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Symmetry considerations and physical properties of the order parameter of the He A -8 interface
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The order parameter of the He A-R interface is discussed in the light of a symmetry con-
sideration, with particular attention paid to the separate role of spin and orbit spaces. The orien-
tations of the order parameters of the bulk phases are shown explicitly. Four degenerate
configurations, inter-related by time reversal and parity, are found. It is shown that the lack of
symmetry within a given configuration leads to transport of transverse momentum across the in-
terface when the phases are not in thermal equilibrium.

The physics of the He A -B interface is now both of ex-
perimental ' and theoretical interest. Moreover, there
is recent interest in understanding the A-phase texture ob-
tained by slowly warming up from the B phase. A
knowledge of the orientation of the bulk order parameters
at the interface will be the first step toward this under-
standing. Calculations have already been done by Cross
and Kaul and Kleinert (KK). Unfortunately, neither of
these works has included the dipole energy in their calcu-
lation, nor has considered completely and explicitly the re-
lation between the spin and orbit spaces, and hence there
is confusion about, for example, whether the Leggett
configurations' in the bulk phases can both be satisfied.
These questions shall be answered in the first part of this
Brief Report. It will also be pointed out that there are
four degenerate configurations for the interface, related to
each other by time reversal and parity. Thus, there is a
lack of symmetry (broken symmetry) within a single
given configuration. An interesting consequence of this
will also be considered. Some of these observations have
already been mentioned in footnotes 15 and 16 of Ref. 5.

The order parameter of the A phase is defined by a triad
(wt, w2, 1) in orbital space and a vector d in spin space.
For the 8 phase we need a rotational matrix R;„(m, 8) re-
lating the spin space (Roman indices) and orbit space
(Greek indices) (here m and 8 are the rotational axis and
angle, respectively), and the overall phase angle p. The
order parameter of the interface is obtained by minimiz-
ing the free energy. Since the overall phase angle of the
entire system must be irrelevant, we shall hereafter choose
p=0 for the 8 phase while rotating the triad (wt, w2, 1) in
the A phase appropriately.

First we note that the dipole interaction is weak com-
pared to the other relevant energies. Therefore we can
first minimize the free energy with this contribution
dropped (and finally consider its effect by regarding it as a
perturbation, see below). Since we now have complete ro-
tation symmetry of the spin and orbit space separately,
such a procedure will only lead to relations among vectors
of the same subspace. Since d is the only spin vector and

R;„ is the only other object that has a spin index, all rela-
tions can be expressed, in orbit space only, among the vec-
tors w~, w2, l, d~„=d;R;„, and i, the normal to the inter-
face pointing from A to 8. Both Cross and KK get, within

their Ansatze, the relations

d =wt=+ z

+- J3/2 0
0 1

1/2

0
+ U'3/2 —1/2 0

(2a,b)

corresponding to

tu= J3/5 x+ (1/J5)y+ (1/JS)z,
and for the —sign in (1),

(3a,b)

1/2

0
~ J3/2

+ J3/2 0
0

1/2 0

(2c,d)

corresponding to

m= —J3/5 x~ (1/JS)y T- (1/J5)z . (3c,d)

We shall refer to these four configurations as a, b, c, d, re-
spectively.

We may worry that, though now we have also mini-

Hence l is parallel to the boundary. Note, however, that
at the present stage 1 d and 8 are not specified. Without
loss of generality we choose 1 =y, and hence w2 = ~ x.

Next we consider the eA'ect of the dipole interaction. It
is well known that in the bulk phases this gives the Leg-
gett configurations (l d) =1 and O=cos ' ——,'. '0 We
shall argue that these will not be destroyed by the pres-
ence of the interface. First, we note that the 4 phase al-
ways has the ambiguity of d —d, wt —wt,
w2 —w2. Because of the ~ signs in (1) cases with
d = —1 will not lead to new configurations.

