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Molecular-dynamics simulation of a model with incommensurate phases
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Two-dimensional models of displacive and order-disorder behavior, in the form of crystallites
with free boundary conditions and with one-dimensional incommensurate and/or commensurate
phases, have been studied using the molecular-dynamics method. The incommensurate phase can be
characterized with any wave vector by the appropriate choice of potential-energy parameters. The
ground-state devil's staircases of the models are complete. By a series of cooling runs the phase dia-
gram is established. The map of the particle configuration, a result of the cooling run, formed a
nonideal incommensurate phase. In the diffraction pattern of that configuration the intensities of
the satellites, especially those of higher order, are considerably lower. The displacive system shows
a soft, underdamped phonon mode, which with lowering temperature condenses at the critical wave
vector, producing the incommensurate phase, in which the phase and amplitude modes are observed.
The phase-mode dispersion curve does not show a gap. Adding 2%%uo point defects to the system does
not influence the phase and amplitude modes. The kinetics of the variation of the wave-vector
modulation of the incommensurate phase has also been studied. The relevant non-
equilibrium devil's staircase exhibits quasisteps at irrational numbers which are attributed to the nu-

cleation and growth of new incommensurate periods observed as a stripple. Examples of nucleation
inside and at the edges of the crystallite are given. Point defects hinder the propagation of the
deperiodization line which borders the stripple.

I. INTRODUCTION

Incommensurate crystals, which are of great interest
from both theoretical and experimental points of view, ex-
hibit a superimposed periodic modulation in the atomic
positions of the constituent atoms whose wave vector is
generally incommensurate with the usual reciprocal-lattice
wave vector. A number of simple models have been pro-
posed for this behavior' with either the ground states of
the models analyzed or the mean-field solution given.
Much about incommensurate crystals is well understood,
including the form of the incommensurate modulation
and the related harmonic spectrum, the nature of the
sinusoidal and soliton regimes, the discommensurations,
the lock-in phases, the devil' s-staircase behavior, the phase
diagrams, and the peculiar elementary excitations of the
incommensurate phase and also of the phase and ampli-
tude modes. On the other hand, extensive experimental
studies on a number of crystals such as Rb2ZnBr4,
thiourea, tetramethylammonium-tetrachlorozincate
(TMATC-Zn), " TMATC-Co, quartz, etc. by a number
of precise experimental methods including x-ray and neu-
tron diffraction, inelastic neutron scattering, Raman
scattering, nuclear magnetic and quadrupole resonance,
and dielectric and birefringence measurements, have led to
results which can only be explained by processes more so-
phisticated than those studied in the models mentioned
above. Various hysteresis effects '', a memory effect, "
an energy gap in the phase mode, ' ' an unusual shape in
the x-ray satellite reflections of an irradiated sample and
the intensities of higher harmonics (which can be orders
of magnitude lower than those predicted by the mean-
field approximation) also create problems. It is believed

that these effects are associated with imperfections exist-
ing in the crystals, and such as fixed or mobile point de-
fects, twin and grain boundaries, crystallite surfaces, or
internal stresses, and may be related to the sometimes very
slow kinetics of the incommensurate crystals. The com-
plexity of the phenomena in imperfect incommensurate
crystals makes their theoretical study fairly difficult.
Therefore, a computer simulation of a model system of a
considerable size in the incommensurate state could throw
some light on the mechanisms of all those effects.

In this work we study a simple two-dimensional crystal-
lite using the molecular-dynamics method. The method
itself consists in iteratively solving the classical Newton
equations of motion of all particles of the system. The
particles of the model interact via a potential which, by
changing some parameters, can reach a minimum for any
desired wave vector kz, but we are concerned with a one-
dimensional incommensurate structure only. The crystal-
lite can be heated or cooled to a given temperature and ex-
hibits a phase transition to the incommensurate and/or
commensurate phases. The results of the simulation are
augmented by a direct observation of the particle configu-
ration, including incommensurate modulation and strip-
ples, and by the calculation of a conventional diffuse-
scattering function F(k) and dynamic structure factor
S(k, co).

Two very similar models, displacive and order-disorder
in nature, have been studied. They differ in the charac-
teristic relaxation times in which the system approaches
equilibrium. The displacive model has a shorter, and the
order-disorder model a longer relaxation time. We have
also watched the effects of introducing 2%%uo of substitu-
tional point defects.
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The outline of the paper is the following. In Sec. II we
define the displacive and order-disorder models. In the
next section we briefly discuss the Landau free-energy ex-
pansion and the ground-state energy. Then we construct
the devil's staircase of the system at T =0. This is shown
to be complete and to contain two strong lock-in phases at
k =0 and k= 4. The devil's staircase is the same for
both models. Some details of the molecular dynamics
method and the definitions of the diffuse scattering func-
tion and the dynamic structure factor are given in Sec. IV.
Section V is devoted to the thermodynamic properties of
the models. A sketch of the phase diagram and the
phase-transition temperatures, as estimated by the molec-
ular dynamics method, are also given. The incommensu-
rate configuration of the ground state, reached by slow
cooling to T =0, was far from perfect. The diffuse
scattering function of such a configuration consisted of
first-order satellites and sometimes of higher-order satel-
lites. In Sec. VI. we study the elementary excitations of
the displacive model for which we have found a soft pho-
non mode above the normal-incommensurate phase transi-
tion. Below T„gapless phase and amplitude modes are
observed. Their frequencies agree with theoretical predic-
tions. Surprisingly, the model doped with 2% point de-
fects shows the same gapless phase- and amplitude-mode
dispersion curves as those in the pure system. In Sec. VII,
the kinetics of the variation of the satellite position of the
nonequilibrium incommensurate phase caused by a con-
tinuous change in the potential-minimum wave vector kz
are studied. Such a curve can be called the nonequilibri-
um devil's staircase. The driving force of the mentioned

