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1e and 2e superconductivity in spin liquids and spin crystals
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The recent, unexpected discoveries of superconductors with reported transition temperatures as
high as 123 K have renewed the search for mechanisms with higher transition temperatures.
Among the resulting proposals is one by Anderson in which an odd-electron insulator in a resonat-
ing valence-bond or quantum-spin-liquid state becomes superconducting via pair condensation
when sufficiently doped. However, Kivelson, Rokhsar, and Sethra have suggested that doping
such a state introduces singly charged boson defects which form a superconducting state via
Bose-Einstein condensation. We resolve this apparent contradiction by pointing out the possible
existence of a remarkable transition between superconductivity with an elementary charge of the
supercurrent of e to superconductivity with an elementary charge of 2e with increased doping.
Moreover, both kinds of superconductivity occur, even in the spin-crystal or Neel state.

The discovery of superconductivity in the La-Ba-Cu-0
system (T, =30-40 K), ' the La-Sr-Cu-0 system (T,—50 K), and the Y-Ba-Cu-0 system (T, =90-120 K)
and its various derivatives has sparked an enormous,
world-wide surge of activity. Theorists have renewed the
debate over whether the conventional theory of supercon-
ductivity, the Bardeen-Cooper-Schrieffer (BCS) theory
with the attractive interaction between pairs provided by
the virtual exchange of phonons, can encompass such high
transition temperatures. All of the theories proposed to
date can be divided into two categories, electron-pair con-
densation as in the BCS theory, and Bose-Einstein con-
densation of charged elementary excitations or defects.
The pair theories can be further subdivided into those in
which pairing and condensation both occur at T, as in the
BCS theory and into those in which pairs are already
present above T, and condensation occurs at T, . The
boundary between these two categories is blurred by su-
perconducting fluctuations above T, in low-dimensionality
materials. In the first category, an attractive interaction
normally drives the pairing and pair condensation, but
gapless superconductivity can be induced by a purely
repulsive interaction of appropriate form. In the second
category, condensation can occur with or without interac-
tion of either sign.

A guide as to where one might search among these
many possibilities is provided by a crystal structure and
electronic structure studies of the high- T, materials. A
structural element common to all of these materials is pla-
nar (or near-planar) arrays of Cu and 0 with Cu at the
corners of squares and 0 at the edge centers. The Fermi
surface intersects a o-antibonding band made up of Cu
d 2 y 2 orbitals hybridized with 0 p orbitals. In the proto-
typic compound La2Cu04, that band is half full, and the
material is an odd-electron insulator. Incorporating ex-
perience derived from earlier studies of oxide supercon-
ductors, Anderson observes that superconductivity tends

to occur in such materials near a metal-insulator transi-
tion into an odd-electron insulator with peculiar magnetic
properties. He hypothesizes that the insulating phase is a
resonating valence-bond or quantum-spin-liquid state
with all electrons tied up in nearest-neighbor singlet pairs.
Sufficient doping (e.g. , substitution of Ba for La) then
forces these pairs to move, and an attractive residual ex-
change between pairs drives condensation into a supercon-
ducting state at a high T„a theory of the first category.
Kivelson, Rokhsar, and Sethna' have pointed out, howev-
er, that doping at low levels produces mobile charged de-
fects which are bosons with a hard-core repulsion. These
then undergo Bose-Einstein condensation into a supercon-
ducting state, the sole theory in the second category. In
the present paper, we resolve this apparent contradiction
and point out as well that both kinds of superconductivity
can occur in the antiferromagnet or Neel state as well.