Now we choose l=d for the A phase. For (1) to be
satisfied we need the rotation matrix to rotate d =1 to a
perpendicular direction w~ =+ i. But this is always pos-
sible for O=cos ' —

4 by suitably choosing m, thanks to
the fact that cos ' —

—,
' & tr/2. Moreover, for each of the

cases in (1), there are two possible choices for the rota-
tional axis m. Explicitly, for the + sign in (1),

35 8733 1987 The American Physical Society



8734 BRIEF REPORTS 35

mized the dipole energy in the bulk phases far from the
boundary, we have not done so in the distorted region of
the interface itself. This is true. However, even in cases
where the interface region favors some other relative
orientation between the spin and orbit space, the system
shall not adjust to this: To do so we would gain a free en-
ergy (per unit area) of order gD( [since the thickness of
the boundary is of order of the coherence length ((T)];
however, the system would then recover only in the dipole
healing length RD, and hence loses an energy of order
gDRD. Unless we are very close to T, such that
g(T) & RD, the system will just orient itself in the manner
discussed in the last paragraph.

It is interesting that the configurations a-d are related
by symmetry operations. Since we shall also be interested
in the transmission coefficient of the excitations across the
boundary, we shall first mention some salient features of
it. In a superfluid the excitations can be specified by the
momentum direction n, the energy E, the particle-hole in-
dex (k~kF), and the spin index cr. A particle (hole) has
group velocity parallel (antiparallel) to its momentum.
Since the excitations have wave vectors

~
k

~

= kF» I/g,
during their scattering with the interface, the deviations of
n can be ignored to the lowest order of approximation. "
For given n and E, with n, & 0 say, there are two types of
excitations (four if also counting the spin) incident on the
boundary, namely, particles from the A phase and holes
from the B phase. It can be shown, with a properly chosen
spin index, that they have the same transmission
coefficient. Hence the quantity, namely, the spin-
averaged transmission coefficient, T(n, E), is well defined.
We shall also discuss the properties of this T below.

Now we consider the symmetry operations. For
definiteness we always start with the configuration a.
Note that since a and b diA'er only in their relative spin-
orbit rotation matrix R, they have the same T for given n
and E. A similar statement holds for c and d. We first
consider the time-reversal operator e,

Rage =e a I, —,6 =—cr,—
1 ~ha

2
A A

which reverses the momentum direction n, reverses d, l, w2,
changes &=0 to p=+, while keeping w~, R;„unchanged.
Since configurations a- d are defined with p =0 and I =y,
for comparison we have to first perform a gauge transfor-
mation of x (which reverses wi and w2) and a rotation of
z about z. The last operation in particular changes R, to
R,R,R, =Rd and reverses the signs of the x and y mo-
menta. Here R, is rotation of x about the z axis, and the

subscript a-d on R indicates which configuration it corre-
sponds to as written in (2) and (3). Hence the time-
reversed a (b) is d (c). It can also be shown that the
symmetry-related situation has the same T and, hence,

T(n„,n~, n, ;E) ~, = T(n„,ni„n—,;E)
~ d .

Similarly we can consider the parity operation P,

P+a P=e' " aag —e a

(4)

Thus the operations e and P transform the configurations
a-d among each other. Note also that these symmetry
operations tell us nothing about T within a single given
configuration (the symmetry of the "vacuum" is "bro-
ken").

Note that we do not have much restriction on T. Recal-
ling that T, =Tb, T, =Td, (4) and (5) together imply
T(n„,n~, n, ) =T(n, —

n~,
—n, ) within a single con-

figuration. Supposing further that T is invariant under
n~

—
n~ (see below),

T(n„,n~, n, ;E) =T(n„, —
n~, n, ;E) .

Equations (4)-(6) then allow us to flip the signs of n~, n,
without aA'ecting T, but never the sign of n . The trans-
port across the interface is thus asymmetric with respect
to the x direction.

Since the transmission probability depends on the sign
of the x momenta, this raises the possibility of a transfer
of x momentum across the interface when the two sides
are not in thermal equilibrium. For simplicity, we assume
(6) and, hence, T is independent of the signs of n~ and n, .
For the excitations incident on the interface from A we
parametrize them by the polar angle 8 measured from the
y=1 axis and azimuthal angle p measured from the +x
axis as (n„,n~, n, ) = (sin8cosp, cos8, sin8sinp) for parti-
cles and holes, respectively (n, ~0), 0~ 8, &~ n. The
rate at which x momentum is delivered from 4 to 8 is
given by

which reverses n and keeps the order-parameter vectors
unchanged but moves the 2 (B) phase to the
z (0 (z & 0) side. To make a comparison we therefore
need to rotate the whole system about y. The last opera-
tion reverses the signs of n„, n, and changes R, to
R~R, R~ =R, . Hence, the P operations change a (b) to
c (d). Again, it can be shown that the symmetry opera-
tions leave T invariant and, hence,

T(n„,n~, n, ;E) ~, =T(n„, —n~, n„E) ~, .

