desired. Correspond-
ingly for this limit (which is well described by the exclud-
ed volume theory"' ) the critical volume fraction of the
conducting metal, p„should be determined by considering
a system of pores rather than a system of particles. This
means that the shape of the metal particles or their size
distribution are of little importance in the determination
of the value of p, . Hence, values" of p, = 0 should come
as no surprise. Indeed, such low values of p, have been ob-
tained in composites where the RM«Rt condition pre-
vails. In fact, these experimental results are the best
confirmation of the situation expected in rocks" (Archie's
Law) where a well-controlled experiment has not been
carried out thus far. (The p, =0 results have been de-
rived from a collection of electrical conductivity data on
"similar" rocks" with different total pore volumes. ) In
contrast, the above-mentioned composites provide a
well-characterized system in which the metal content can
be varied continuously. We note that the case of a con-
ducting liquid in a system of overlapping spherical pores
(rather than insulating spherical particles) belongs to the
above group of systems and is the simplest case for which
the excluded-volume theory' applies. Hence, in these
"Vycor" glasslike systems the value"' of p, =0.29
rather than the SZ value of p, =0.16 should
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be used.
The second group of systems to be considered is the

group of mixtures of touching spheres for which RM =RI.
Under these conditions the value of p, is expected to be
close to the SZ value because the number of nearest
neighbors in a random packing of spheres' is about the
same as that of a bcc lattice for which the SZ criterion is
fulfilled.

As the value of RM is increased from RM & Rq to
RM & RI the value of p, should increase through the SZ
value, monotonically. The effect of metal particle distri-
bution is expected to increase the value of p, since (see
below) the randomly positioned smaller metal particles
can be "trapped" in voids between the larger insulating
particles where they are unable to contribute to the con-
duction. Note that we may use the term "trapping" since
the onset of percolation is at a much lower metal content,
p„ than insulator content, 1 —p„and thus there will be
more trappings of metal particles in an insulating environ-
ment than the reverse. This expectation is supported by
the higher p, values which were obtained on experimental
systems where such distributions of metal-sphere size do
exist. ' On the other hand, the deviation from sphericity
has the opposite effect on p, . As to be expected intuitive-
ly' and as confirmed by computer simulations, 'i'4 a
lower connectivity is needed for the onset of percolation
when the system is made of elongated particles (see
below). However, this is true only if the orientations of
these objects provide a random isotropic system. Under
some preparation conditions of composities the elongated
objects may line up' and thus the value of p, will in-
crease. "' We may conclude then that for systems of
nonspherical particles a p, value lower than 0.16 is expect-
ed for the isotropic case while higher values are expected
for the extreme anisotropic cases. In Ref. 7, where the
system considered was made of elongated metallic parti-
cles, which have a size distribution, the threshold at
p, =0.21 is the combined result of these two contradicting
factors. Hence the proximity to the SZ value is quite ac-
cidental.

Let us turn now to the case of widest interest in the
physics of composite materials, i.e., composites in which
metallic particles are embedded in an insulating matrix.
This case, which is less understood than the previous two,
is well described by the RM &&Rq limit. Here the conduct-
ing particles are placed randomly in space and the insulat-
ing matrix can be viewed as made of fine particles filling
the pores between them. If there is no operative attraction
between the conducting particles they will not touch each
other since exact touching requires an infinite accuracy of
positioning. Hence, the system will exhibit percolation
only in the trivial limit of random close packing. The situ-
ation in the continuum is very diA'erent then from the situ-
ation found in the SZ case of lattices, where two nearest-
neighbor spheres touch each other automatically. In fact,
as will be argued below, this property rather than the
"being-on-lattice" property is responsible for the SZ in-
variance. For spheres the (well-known ) corresponding
fractional occupied volume in the continuum is 64%. We
may conclude then that for a continuum system of spheres
we should relate P, 0.0 to the R~ &&Rl case, p, 0.16

to the R~ = Rl case, and p, 0.64 to the R~ && Rq case.
We know, however, that most systems, ' which seem

to be described by the R~&&RI random close packed
structure, have p, values which are smaller than 0.64.
Such a lower value can come about when adjacent spheres
are forced to touch each other, or when two spheres can be
considered touching or in physical contact, even though
they are not touching geometrically. Geometrical contact
can be provided, for example, by a "gravitational force"
under which the essence of the automatic touching, which
exists in the lattice (i.e., the SZ case), is restored. This
suggests that in the presence of an external force the devi-
ation of p, from the 0.16 value should be quite small.
Indeed, computer simulations' of such a system yield a
value of p, =0.18. On the other hand, if short-range-
order attraction and repulsion are considered, a more
complicated behavior of the percolation threshold takes
place. ' One notes of course that a long-range attraction
will make the whole system collapse, and the problem at
hand ceases to be a percolation problem.

In solid composites, ' ' such forces do not seem to play
any significant role and thus the particles can be assumed
to be randomly distributed in the insulating matrix. Cor-
respondingly, there must be a mechanism which enables
electrical conduction between nontouching nearest neigh-
bors. If the charge-transfer mechanism is of long range,
the percolation threshold loses its meaning and thus only
short-range charge-transfer cases should be considered.
Such cases can be described by spherical particles, of hard
core radius b, which have a soft (penetrable) skin
(charge-transfer range) thickness, a —b. We do know al-
ready' that the percolation threshold will vary between

p, =0 in the b/a =0 case and p, =0.64 in the b/a =1 case
Physical touching in composites (see examples below) cor-
responds, usually, to the case where b/a is smaller than,
but close to, unity. '