We start by discussing the phases of the half-filled
Hubbard model. In that model, there is a nearest-
neighbor electron transfer matrix element t and an on-site
repulsion U between electrons of opposite spin. When
t =0, there is a 2 -fold-degenerate ground state at ener-

gy zero, and there are excited states at energies vU, where
N is the total number of electrons and v is the number of
doubly occupied sites. At finite t, the exact eA'ective
Hamiltonian within this ground-state manifold is H, ff
=VGT(E HDD) 'VDo, where —E is the energy of the
state in question, 6 refers to the ground-state manifold,
and D is the excited-state manifold. By examining the
convergence of the expansion of the propagator
(E Hpp) ' in powers of t/U, one can establish that the
Mott-Hubbard metal-insulator transition occurs when
a(t/U), =1, where a is infinite for the simple square lat-
tice and becomes finite as soon as electron transfer occurs
in the third dimension. Similar considerations demon-
strate the existence of a superexchange interaction be-
tween spin pairs in the ground-state manifold which has
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FIG. 1. Electric and magnetic phase diagram for a half-filled,
quasi-two-dimensional Hubbard model. F is a measure of the
disorder, e.g., the variance of a random site potential, t is the
nearest-neighbor electron transfer matrix element, and U is the
on-site repulsion between electrons of opposite spin. The
metal-insulator transition is continuous, and the spin melting
transition is first order.

an exponential asymptotic separation dependence with
range

R [2 ln (U/at ) 1
' —((2/a ) (U/t —(u/t ),))

When t 0, the individual electrons are confined to a sin-
gle site. For finite t they spread out, the localization
length L becoming L 2R.

Suppose now that the ground state for finite t is that of
a Neel antiferromagnet or a spin crystal. If so, all ex-
change interactions between spins on the same sublattice
are frustrated. It is possible that the spin crystal is unsta-
ble and melts into a spin liquid Th. ere are three tests for
stability of the spin crystal: (1) all spin-wave energies
must be positive to prevent a condensation; (2) all spin-
wave energies must be real to prevent exponential growth
of fluctuations; and (3) the ground-state energy must be
lower than that of the spin liquid. The first stability re-
quirement is met for all spin waves and all t/U within the
insulating phase. The second stability requirement, that
of local stability, is violated at higher values of t/U than is
the third, that of thermodynamic stability, implying that
spin melting is a first-order phase transition, occurring
within the Mott-Hubbard, odd-electron insulating phase.

Both transitions, the metal-insulator transition and spin
melting, are very sensitive to disorder. The real materials
are not strictly two dimensional. The metal-insulator
transition thus becomes a line on the (t/U)-$V phase
plane (zero temperature), where &is an appropriate mea-
sure of the disorder, as indicated in Fig. 1. It corresponds
to an Anderson transition'' at W, for large t/U and a
Mott-Hubbard transition' at (t/U), for small W. Disor-
der reduces the localization length L in the insulating
phase and therefore the range R of the exchange, stabiliz-
ing the spin crystal relative to the spin liquid as shown in
Fig. l.

We now consider the effects of doping, for example,
by substituting divalent Ba or Sr in La2Cu04 to form

La2 „Ba„Cu04. Thus, x electrons per Cu atom are re-
moved from the previously half-filled band. As the accep-
tor ions are presumably randomly distributed on the
trivalent ion sites, doping is accomplished by a substantial
disorder potential. We shall simplify our discussion, how-
ever, by supposing that x and 8' are subject to in-
depenednt control and deal here only with cases in which
disorder is unimportant. We turn first to the doping of a
spin liquid. Kivelson, Rokhsar, and Sethna'0 have pointed
out that the lowest-energy configuration for a single elec-
tron removed is that of an electron deficiency spread over
a range b of sites which moves freely in solitonlike fashion.

The followin determination of b differs from that of
Kivelson et al. ' The problein is closely analogous to that
of the acoustic polaron in d dimsnions. ' The part of the
energy of localization dependent on b is, approxi-
mately, t(a/b), and that of the exchange energy is—

—,
' (t U)(a/b), where a is the lattice constant. Minim-

izing their sum with respect to b yields' b/a =(dt/4U)",
where b -1/(d —2). Thus, for d & 2, the solitons become
sharply defined, particularly in the quasi-two-dimensional
cases of interest here.

