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A dynamical picture for glass is illustrated by a two-dimensional Josephson-junction-array mod-

el in an overall neutral flux distribution bbtj, gt@t =0 that is of a self-similar, hierarchical type.
A nonequilibrium 1 vortex population, trapped at low temperatures T on {@tj,can annihilate

only in a sequential, slow —t manner, implying long-lived glassy behavior. Vortex accumula-
tion sets in on cooling, at a temperature To(T) logarithmically dependent on the cooling rate T

The glass transition is a problem both of long-
standing ' and of intense current interest. The transi-
tion involves remarkable nonequilibrium features such as
the cooling-rate dependence of the transition temperature
and frozen-in entropy, ' time-dependent specific heats,
and anomalously slow (e.g. , power law, —t ) nonex-
ponential ' decays. To understand spin ' and
configurational' glasses one needs (a) well-defined vari-
ables to describe disorder and (b) a mechanism for trap-
ping the disorder in the system, even over long observation
times.

Topological excitations like dislocations, disclinations,
or spin vortices are well-defined disorder variables in solids
and magnets. They are extended clusters of atoms or spins
with a definite center but no edges, circumventing the
problem of cluster-boundary definition. ' They play a cen-
tral role in the (equilibrium) two-dimensional (2D)
Kosterlitz-Thouless (KT) transition. ' ' Nelson has pic-
tured the 3D glass transition as a random entanglement of
such defects of a given sign, and suggested the study of
simpler 2D glass models. Halsey has found spin-glass-
like behavior in Monte Carlo simulations of a 2D
Josephson-junction network' in a uniform irrational flux
distribution @ =(3 —J5)/2 per unit cell.

On the other hand, the recent idea of hierarchy ex-
plains nonexponential decays in glasses through hopping
models with hierarchically increasing barriers or, by impli-
cation, sequential relaxation of clusters.

Can a hierarchical pattern of frustration-produced bar-
riers provide a mechanism for the long-time, glasslike
trapping of (topological) disorder?

In this paper, the prototype used to illustrate such a
mechanism is a 2D Josephson-junction-array (JJA) model
or 2D XY model with a specified flux or frustration distri-
bution [C&tj of an overall neutral (gt@t=0) and self-
similar type. The detailed microscopic dynamics of such a
system under a cooling ramp T(t) is a difficult problem
that will not be attempted here. Instead (i) it is shown
that for T« TKT a nonequilibrium excess of trapped + 1

vortices can undergo hierarchIcal annihilation over in-
creasing nearest-neighbor frustration barriers, so the sur-
vival probability of the excess is P(t) —t I "; (ii) I then
summarize the slow decay of the trapped vortex excess
n„(t ) by the eff'ective self-annihilation rate

k(t)—:—P(t)/P(t) =(T/Tt, )/t .

For T ) TKT, k(t) is used in kinetic equations for n„and
for free vortices nt„, that exist beyond the (screened)
range of attraction g+(T), of bbtj. Cooling through TKT
at a rate T results in a slow-decaying accumulation n«(t),
implying "glassy" behavior. (For the JJA this means dis-
sipation even at T =0 from current-released vortices; for
the 2D XYmodel this means apparently random spins. )

As elsewhere, the bbj values cannot be achieved in real
arrays; Monte Carlo tests are suggested. The ideas should
also be applicable to 2D and 3D spin and configurational
glasses, as commented on later.

The JJA is modeled by

PH = —Ko g cos(8; —
8~

—A;~.),
(ij )

where 0; are superconductor phases defined on a square
lattice of lattice constant ao. For the bond vector potential
4;~ =O, z one recovers the 2D XY model, with plaquette
frustration @=0, —,

' . The partition function can be
mapped onto that of a Coulomb gas of thermal vortices
mI =0, + 1 on dual lattice sites I. The Hamiltonian is

PH = ttKo g (mr+Nt) Um (mtc+&tt),
I,K

with Uttc =ln(rtr/atj) and with bPtj a background of
externally determined flux points on dual lattice sites I.
Overall "neutrality" holds, gt (@i+mt) =0, with a bare
fugacity yo =exp[ —(tr Kn/2)(m+@) ] governing the oc-
cupation. For ~C~ ( —,', thermal vortices do not persist,
as T 0.