In order to consider this (composites-most-common) re-
gime we have carried out a Monte Carlo computation
which yielded the critical concentration of particles of a
given shape, N„as a function of b/a In part. icular, we
have followed the two effects which may cause deviations
of p, from the results obtained for an ensemble of equal-
size spheres. In our simulations, particles were implanted
randomly in a unit cube. If the hard core of a new particle
overlapped the hard core of any already existing particle it
was discarded, while if only their soft skin overlapped they
were considered in contact. This procedure ' ' creates a
homogeneous distribution of particles, as to be expected
from an equilibrium situation, ' from a good mixing of
the metal particles ' or from the random preferential lo-
cations in which new particles will grow. ' To check our
computation procedures we have compared our results
with those obtained by Bug, Safran, Grest, and Web-
man, ' using a different procedure and intended for
another purpose. We found that their results, which were
derived only for spheres, were exactly the same as ours.
This becomes apparent when one notes that the depen-
dence of N, (or ' N, 4@a /3) on b/a can be easily
translated to a dependence of p, =N, 4mb i/3 on b/a. The
corresponding results are shown by the "fixed a, b=8„
spheres" curve in Fig. 1. Since, as pointed out above,
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there are no practical composites (in the R~&&RI limit)
in which the metallic particles have an exact spherical
shape or a single size, we studied the b/a dependence of p,
for capped cylinders (length L, hard core radius b, skin
a —b) as well as for variable-size spheres. ' In the latter
case we assumed a hard-core radius b which had a normal
distribution (with a mean B„and a width tr) so that for a
given B„the value of a bwa—s kept constant. This corre-
sponds, for example, to cases where the conduction mech-
anism depends only on the distance between the surfaces
of the particles (e.g. , tunneling). The results shown in
Fig. 1 indicate clearly that for elongated particles (for the
same b/a), lower p, values will be obtained, while if a dis-
tribution of particle sizes exists (small particles trapped in
voids —see above), larger values of p, will be obtained.
As for the soft-core limit (b/a =0) one obtains" that the
larger the aspect ratio (e.g. , L/b) of the particles the
lower will be the percolation threshold N, or p, . Further,
if there is a length distribution of the L values one can ac-
count for the distribution by considering their average
value as we have done for the soft-core limit. ' '

Let us now see what the present results teach us regard-
ing three composites of interest. For carbon-black corn-
posites' where p, =0.1 the aspect ratio and the "struc-
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FIG. 1. The b/a dependence of the critical fractional volume
occupied by the hard cores of the particles p, . For spheres, a
was fixed (0.04 in sample's diameter units) and the b/a ratio
was determined by the variation of b=8„. For the capped
cylinders, the length L ( 0.15) and the radius a ( 0.015)
were fixed and the b/a ratio was determined by the variation of
b=B„. In the case of spheres with a distribution of radii, the
soft-skin thickness, a —b, was fixed for a given value of the
mean of the distribution of the hard cores 8„. These results
were derived for a normal distribution with a width of a 0.01.
Again, the different values of the 8„/a ratio were obtained by
the variation of 8„.

ture"'5 of the particles determine the number of "con-
tact" points between two adjacent particles. If we consid-
er then the results of Fig. 1 as pertinent to some "average"
particle which is approximated by a cylinder (of an aspect
ratio L/b of 10) we may get an estimate for the average
value of 2(a —b). Following the data in the literature'
such an average particle is 1500 A long and 150 A wide.
For p, = 0. 1 this yields, according to Fig. 1, an average of
2(a —b) = 100 A, which means that tunnelable distances
(less than 100 A) exist between adjacent particles. This
conclusion is consistent with the fluctuation-induced tun-
neling mechanism suggested ' for these composites. For
various granular metals, in which nearly spherical parti-
cles of radii between 10 and 60 A and corresponding p,
values between 0.60 and 0.40 were found, the lack of ex-
planation for the deviation from the SZ value has been
pointed out. Such an explanation is provided now by the
results of Fig. 1, since these results imply that for all
granular metals 2(a —b) at the percolation threshold is
than about 10 A. We interpret these results as indicating
that, close to the percolation threshold, contacts are estab-
lished by the coalescence of particles. This interpretation
is supported by the fact that the metal grain radius can be
varied by a few /It due to sample annealing (which means
that particles are bridged by "necks" in the real material)
and by the fact that the temperature dependence of the
conductivity is changed from activated to metallic at the
percolation threshold. ' Hence, due to the absence of an
"automatic contact" (see above) the large deviations from
the SZ result is not surprising, and the present hard-core
soft-core Monte Carlo model is a much more realistic
description for the connectivity of the granular systems.
The fact that a preliminary attempt to provide an analyti-
cal solution for a system of spheres yielded results which
are not too far from the Monte Carlo results indicates that
liquidlike (hard-core soft-core) theory (Percus- Yevick
approximation) may be a promising approach for the
description of this third (R~ && RI ) regime.

Another composite of interest is that of microcrystalline
silicon in which crystalline clusters are embedded in an in-
sulating hydrogenated amorphous silicon matrix. For this
system it was found that p, =0.16 and b =500 A. From
Fig. 1 one finds that this implies a distance of
2(a —b) = 300 A if spherical particles are assumed.
Since such a distance is not in agreement with any reason-
able charge transfer mechanism, and since no short-range
attraction between the microcrystallites is known to exist,
we must conclude from Fig. 1 that the particles are
elongated (or most likely, have a disklike shape"). It is
quite apparent, then, that the fact that the experimental
p, equals the SZ result is quite accidental, and thus the
conclusion regarding microcrystalline spherical clusters
is unfounded.

In conclusion, we have defined three regimes of percola-
tion thresholds in the continuum, each of which has to be
treated by a diA'erent approach. The well-known Scher
and Zallen approach appears to be applicable only to the
intermediate regime where the system provides geometri-
cal contacts between its equal-size spherical particles.
The other two regimes are better described by either
excluded-volume or liquidlike empirical theories.
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