For small but finite doping, there will be a number den-
sity nox of these charged solitons, where no is the electron
density in the undoped case. Between the regions of
charge deficiency, the wave function is identical to that of
the undoped spin liquid. It is a wave function with moving
holes. The wave function is unaffected by exchange of
hole position, so that these solitons are bosonlike. They
depart from bosons in that two electrons cannot be re-
moved from the same site. They can nevertheless be treat-
ed as bosons after adding to their Hamiltonian a repulsive
pseudopotential interaction which becomes an infinite
contact repulsion when the internal size of the soliton
shrinks to a single site. These solitons undergo Bose-
Einstein condensation so that at x values low enough for
the statistical and Coulomb interactions to be ignored,
they are superconducting with a T,-x . As the entities
which condense have a charge of e, all experiments which
yield the charge of the carriers of the supercurrent will
show e in place of the usual 2e.

As the doping increases, either the zero-point kinetic
energy 25.6x t per site of the solitons arising from their
short-range repulsion increases to the point where it is too
costly to maintain the ground-state wave function in its
undoped spin liquid from between the holes of cheese
deficiency, or the solitons overlap, b =r, =(3/4nox)'i,
and became unstable. Either way, there is a phase transi-
tion to the ground state described by Anderson and co-
workers at a critical doping value, x, . The electron
deficiency spreads out and becomes uniform, the pairs be-
come free, and they condense. The appropriate theory is
that of preformed pairs which Bose condense at T„as in
the mean-field theory of Baskaran, Zou, and Anderson.
We thus predict the remarkable phenomenon of a change
of the elementary charge of the supercurrent from e to 2e
with increased doping, as illustrated in Fig. 2. While T,
may be low in the e domain, such a phase ~ould neverthe-
less be of great interest, and these materials should be
studied at low doping levels despite the lower T, 's.

We now turn to the spin crystal. The existence of anti-
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ferromagnetism within the Mott-Hubbard insulating state
changes nothing essential within the argument of Kivelson
et aI. ' concerning the defects in the ground state generat-
ed by doping. An electron can be stripped away from a
site on either sublattice. There are thus two kinds of sing-
ly charged bosons, one carrying Ising spin —

2 on the up
sublattice and the other Ising spin + —,

' on the down sub-
lattice. In the simplest case of small t/V in which the soli-
tons are compact, each propagates on its own sublattice
via a nearest-neighbor transfer matrix element t, equal to
half the intersublattice superexchange interaction J,
t, = —(1/2) J = 2r /—U. Thus, for the simple square lat-
tice, each has a band structure given by
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e(k) =2t, [cos(k~2' a)+cos(k„2' a)]+2t&cos(k, c),
(1)

where, to allow for Bose-Einstein condensation, we have
explicitly included three-dimensionality in the motion,
with t & && t, . The solitons are compact, confined primarily
to a single site with a shape independent of J. The con-
densation temperature is

kttT, =4 17(J t) ' x (2)

Because of their compactness, the zero-point energy, 16.2
Jx may play the more important role in destabilizing
the soliton gas, and once the critical concentration x, is
reached, the electron deficiencies cease to be localized and
spread out uniformly over all sites. The theory of
Baskaran, Zou, and Anderson is then applicable and is
readily modified to incorporate the spin polarization on
each sublattice. There results a theory of BCS form but
with certain important diff'erences. First, each member of
a pair resides on a diff'erent sublattice. This has the eftect
of enhancing superconductivity by substantial reduction
of the direct Coulomb interaction through spatial separa-
tion, an enhancement mechanism suggested by us 20

X

FIG. 2. Superconducting transition T, temperature as a func-
tion of doping x. At x, there is a transition from superconduc-
tivity via the Bose-Einstein (BE) condensation of singly charged
solitons and to superconductivity via the condensation of the
singlet pairs forming the resonating valence bonds.

years ago. ' Second, the predominant attractive interac-
tion driving the condensation is the superexchange. An
interesting aspect of the theory is that the terms
representing the product of two spin deviations usually
neglected in spin-wave theory play a central role in the su-
perconductivity. Finally, the cutoA is of order of the
bandwidth. The resulting transition temperatures can be
very high, as in Anderson's picture.

The above discussions can be applied to doping by
donors, such a oxygen vacancies, simply by substituting
everywhere doubly occupied sites for empty sites.

We conclude with a note of caution. Rich in possibili-
ties as the nearly filled Hubbard model is, it is simpler and
less rich than any tight-binding model accurately describ-
ing the essential features of the electronic structures of the
real materials.
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