Pz ii =2N(0) 6 UFkF) „~ & &
~dE f(E,T~ )sin 8singcosg(T —T'),

4n ~ 1~~&8,4& I

(7)

where the factor 2 comes from the spin sum, N(0) is the
density of states at the Fermi surface for one spin, the &
sign reminds us that Q is restricted to the half-sphere as
mentioned, f is the Fermi function, T~ the temperature of

T(A ) = T(sin8cosp, cos8, sin8sinp)

I

and

T'(0) =T( —sin8cosp, —cos8, —sin8sinp).

For the excitations incident from B, we parametrize
them as (n„,n~, n, ) + (sin8cosp, cos8, —sin8sinp) for
particles and holes (n, &0), respectively, thus again re-
stricting 8, & to the previously mentioned half-sphere. Us-
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ing the fact that T is independent of the sign of n„ the
quantity Pit ~ is exactly the same as in (7) except re-
placing A 8 throughout. The force per unit area is
F =Pg g —Pg g. If Tg Tg, F„=O as expected.
However, if h, T—= T~ —Tg ~0, then we have

" dnF„=2N(0)hvt;kt;
&

dEsin Osinpcosp
4g ~ ~mm

x (T T')(a—T), (8)
T

giving a force across the interface if TaT' (if T depends
on the sign of n„)

For illustration we consider the case where the order
parameter of the interface is a linear combination of the
bulk phases

d;„( ) =x(z)d,"„+K'( )d;„.
X( — )- I, X(+ )-0, ~( — )-0, ~(+ )-1. It
follows that, for suitable choice of (n-dependent) spin
axis,

W'(z) =X (z)a„(—n„+in, )

+ ~(z)~, [~ (I —n,') '"+tn, ], (10)

the sign depending on the spin direction. This presents a
transparent case of why T depends on the sign of n„: this
sign tells us how the phase angle of d, '(z) varies with z
when we go from A to 8 phase. This, being like a
superfluid current (along z and different for each n),
affects the transition coefficient. Thus, what we are dis-
cussing is a quantum-mechanical eA'ect. In particular, it
would vanish if the ballistics of Greaves and Leggett'
were used, for then only the gap magnitude matters. '

From (10) we also see that T is independent of the sign of
n~.

' Interestingly, the case (9) with the restriction
k+tc= 1 (KK) can be shown to be a special case where
T=T' and F„O by pure mathematical coincidence.
For illustration we use

0:5 [1 —t an h (z/R o) ] +h,
re =0.5[1+tanh(z/Ro)]+h,

where h - (a/2)e ' t ~ . Setting h -0 reduces to the KK
Ansatz We shall ta. ke R(T) 1.267((T), a =0.037,
b =1.98 from minimization of the Ginzburg-Landau ener-

gy giving an energy = 1% lower than KK. For this order
parameter we get, at melting pressure, for d, T in mK and
F„ in dyne/cm,

F„=0.43(AT) at T =0.36tt,
F„=0.05(BT) at T =0.26tt .

The F„ for configurations b-d are identical.
To avoid misunderstanding a few comments will be

made. The order parameter of the interface is a function
of z only. Hence, when an excitation is scattered by the
interface, its total momentum in the plane of the interface
is conserved. However, the broken symmetry of the inter-
face (and the associated supercurrents) causes an overall
preferential transmission of excitations with positive x
momenta over the negative ones. Therefore, when
Tz & T~ there is a delivery of x momentum from the nor-
mal component of the 2 phase to that of the 8 phase. The
A-phase normal component acquires a negative x momen-
tum. However, the total x momentum of the excitations is
unchanged.

The order parameter used here is almost definitely not
accurate enough to give a realistic estimate. However, as-
suming the above values a power of 10 pW per cm will
result in a force of order 10 dyne/cm . This effect may
be extremely interesting to investigate experimentally. '

Note added in proof. Recently I became aware of a
more accurate calculation of the order parameter of the
interface. ' This order parameter and that of KK fall in
the same symmetry class, and the orientation of the
order-parameter vectors is the same. The absence of some
symmetry mentioned in this paper is likewise common to
the results of Schopohl. ' Hence, all the discussion in this
paper is unaffected except (i) the intuitive explanations in
Refs. 13 and 14 become less transparent, and (ii) the pre-
cise value of F„ is affected.
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