process arises from the misfit between the wave vector k»
of the potential minimum and the characteristic wave vec-
tor of the current incommensurate phase. Except for the
displacive model where this curve is partly continuous, an
irregular steplike behavior is observed. The discontinui-
ties in the gaps between the steps are caused by the nu-
cleation and growth of new incommensurate periods. The
nuclei of new periods is called a stripple. The stripple is
formed from discommensuration planes which meet at
one closed line called the deperiodization line. The steps
of the nonequilibrium devil's staircase are not connected
with rational numbers. Two runs, one with increasing,
and the other with decreasing potential-minimum wave
vector k», show the existence of global hysteresis. The
nonequilibrium devil's staircase is not unique and depends
on the initial conditions applied. The results allow one to
conclude that defects hinder the growth and the propaga-
tion of deperiodization lines. Concluding remarks close
the paper.

II. MODELS

y(2)+ y(4) (2. l)

where

The system is defined as a two-dimensional rectangular
lattice with one particle per unit cell. Each particle can
move out of the system plane and its displacement is z„
The particles interact with each other via the following
potential energy:

V' ' = —, g [A 11z„+A 1z„(z„+,+z„1)+A 2z„(z„+2+z„2)

n, m

+A3Z„m(Zn m+3+Z„m 3)+A4zn m(Z„m+4+Z„m 4)+B1Zn m(Zn+1 m +Zn 1 m )

+B2 n, m( n+2, m+ n —2, m)+ Zn, m( n+1, m+1+ n —1,m+1+ n+1, m —1+ n —1, m —1)] (2.2)

n, rn

(2.3)

The constant G must be positive in order to stabilize the system.
To study the incommensurate phase one should choose such values of the model parameters that produce the incom-

mensurate modulation. In practice, to find the appropriate parameters one should consider the quadratic form of the po-
tential energy. Thus Eq. (2.2) can be transformed by

z„=QQ(k) exp[2vri(k„na+k»mb)]
k

(2.4)

into a diagonal form

V 1= +co (k)
~

Q(k)
~

k
(2.5)

where k = (k„,k» ) and

cu (k) =Ao+2A1cos(2~k»b)+2A3cos(4vrk»b)+2A3cos(6mk»b)+2A~cos(8rrk»b)+2B1cos(2~k„a)

+2B2cos(4vrk„a )+2C [cos[2m'(k„a+k»b)]+cos[2m(k„a k»b )]] . — (2.6)
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In order to produce an incommensurate phase, the disper-
sion curve co (k) should have its minimum at k =k». We
intend to consider a one-dimensional modulation along
the y direction, so we choose the minima of co (k) along
the [0,1] direction.

Temperature dependence in the wave-vector modulation
has been observed in many incommensurate systems.
This dependence is partly due to the temperature depen-
dence of the minimum of the generalized soft mode and
partly to the contribution from higher-order harmonics,
coming into play below the transition temperature. Since
part of our interest is in the mechanism of the wave vec-
tor change of the incommensurate modulation, we assume
that the minimum of co (k) at k» varies as a result of
model-parameter changes. Below we shall study the pro-
cesses which occur as a function of k~, and shall keep the
value of the minimum of co (k» ) constant. Consequently,
we assume that the two conditions dc@ (k»)/dk=0 and
co (k»)=II specify the value of two parameters A~ and
3z, the nearest- and next-nearest-neighbor harmonic force
constants respectively. By varying 3& and A2 one can
change the wave vector kz. The remaining model param-
eters, which have been kept constant, are collected in
Table I. The dispersion curves co (k) for several k» values
along the incommensurate direction and those perpendic-
ular to it are shown in Fig. 1.

Two models will be studied: a displacive model and an
order-disorder one. The models differ in the local poten-
tials,

loc 2 4
Vn, m ~ozn, m + G~n, m (2.7)

III. LANDAU FREE ENERGY
OF THE GROUND STATE

Consider the model as a classical system. Then the
ground-state energy at zero temperature is given by the
potential energy [(2.1)—(2.3)] in its ground-state configu-
ration. Using Eq. (2.4) the potential energy can be
transformed into the following form:

only. In the displacive case (Ao ——2.0) the local potential
has one single minimum, in the order-disorder case
(Ao= —2.0) it has two. The models differ in the relaxa-
tion times during which they approach the equilibrium.
In a displacive case the relaxation is faster than in the
order-disorder case. Both models possess only optic
modes, so the elastic properties cannot be considered.

We have also studied models doped with 2%%uo substitu-
tional point defects. The defects are defined by another
local potential. Namely, at the defect site the harmonic
local force constant was Ao ———10.0 for both displacive
and order-disorder models. All the other potential param-
eters of the defects were the same as for the host particles
(Table I). Since the barrier between the two minima of
the local potential at the defect site was rather high, the
defect was almost always located in one of the minima.
The distribution of defects, though random, was fixed.
Therefore, diffusion was not permitted in the simulation.