Uniformly frustrated models +I =@WI have been stud-
ied elsewhere. Here we consider a nonuniform, neutral
flux distribution gtC&t =0, implying gtmt =0. The sim-
plest neutral 1D pattern is +, —equally spaced and alter-
nating. A nonequilibrium excess of —1, + 1 vortices
trapped on these would face a single barrier (time scale)
and annihilate exponentially.

An explicit construction is now given for a nonunique
1D hierarchical distribution 4t = +

~
4 ~, in "quasi-

neutral" triplets, each of net "charge" + ~@~ (with an
overall neutralizing charge). This yields a hierarchy of
barriers and time scales, and nonexponential annihilation.

Divide a line into three segments, further subdivide each
into three, etc. , until some smallest scale ro. Some sites
1
—x are systematically designated as empty, @=0, with a

fraction x of sites occupied with separation ro —x '~ ao,
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d = l. (We henceforth talk only about the @&0sites. ) (i)
Put +@+@—@ on the left-most elementary triplet of
sites. Mirror-reflect (M) this as a unit, giving—@+@+@in the next triplet. Translate and charge-
conjugate (CT) this second triplet to get +@—C& —@.
(ii) Repeat the CTM procedure of (i), now treating the
nine charges as an elementary unit, and so on. A 27-
member sequence would be the following:

Note that quasineutrality holds: Each of the above 3"-
member groupings, n =1,2, . . . , has an excess charge den-
sity of + 1/3" that scales to zero. The mobile ~ 1 vortices
sit on the +

i
@i sites, as depicted in Fig. 1 in the n =1

generation. An analogous CTM-produced self-similar 2D
square distribution for n =1 is given in the inset (back-
ground not shown).

The sequential decay is now manifest in Fig. 1.
Succeeding generations of vortices see a hierarchy of ener-
gy barriers rising with separation, yielding a survival prob-
ability envelo P(t ) —t =e '"', as now shown.

A notation useful for labeling cell hierarchies" is illus-
trated on the Cayley tree of connectivity C=3 in Fig. 1.
The largest-scale cells are 1,2,3, and their successive sub-
divisions are, e.g. , 2 21,22, 23, etc. More generally,
a given n =1 smallest-scale cell, one of C such cells, can

c Q~(2)g p(2)p Pg&2&~ Pp(2)p

z(r. ()). p())p, )
(lb)

Here the first (second) term describes nearest-neighbor
(further-off) annihilations, with the projection factors

1

Q, &» p«&= —, q, «&qp«&(q, &»qp«&
—1)

being nonzero only for sites a ', &0 ', both occupied by op-
posite charges, q, (»+ q&(1) =0. The annihilation times
r(r, «& p«&) depend on energy barriers that increase with
the separation r (1) &(» between the opposite-sign charges.
The n = 1 nearest-neighbor annihilation time is

r& = to&
' exp[(TO/T) ln(ro/ao)]

be labeled as a = (a)v, atv 1, . . . , a2, a|) where a;(i)—
=1,2, . . . , C. This label can also be written in terms of
the second generation a =(a~, . . . , a2) clumping of C(2) =-

subcells as a ' =(a, a, ).
The annihilation dynamics, in terms of the survival

probabilities P, «& of the (mobile) cell charges q, &(& =0, ~ 1

is given by

Q, (& & p() &P, (&)Pp «)
P.()), = —g

(, ) r(r. ()) p«))

Qg(2&~ g(2)p P (2) P (2)p

r(, »„, », )

Survivor generation
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(2)
1

where 2zKO i @i:—To/T.
The annihilation barrier for + 1 from competing nearest

charges —@,—1+@is peaked at @ro. The barrier height
thus scales with separation as ln(ro). The other, far-off
bbj may marginally shift this, but cannot affect the essen-
tial point that for unscreened forces the barrier height
scales as ln(r " ) for nth generation surviving charges of
separation rot" .