V/N= —, gm (k)Q(k)Q(k')5(k„+k„'—l„a*)5(k»+k»—l»b*)
kk'

+G g Q (k)Q (k')Q (k")Q(k"')5(k„+k„'+k„"+k„'"—I„' a)5(k»+k„' +k' »+ "k' 1'b*)—
k, k', k",k'"

(3.1)

where a*b* are the reciprocal vectors in the x and y
directions, respectively, and l, l', l~, and l„' are integers.
Equation (3.1) contains normal (I =l» =1»=l» =0) and
Umklapp (l„,l», l„',l»&0) terms.

Our aim is to study the one-dimensional incommensu-
rate modulation in the y direction. Hence without loss of
generality we neglect the Umklapp terms in the y direc-
tion (I» =1» =0). Let us decouple

Q( k) = , cr(k) exp—[ i@(k)]—

00
6

I =(o,gj

0
10

00
6

k=((, k )

0
10

counted the number of normal and Umklapp terms and
confining the summation to only one harmonic character-
ized with the wave vector k we write down the ground-
state energy per particle as'

from the amplitude o(k) and the phase e(k). Having

TABLE I. Parameters of the displacive and order-disorder
models, A3, A4, Bl, B2, and C are the same in both models.

C4

3

0-
2 =-2

3
0

Displacive
model parameters

o=20
G = 1000
A = —4.0

Order-disorder
model parameters

A p
———2.0

G =2000
0= —8.0

Parameters
common to
both models

A 3 ———0.5
A4 ——0.3
B I ———1.5
B2 ———0.1

C =0.3

-10
0

-2 -6

-4 -8

I I I I -6 -10
0.1 0.2 0.3 0.4 0.5

I -6
0 0.1 0.2 0.3

FIG. 1. Dispersion curves co (k) for the displacive D and
order-disorder (OD) models for several values of k~. Left, co (k)
along the incommensurate direction y, right, co (k) perpendicu-
lar to y and coming out from the minimum.
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FIG. 2. Ground-state energy as a function of wave vector k~
for displacive D and order-disorder OD models.

kp

FIG. 3. The ground-state devil's staircase curve for displa-
cive and order-disorder models.

V/N= —,
'

I ,'cu (kz)o—(kz)[l+cos[2e(kz)]5(2k&—l„a')]
+ —,Go (kz )[3+4 cos[2e(kz )]5(2k& —l„a*)+cos[4e(kz )]5(4k& —l„a* ) ] I . (3.2)

For strong commensurate phases, and at the minimum
with respect to the phase e(k), one finds

kz ——0 phase: V/N= —,[co (0)o (0)+Go (0)],

kp ———, phase: V/N= —, [co ( —,
'

)o ( —,
' )+Go ( —,

' )],
(3.3)

(3.4)

k~= —, phase: V/M= —[—co ( —, )o ( —,)+ —,Go. ( —,)],
(3.5)

and additionally the phases e(0) =e( —, ) =O, vr and
E( —, ) =sr/4, 3rr/4, 5'/4, 7n/4. Setting for the displacive
model co (0)=co ( —, )=co ( 4 )= —4.0 and G=1000 and
using the condition of the minimum with respect to the
amplitude of the order parameter, we get V/N = —0.002
for kp

——0, —,', and 4.
For illustration we write down the ground-state energy

of a sinusoidal modulation given by the first harmonic
only

V/N= ,
'

[ ,'cu (kp)o (k~)—+—'
, Go. (k~)] . — (3.6)

Setting co (k~ ) = —4.0 for all k„and G = 1000 one finds
for the displacive model with sinusoidal modulation
V/N = —0.001 33. As it is shown presently contributions
from higher order harmonics bring this energy much
below that value.

The modulation in the model is certainly accompanied
by higher-order harmonics. ' ' The fourth-order Um-
klapp terms (1,3,3,3), (1,1,3,3), (1,1,1,3), and (3,3,9,9) be-
tween the first and the third-order harmonics are respon-
sible for the lock-in phases —,

Q 8 3 and —, , respectively.
The ground-state energy for the one-dimensional modu-

lation in the y direction was also found numerically. For
that a linear chain in the y direction of the M-particle

model with periodic boundary conditions was used. The
force constants A& and Az were set so that the potential
energy had a minimum at the desired wave vector kz.
The initial configuration was chosen in the form of a
sinusoidal modulation characterized by a commensurate
wave vector k =M'/M, where M' and M are integers.
The ground-state energy is given by the minimum of
V/N=f(k, k~) as a function of k and fixed k~. To
calculate it we searched for the minimum of the potential
energy, Eqs. (2.1)—(2.3), with a fixed kz and with respect
to wave vector k . The calculations for the present
model were performed by the numerical method described
in Ref. 3. The results for the disp1acive and order-
disorder models are shown in Fig. 2. Each point in the
V/N curve corresponds to a lock-in phase. It is worth
mentioning that in spite of a constant co (kz ) =0 and con-
stant G values for all wave vectors k&, the ground-state
energy varies remarkably.

The relation k =g(kz) between the two wave vectors
at the minimum of the potential V/N=f(k, kz~ can be
called the devils' staircase of the ground state' and the re-
sults of our model calculations are presented in Fig. 3.
One notices there large lock-in steps for 0, 4, and —, , and
smaller ones for 'jQ 8 7 3 g and —', . The ground state
devil's staircase is complete.

IV. THE MOLECULAR-DYNAMICS METHOD

The system used in the simulation was a two-
dimensional crystallite consisting of 97&97 rectangular
unit cells with one particle per unit cell. The use of free
boundary conditions allowed the nodes of the incommen-
surate phase and extended detects, like stripples, to flow
out of the system. The Newton equations of motion for
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all 9409 particles were solved by a simple difference
scheme using the microcanonical ensemble with total en-
ergy conserved. The iteration step was At =0.05~o, where
~o ——2~/coo was our time unit and coo ——1 is a unit in Fig.
1. The temperature was described by average kinetic ener-
gy. Each run of calculations started from random initial
velocities and positions and the system was always al-
lowed to equilibrate. The system can be cooled or heated
by delicate changes of particle velocities in each iteration
step. Moreover, by continuously changing force constants
3 ] and A 2 the minimum of the potential at the wave vec-
tor kz can be altered. The last process does not conserve
the energy of the system any longer. For further details
of the method itself see Ref. 17.

The results of the simulation have been elaborated in
the following ways. First, in the form of a map of aver-
age particle displacements (z„)„wherer denotes the
averaging time. The two kinds of symbols on the maps
correspond to positive and negative displacement of
(z„)„respectively. The size of the symbol is propor-
tional to the amplitude of (z„),.

Second, the incommensurate modulation has been
detected due to the existence of the diffraction satellites.
For this purpose we have calculated the diffuse scattering
function defined as a time average of the time-
independent correlation function

by the time-dependent correlation functions as

S(k, co) = f dt(g*(k, O)X(k, t) ),
277

2

Q exp exp(i cut ), (4.6)

S( k, co) =S'(k, co) +S"(k,cu), (4.7)

where

S'(k, co) = (X*(k,O) ),(X(k, t) ), exp[ —(v co )/4]' 2'
(4.8)

and

S"(k,co) = f dt(p*(k, O)p(k, t) ),2&
2

Q exp exp( i cut ) . (4.9)

where X(k, t) is given by Eq. (4.2). We have included in
the transformation the Gaussian damping factor. The
"experimental" energy resolution in S (k, co ) is
Ace=(4/v)(ln2)' . By applying Eq. (4.4) the dynamical
structure factor can be decoupled into elastic and inelastic
parts

F(k) = (X*(k,t)X(k, t) ), . (4.1)

The Fourier transform of particle density of the crystallite
is given by

X(k, t) =—g exp[ —2~i [kR„+
~

k
~

z„(t)]I Q„1

N
„

(4.2)

where

Q„=exp( —A.R„) (4.3)

Y(k, t) = (X(k, t) ),+p(k, t)

and calculate the two terms separately. Then

F(k) =
~

(Y(k, t) ),
~

'+ (p"(k, t)p(k, t) ), .

(4.4)

(4.5)

The first term describes the Bragg reflections occurring at
the I points, the second one the diffuse scattering.

Third, to study the elementary excitations one should
calculate the dynamical structure factor which is defined

is a space damping factor, R„ is the position of particle
n, m, and R„=Ocorresponds to the center of the crys-
tallite. The lattice constant is taken as a unity and A, was
chosen to be equal to 0.0002. The factor (4.3) involves a
finite wave vector resolution and makes possible calculat-
ing the quantities for any wave vector k, unlike the
periodic boundary conditions method without Q„
which would allow one to find quantities at discrete
wavevectors. A typical time average in the correlation
function, Eq. (4.1), was 125ro. The diffuse-scattering
function contains the Bragg reflections and usually not in-
tense satellites. Thus, for practical reasons, it is better to
decouple Eq. (4.2) into

Below the analysis of the excitations has been made with
the aid of the inelastic part of the dynamical structure
factor Eq. (4.9) with the averaging time 1000ro.

V. STATIC PROPERTIES OF THE MODELS

Let us first look at the particle configuration at T =0.
For this the following run with the order-disorder
model has been performed. The wave vector k& was
fixed. The system was cooled from the normal phase
to zero temperature. The cooling rate was d T /dt
= —0.00003(1/ro). The resulting incommensurate
modulations, Fig. 4, are nonperfect. Although the ex-
istence of the incommensurate structure is evident, the
nodes of the modulation do not form a straight line per-
pendicular to the modulation, but an irregular front. Fig-
ure 4 shows two such examples: for kz ——0. 10 and for
kz ——0. 11. The relevant diffuse scattering functions, Fig.
5, contain first-order satellites. The intensity of these sa-
tellites is higher for k& ——0. 10 than for kz ——0. 11.

The deviation of the configurations from an ideal struc-
ture can be described either by a set of subharmonics or
by frozen phase modes and the effect should be taken into
account in the structural analysis of incommensurate
phases. In some cases, especially when the system is of
highly order-disorder type, the incommensurate phase
might not reach true equilibrium state and then the ratio
of higher-order satellite intensities to the first-order satel-
lite intensity might turn out to be too small in comparison
with the predictions of the mean-field theory, which as-
sumes the equilibrium state.