Defining a coarse-grained probability for the n =2 sur-
vivor charges by

c C
Pp&)) = g qpu&p Pp&)&p g qp(2)p

p ~ t p

the first term in the P, u& equation vanishes from (lb).
The rest can be written in the same form as (1) but with a
new minimum time ~1 ri in the first term. Here, as
shown below for n —1 annihilations, rI") r(rot"1), where
ro"i =(C't ) " ' ro is the mean nth generation cell sepa-
ration in d dimensions. The new projection operators
Q (2) p(2) depend only on the a, a

&
survivor charge

c
q, u&= g q (2) q (2)—

al 1

In the spirit of a multipole expansion, the total charge of
the a ' cluster is placed at the center a

The equation for the coarse-grained P, (2) can be written
as

FIG. 1. Sequential annihilation, with time, of mobile 1 vor-
tices trapped on 1D hierarchical T- @ background. The
quasineutral clusters have one excess charge; the overall balanc-
ing excess vortex +1 is shown in the final generation. Inset: 2D
version, also self-similar under nearest-neighbor annihilation.
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where the correction term 6 is

Q (2) p(2)P (2)Pt)(2)~=+~ 'fi)z'"(r.(,) p(*))

Q, (2), p(2&p P (2& Pp(2&t) q (2).

z(r, &2&, t)&2&t) ) 'gq, &2),
'

p(2) (~~(2))
PI +I al

(Id)

Using the definitions of P, »&, P& &2&and Q &»&&2& we can "de-
coarse-grain" the first term. [Note that Q, &2&t)&2& implicitly
carries a factor (I —8', &2&&&2&)]. Now, in a given cluster,
a a ~ say, there is one survivor charge a a ~ with all the
rest of that generation annihilating, g„q, (2&, =q, &2&;.

Both in the 1D and 2D cases, for the hierarchical pattern
considered, the separation between the survivor charges

(2) —p(2)p is the same as the separation between the
centers of the next generation superclusters, r (2) p(2). Thus
z(r, &»; t)&2&t) ) =z(r, &2) p(2)) and we find that the survivor
charge contributions to 6 cancel out, provided we choose
the next generation time scale as z (r, &»&&2&)

z(r (2)t)(2)). In general, for n —I rescalings, the
minimum time scale zi" =zi" (rp" ) =z(rp" ), where r(I"
is the minimum distance between cluster centers.

The contributions of the nonsurvivor or annihilating
charges to the correction term 8 can be estimated. Since
the annihilating charges are initially equally populated,
and annihilate with each other, P, =Pt) (a,pea, p), and
P, = —I/z) P, gives P, (t) = zi/(t+ zi). Thus for times at
the next generation scale zI, the relative error compared
to the terms retained in Eq. (Ia) is —exp[ —2(Tp/
Td)lnC] « I, a small correction that does not build up
with generation. The decay error made in placing next-
nearest ~ charges at their respective cluster centers is
also of relative order exp[ —2(Tp/Td) InC] « l.

The overall decay envelope of the survivor charge proba-
bility density can now be estimated from the scale depen-
dence of the minimum annihilation times. The logarith-
mic scale dependence' of Kp is ignored throughout, as a
higher-order correction. The time z(rpf"~) depends on the
energy barriers, and energy barriers rise logarithmically,
pU„=(Tp/T) ln(rp /ap). Clearly, the minimum survival
time for the nth generation scales as

zi" =zi exp[(Tp/T) ln(rp" /rp)] .

The survival probability density scales with the normaliza-
tion factor P —C (" '~, so in terms of t = r~" one gets
P(t) = (t/z) ) f~t~" ~. Here a hierarchical temperature Tf,
has been defined" Tf&/T=2fz((I& ) Kp/d.

For T & Tx~ the (screened) ' barriers level off beyond

&+(T) =apexp[b(T/TKr —I) 't'],
with further annihilations exponential in time. The time
z, (T) to annihilate to a generation n~,„ofscale g+ is

z, (T) =zI" '* =to) 'exp[(TplT) In(g~/ap)] .

For continuity, with the T & TKy unscreened result, we
write

P(t) =(z./z() ' "exp[ —(T/Tf, )(t/z. —I)]
for T + TKy.

Turning to model kinetics for nt„nf„„an eA'ective nt,
annihilation rate that summarizes the essential physics is
k(t, T) —= (a—P/at )/P. With a z) short-time cutoff, this
rate is

(T/Tf, )
( ), t(z, (T),/+re T

k(t, T) —
(T/T )

(T)

and first decreases —t ' (power-law decays), but then
levels off' (exponential decays).