The molecular-dynamics method allows one to also
study the evolution of the system as a function of tem-
perature. For that, we have slowly cooled the system
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from normal phase with cooling rate d T /dt
= —2X 10 (1/ro) leaving the wave vector k. fixed and
registering the position of the satellites. For the displa-
cive model the results of nine such runs are presented in
Fig. 6. The transition temperature T, is defined to be at
the point at which the satellite appears for the first time.
The incommensurate phases obtained for the wave vectors
kz, which are far from strong commensurate phases 0 and

4, have the satellite position k =k~ ~ The phases charac-
terized by k~ =0.20 and k~ =0.275 behave differently.
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driving forces of these lock-in phases were too small and
the cooling rates were in any case too fast to achieve a
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FICs. 6. Phase diagram and phase-transition temperature T,
of the displacive model for several values of the wavevector po-
tential minimum kp constructed from the cooling runs.
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FIG. 7. Transition temperature T, of the order-disorder
model constructed from the cooling runs.

true equilibrium.
In the order-disorder model the characteristic relaxation

times were so long that in our computer simulation only
the transition temperature T, from the normal to the in-
commensurate phase could be estimated, Fig. 7. The tem-
perature behavior of the satellite position would need
cooling rates unavailable in the simulation.

0.2

2.0

1 .0
v,'(k~)

I I

0.3 ( 0.4. 0.5

VI. EXCITATIONS IN THE DISPLACIVE MODELS

co, (k)=co (k) —Q+P(T —T, ) (6.1)

where 0= —4.0, P =480, and one has co, (kz ) =0 at
T, =0.00161. The co (k) is given by Eq. (2.6).

In the displacive model the excitations below T, and
those in the incommensurate phase are referred to as the
phase mode and the amplitude mode, respectively. The
dynamical structure factor calculated at T=0.00088 for

The elementary excitations were studied for the pure
displacive model and for the displacive model doped with
2% of point defects. Before searching for the excitations
the system, with a fixed value of wave vector kz, was
equilibrated at a desired temperature. The frequency
spectrum was calculated using the inelastic dynamical
structure factor Eq. (4.9). The positions of the peaks of
several runs are collected in Figs. 8 and 9. The error bars
there denote the widths of the peaks at half maximum.

In the displacive model above T, the observed phonons
are underdamped. The form of the phonon dispersion
curve in Fig. 8 resembles the bare dispersion curve, Eq.
(2.6), for kz ——0.35. The squared frequency co, (k~) at its
minimum as a function of temperature is shown in the
lower drawing of Fig. 8. The co~(kz) behaves as a typical
soft mode and from our numerical simulation its tempera-
ture dependence can be approximated by

I I I

200 I+00

T x IO&

600

FIG. 8. (Upper) Phonon dispersion curves of the displacive
model at T=0.00248 (0), T=0.003 73 (D), and T
=0.00502 (0 ), above T, . {Lower) Temperature behavior of the
soft mode. Lines are guides to the eyes.

pure and doped systems with kz ——0.35 showed well-
defined peaks whose positions are given in Fig. 9. Figures
on the left-hand side present the dispersion curves along
the incommensurate modulation, right depict those per-
pendicular to it. At some wave vectors separate peaks for
the phase and amplitude modes were observed. Within
the accuracy of the simulation, the phase mode remains
gapless in both cases.

The relation between the soft mode dispersion above T,
and the phase and amplitude modes below T, has been
derived, for example, by Bernard et al. ' Following their
approach we start from the free energy in the form simi-
lar to Eq. (3.1), where the bare dispersion curve co (k) has
been replaced by the effective soft mode co, (k) and all
Umklapp terms have been neglected. Assuming further
the sinusoidally modulated structure, we arrive at the fol-
lowing result for the phase and amplitude modes:

cosh, (k~+q)= —,(co, (kq+q)+co, [(kq q) 4', (k~)+ [4', (k~—)—+[co,(kp+q) co, (kq —q)] I' ) .— (6.2)

Since the soft-mode behavior is known, Eq. (6.1), the for-
mula (6.2) does not leave free parameters. The continuous
curves in Fig. 9 have been calculated with the help of Eqs.
(6.2) and (6.1) using displacive model parameters from
Table I. In both cases the agreement is quite good. It is
worth mentioning that mistaking the phase mode for an
acoustic phonon mode, a severe experimental problem,

cannot occur here, since our model does not have an
acoustic mode at all.

In spite of a rather high concentration of defects, the
dispersion curve of a doped model looks the same as that
for the pure system. Even the intensities and widths of
the inelastic peaks have not been affected by the defects.
This astonishing result has the following origin. The sys-
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FIG. 9. Phase and amplitude-mode dispersion curves for the
displacive model and the displacive model with 2% point de-
fects. The lines are calculated from Eq. (6.2).

FIG. 10. Satellite behavior of the displacive model during the
kinetic run as a function of the wave vector k~ which changes
from 0.28 to 0.40. Points on Fig. 11 indicate the positions of
maxima of these satellites.

tern is in a state closer to the soliton limit. In this limit
the phase mode corresponds to oscillations in the soliton
position and the defects, sitting in one of the local poten-
tial minima but interacting with neighbors via the same
forces as the host particles, also take part in the soliton
motion. In this sense the defects do not perturb the
motion much. Similar runs performed for the commensu-
rate phase kz ——

4 at T=0.000 84 revealed, as expected, a
large gap for the observed dispersion curve.

0.3

VII. KINETIC BEHA VIOR
OF THE INCOMMENSURATE MODULATION

0.2

As a rule, the characteristic wave vector of the incom-
mensurate structure varies with changing the temperature.
Two incommensurate modulations, k"' and k' ', of the
same sample at two temperatures characterize different
phases of the crystal. Formally, according to the Landau
theory of phase transitions, the two incommensurate
phases k'" and k' ' arise as a result of the condensation
of two different irreducible representations of the high-
symmetry space group. The two representations are dif-
ferent, because they belong to two different wave vectors.
Let us assign a supergroup to each of the phases. Because
of a difference in the translational symmetry elements, the
group-subgroup relationship between these supergroups
does not exist. Therefore, the phase change from the
modulation k'" to k' ' must be governed by the mecha-
nism similar to that characteristic for the first-order
phase transitions. Then the order parameter is not a nor-
mal mode but a local perturbation in the form of special
dislocation.

In real incommensurate systems the minimum at kz of
the generalized soft mode co, (k) often shifts as a function
of temperature, because of its renormalization by fluctua-

0.1
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n -60)
-80

-100

-120
0

0.1

0.1
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I I
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- 100
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FICx. 11. Position of diffraction satellites in the displacive
model detected by the diffuse scattering function F(k) as a
function of the wave vector k~ for a constant rate
dk~/dt =+4& 10 (1/r, ). Closed and open points correspond
to 0.0~0.4 and 0.4~0.0 runs, respectively. In the lower part
the variation of T temperature and ( V) the average potential
energy during the runs are given.
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tions of other modes. So, in experiment one may influss

ence the position of the minimum at k» only by varying
the temperature, the pressure or the external field applied
to the sample. In order to study in computer simulation
the mentioned mechanisms we have introduced the fol-
lowing simplification. We shift the minimum of cu (k),
keeping co (k» ) constant at its minimum, by varying in
time the force constants 3

&
and Aq of the potential ener-

gy. That approach simulates the renormalization of co (k)
by fluctuation of other modes, not existing in our models.
Thus below, we study the behavior of our crystallite vary-
ing in time its potential energy so that the wave vector kz
of the minimum of cu (k) changes in time with a constant
rate.

Two kinds of independent runs were studied, an in-
creasing one from kz ——0 to 0.4 and a decreasing one from
kz ——0.4 to 0. Each run started from an equilibrium con-
figuration which was either a one-domain phase with

kz
——0 or a phase kz ——2/5. Then kz was changed at a

constant rate dk»/dt=+4&&10 (1/ro) and during that
process the diffuse-scattering function F(k), Eq. (4.1), was
calculated. The F(k) was sampled only on the line from
(0, 2.0) to (0, 1.6) in reciprocal space. Each point of F(k)
was a result of a time average over 125~p while the whole
run from k& 0 to 04 or the reverse lasted 10 7p. During
this kinetic process energy is inserted into the system, so
the temperature rose. Therefore, we made sure that the
starting temperature was sufficiently low for the system
to remain in the incommensurate state at the end of the
run.

A. Displacive model

An example of the shape and intensity variations of the
satellites calculated by F(k) as a function of a continuous
change of wave vector kz is shown in Fig. 10. Fi'gure 11
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FIG. 15. Position of diffraction satellites in the displacive
model with 2%%uo of point detected by the diffuse scattering func-
tion F(k) as a function of the wave vector k~ for a constant rate
dk~/dt =+4)& 10 (1/~o). Closed and open points correspond
to 0.0~0.4 and 0.4~0.0 runs, respectively.

0
0

shows the position of the maximum of the satellites as a
function of the wave vector kz for the increasing and de-
creasing runs of kz. The points in Fig. 11 characterize
the configurations which, except for the initial one, do not
necessarily correspond to the equilibrium state and there-
fore, they define the nonequilibrium devil s staircases.

The relaxation toward equilibrium in the range of
k~ =0.27—0.40 is so fast that the satellite position
changes continuously. In the vicinity of kz ——0.25, the
modulation locks into the commensurate phase kz ——4.
The observed splitting of the satellite is due to the domain
structure of the phase at k~ = 4. Below k~ &0.18 an ir-

regular variation of the satellite position with a two- or
three-peak structure sometimes occurs. At kz -0, one ob-
serves the commensurate k~=0 phase in a few domain
state. The satellite of this phase emerges into the Bragg
peak and thus it cannot be separated out. Global hys-
teresis between increasing and decreasing runs, and espe-
cially around the lock-in phase ~, is clearly seen.

In Fig. 11 we also give temperature T and the average
potential energy ( V) variation along the runs. The po-
tential energy resembles the ground-state energy curve
from Fig. 2.

Figure 12 presents a map of the average configuration
of particles for a few values of k~ of the increasing run
shown in Fig. 10. On each map the positions averaged
over a time of 1257p are drawn. On maps with the wave
vector modulation kz ( 4 the white strips of small aver-

age displacements (z„)correspond to the nodes of in-
commensurate modulations. In the remaining cases,
k~ & 4, the white lines describe the discommensurate re-

gions. One notices that the fronts of the incommensurate
modulations are not straight horizontal lines, as could be
expected for the ideal incommensurate structure. The
phase at k& ——0.20 consists of several lock-in domains 4,
which causes the splitting of the satellite.

Beside the lock-in phases —, and 0, no other commensu-
rate phases have been detected, because the lock-in ener-

gies of these unobserved commensurate phases were too
small, the temperature of the runs too high and the rated
dkz/dt too fast to allow good equilibration.

An analysis of many pictures of particle configurations
allows one to draw conclusions about the mechanism of
the change of the incommensurate wave vector. The driv-
ing force of this process results from a misfit between the
wave vector k& and a characteristic wave vector of a
current structure. Simple mechanisms have been ob-
served. In one an extra period is inserted or removed at
the top or bottom of the crystallite by a kink traveling
along the top or bottom edge of the system. Such a situa-
tion occurs on the map in Fig. 12(d) for the wave vector
k&

——0.40. One sees there that the discommensuration line
leaves the crystallite not at the right edge but at the bot-
tom. In the course of time this anomalous part of the
discommensuration moves horizontally from left to right
adding one period of modulation. In another mechanism
an extra period is inserted in the form of a half-stripple at
the left or right edge of the crystallite. In three dimen-
sions the stripple is a nucleus formed from additional
discommensuration planes which fit to the surrounding
incommensurate modulation and which meet along one
closed line called the deperiodization line. ' ' After spon-
taneous nucleation the stripple grows by the propagation
of the deperiodization line which eventually comes to the
surface. In our maps the deperiodization line is seen as a
white spot. Example of initial stage of the half-stripple is
given in the left upper corner of Fig. 12(a) for the wave
vector 0.12. The third mechanism consists in the homo-
geneous nucleation of a stripple within the crystallite and
afterwards in the growth of it. Figure 13 illustrates the
stages of this process. The antistripple arises as a result of
accidental concentration of energy fluctuation and can be
noticed in Fig. 13(a). Later it grows to the left and to the
right, Figs. 13(b) and 13(c), by motion of the deperiodiza-
tion line.

An example of a more complicated mechanism is
presented on Fig. 14. The maps show the subsequent con-
figurations in the process of decreasing the wave vector
k& and close to the commensurate phase —,'. The stripes
on the map (a) correspond to discommensuration lines
which in this case are the domain walls between regions of
commensuration phase 4 ~ The stripple, related with the
commensurate phase —,', consists of at least four discom-
mensuration planes which confine regions belonging to
three different domains of phase 4 . Indeed, if the sur-
rounding commensurate domain is characterized by the
phase e( ~ )=m/4 then the domains within the stripple
must form a sequence of domains with phases e( 4 )

=3m/4, 5m. /4, and 7~/4. Other sequences would cost
too much energy. On the map (b) a half-antistripple, seen
as a bundle of four discommensuration lines which meet
in the deperiodization point, split out from the left middle
edge of the crystallite and on the (c) to (i) maps it moves
toward the right edge leaving behind a large region of
commensurate phase 4.1

The above results largely resemble the electron micro-
graphs obtained by Pung et al. ' for charge-density wave
bearing material 2H-TaSe2 and serve a good illustration to
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the theoretical predictions by Kawasaki, Prelovsek and
Rice, and Janovec. '

B. Displacive model with 2% of point defects

Figure 15 shows the position of the maxima of the sa-
tellites in increasing and decreasing runs or in other words
the nonequilibrium devil's staircases for displacive model
with 2%%ui of point defects. The previously observed con-
tinuous behavior in the range of kz ——0.28—0.40, Fig. 11,
has disappeared. Now quasisteps tend to be seen. In the

phase, few domains remain in the crystallite
throughout the whole range of stability, producing split-
ting of the satellites. The global hysteresis is again
present. The essential result of these calculations is that
the continuous change of the satellite positions is now re-
placed by a rather steplike behavior and these steps cannot
be related to any rational numbers except for the strongest
lock-in phase, kz ——4. The intensities of the satellites of
the system with defects are considerably lower than those
for the pure cases. This is a consequence of the highly
imperfect and defective incommensurate modulation.
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FIG. 17. Example of the propagation of the extra incommensurate period in the displacive model with 2% of defects. The wave
vector from (a) to {h) changes from 0.3672 to 0.3792 during 200~0.
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In Fig. 16 a few maps of a decreasing run are shown.
During the equilibration of the starting configuration at
kp

——0.40 the defects were trapped in one of the minimum
of their local potential and this local minimum was occu-
pied which agreed with the displacements of the incom-
mensurate modulation at a given location. During the run
the incommensurate modulation tries to readjust itself to
the existing, almost frozen displacements of defects and
very few defects change their sign.

The defects hinder the propagation of the deperiodiza-
tion line of the stripple. Figure 17 illustrates such a pro-
cess. At the edge on the right upper part of map 17(a), a
half-stripple is seen. The stripple, map (b), tries to enter
the crystallite but a group of defects does not let it
through. This strained state lasts for some time, maps
(c)—(d) and then a new stripple inside the system appears
close to the previous one, map (e). The new stripple
grows, maps (f)—(h), through the whole crystallite. The
modulation wave vector kp of the system, as detected by
the diffuse scattering function, stays constant for some
range of the kp variation, because the propagation of the
deperiodization line is hindered by the energy barriers in-
troduced by the defects. That effect is responsible for the
quasisteps observed, Fig. 15.

C. Order-disorder model

In the order-disorder model ( Ao = —2.0) the local field
is a double minimum potential, therefore a process which
needs particle transfer from one local minimum to anoth-
er one may require some energy to overcome the barrier.
That leads, for example, to an equilibrium relaxation time
for this model which is slower than for the displacive one.
Figure 18 shows the diffuse scattering distribution as a
function of kp. Contrary to the displacive case the satel-

lites are often split. The positions of the maxima of the
satellites for increasing and decreasing runs or the non-
equilibriurn devil s staircase curves are given in Fig. 19.
Steplike behavior is observed and the steps are not related
with any rational numbers except the strong one at
kp 4 The mechanisms of the wave vector kp variation
are similar to those of the displacive model. It was veri-
fied that within every quasistep the process is reversible.
This follows from the fact that the propagation of the
deperiodization line reverses when the increasing process
of kp is altered to a decreasing one, provided the
deperiodization line has not yet disappeared.

The existence of the stripple in the finite crystallite may
be interpreted as the coexistence of two modulations, of
slightly different length. Thus, the diffuse scattering
function may show the splitting of the satellite.

The increasing and decreasing runs presented in Figs.
11, 1S, and 19 are not unique even when they are per-
formed in very similar conditions. Figure 20 gives two
decreasing runs for the order-disorder model with 2%%uo of
point defects. They are done with the same concentration
and distribution of defects, the same rate dkp/dt, the
same temperature variation, but different starting equili-
brated configurations at kp

——0.40. In these two runs the
sequence of quasisteps becomes different. The number of
particles in real crystal is, of course, much larger than in
our computer system. Therefore, the situation in real
crystals is as follows. Regions of a crystal far apart from
each other can be considered as independent subsystems,
each having a particular sequence of quasisteps. Adding
satellite intensities from all such regions, one averages
them over different sequences of quasisteps and one could
even obtain a continuous behavior of the k =g(kz)
curve, except for parts of strong lock-in phases. In the ex-
periment one observes the averaged satellite. The average
curves will still show the global hysteresis. However, the
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FIG. 18. Satellite behavior of the order-disorder model dur-
ing the kinetic run as a function of the wave vector kp which
changes from 0.28 to 0.40. Points in Fig. 19 indicate the posi-
tions of maxima of these satellites.

FICs. 19. Position of diffraction satellites in the order-
disorder model detected by the diffuse scattering function F(k)
as a function of the wave vector kp for a constant rate
dkp /dt: +4 && 10 ( 1 /7"p ) Closed and open points correspond
to 0.0~0.4 and 0.4~0.0 runs, respectively.
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FIG. 20. The position of diffraction satellites for two similar
runs in the order-disorder model with 2% of point defects
detected by the diffuse scattering function F(k) as a function of
the wave vector k~. The two runs are characterized by the same
constant rate dk~/dt= —4&&10 (l/rp) from 0.4 to 0.0 the
same temperature variation but different starting equilibrated
configurations. Circles and triangles correspond to the two
runs, squares are common points of both runs.

steps can be observed by reversing the variation of kz, or
in real experiment by reversing the change of temperature
and they recently have been observed by neutron diffrac-
tion experiment made on irradiated thiourea'

VIII. CONCLUSIONS

Our results confirm that the molecular-dynamics
method enables one to simulate a large number of the
properties of incommensurate phases. Our two-
dimensional crystallite of 9409 particles with a polynomi-
al potential energy and free boundary conditions showed a
one-dimensional incommensurate modulation. Many pro-
cesses, like the phase mode or nucleation and growth of
stripple, need a second dimension in the system, which we
have added. At T =0 our models were characterized by
complete devil's staircases. Cooling runs proved the ex-
istence of the normal-to-incommensurate phase transi-
tions. The cooling runs to T =0 indicated that the com-
mensurate phase with domain walls can be achieved for
potential energies characterized by a wave vector close to
0 or 4. In other cases, instead of a commensurate phase,
a nonperfect, although frozen, incommensurate phase was
obtained. This was a consequence of a small driving force
toward perfect incommensurate modulation in compar-
ison with the temperature and the evolution time available
in the simulation. In the diffraction pattern of the imper-
fect incommensurate modulation the intensities of the sa-
tellites, especially those of higher order, are considerably
lower. Higher-order satellites may even disappear.

Our displacive model had a soft underdamped phonon

mode. Let us recall that the model potential was tempera-
ture independent and the softening of the phonons oc-
curred as a result of their renormalization by thermal
fluctuations only. In the incommensurate phase we were
able to distinguish between the phase and amplitude
modes, and the phase-mode dispersion curve was gapless.
Even after doping the crystallite with Z%%uo substitutional
point defects we did not see any influence on the phase-
mode and amplitude-mode dispersion curves. The defects
differed from the host particles in a local potential but not
in the interparticle interaction.

Computer simulation makes it possible to study the
behavior of the system as a function of the wave vector
which specifies the minimum of the potential energy. By
changing the potential parameters in time one can vary
the characteristic wave vector of the modulation and
study the nonequilibrium devil's staircase. Provided the
system relaxes quickly to equilibrium, the nonequilibrium
devil s-staircase curve at finite temperature is a continu-
ous function except for wide lock-in phases. That is the
case, at least partly, for the displacive model. When the
characteristic relaxation time in the system, as in the
order-disorder model, is considerably longer than the time
available in the simulation, then the nonequilibrium
devil's staircase consists of quasisteps which may not be
related to any rational numbers. The processes along
quasisteps are reversible. These quasisteps originate from
the nucleation and growth of stripple. Runs with decreas-
ing and increasing wave vectors clearly indicate the ex-
istence of global hysteresis.

The time scale in the numerical simulation is necessari-
ly much shorter than in real experiments. However, the
simultaneous study of displacive and order-disorder
models shows that the characteristic relaxation times of
the system, which is longer in the order-disorder case,
plays a crucial role in the observed phenomena. One
might expect similar effects in real samples, especially of
the strongly order-disorder type, if one takes into account
that the real experiment has a few orders of magnitude
better resolution, that the sample is much larger than in
the computer simulation and that real crystals contain de-
fects which may increase some relaxation times consider-
ably by pinning the deperiodization lines. Dielectric and
neutron diffraction experiments made recently on irradiat-
ed thiourea samples' indicate that some phenomena re-
ported here might be experimentally observed.
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