The model kinetic equations for the dissipation-causing
variables are

nt„= —k (n,„—nt, ) +x
~C &e

(3)

n free
n free(n free n free ) n free n tr n tr—x + . (4)

Zo ~C &e

Since z, (T) diverges as T TKr+, it becomes larger than
the cooling time for T & TG(T), an accumulation
onset temperature defined by (Tx-r+ 2 t( T —Ta)/ ~

T
~

=z, (TG). For
~
T

~
small it is easy to see that

TG(T) —TKr+(In~ T
~

) . (This is reminiscent of dy-
namic crossover temperatures T„ in' JJA and superAuids
and glass transition temperatures. ')

In the regime

zp '» )»foz, '))xz, '))
i Ti/TKr,

the cooling rate is slow enough so that dipolar pairs can
define a common temperature T(t). The times z, (T(t)),
z)(T(t)) are swept, through (3), with

nf„„(T(t) ) = (&+/a()) 'y(~) —0

as t (AT/2~ T
~
) . Using nf„„n„(n=—n —n) as vari-

ables in (3) and (4) the rates rifree n„enter as drive param-
eters on the right.

The "bath" Rf«e is a fast mode' in the regime of in-
terest, for T & TKq, except very close to TK~ where there
is little left to capture. The fast-mode condition nfl = 0
eliminates nf„„with corrections "'

~
T

~ zp, zp/z),
zpx/z, «1. For strict equilibrium T=O, n„decays ex-—TjTAponentially for T & TK~ and as t " for T & TK~.

Dipolar vortices and the KT transition" enter only in-
directly. z„z,(T), and zt (T) are the intrinsic capture, es-
cape, and annihilation time scales, with

. fof 'exp[(Tp/T) In((~/ap)] .

zp is the time for (linearized) recombination of nf„ imbal-
ances. Neutrality in n«„, n«(separately) is assumed.
At strict equilibrium (T =0), from (3) and (4), n«
=(I+ z, /xz, ) 'nf e 0 as T TKr+

The vortex kinetics is considered in an applied cooling
ramp of constant and small slope

~
T ~,

T(t) = TK,+ -,
'

t), T —
( T

~ t, wT/~ T
~

& t & 0 . (5)
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The equation for n&, is

n&r &gr
n free

1+r, n freJxro

I/r, +x/r,—ktnt, — &trI+ (x/r, ) (ro/nt„, )

For T&0, the solution is

pt
n„(t) = —„dt '[ri,„(T(t'))

+[1+ -'(T(t'))]
x ri t„,(T(t ') )]e (6)

1

C
II

O

O.Q2-

0.01 I

P.2

I

0.6 1.0

/
/

/

I
/

I

I e mper ature T/T„T
pt

W"'(t, t')=~ dt "k(t",T(t"))
carries the hierarchy, and

I t
W'(2'(t, t') —= dt"lr, '(T(t"))+xr, '][1+y(T(t"))]

is the rapid relaxation to the nf„, bath. Here
y(T):xro/[r, nt„—,(T)]. After cooling stops, the accumu-
lated fraction will decay as t-

If k(t") in Wt') is replaced by I/rt(T(t")), then n&,

just below TKT is both exponentially small, and exponen-
tially decaying.

Scaling all times in ro and temperatures in TKT, the pa-
rameters chosen are' to~ =0.1, r, =100, AT=2, trKo(T)= ttKo(TKT) =2.3256, x =0.7, b = tr/2, @=0.49, and
d =2, so To =2.28, TI, =1.14. A plot of n&, vs T is given in
Fig. 2 for various cooling rates

~
T ~, with To(T) marked

by an arrow.
The rise of n„nad To with

~
T

~
is quite similar to the

behavior of the frozen excess entropy-free volume and
glass transition temperature in real glassy systems. '

It would be of great interest to do computer simulations
to test this physical picture of glasses. The long-time
thermal-history-dependent trapping of vortices at grain
boundaries has been seen' in a 2D spin model for atoms
on a substrate. In 3D, dislocation loops or disclination
lines could play the role of m and @.

For a 2D Josephson array model, one could look for slow
vortex annihilation in a prepared [mt, @t] structure
T(&TttT. Second, one could monitor the vortex popula-

FIG. 2. Ratio of occupied trapping sites n&,/x vs temperature
for various cooling rates

~
T ~. Temperatures and quench rates

are scaled in TKr, TKr/rp.

tion that gets trapped on bbt] on cooling through TKT.
Third, one could check that self-similar bbtj structures ap-
pear spontaneously in 2D XY quenched averages. ' Alter-
natively, the effects of irregularity added to the self-similar
[@t] structure could be investigated [see note (a) below].

The details of the ideas would have to be separately ex-
plored for diA'erent physical systems. But the picture of
topological excitations trapped on self-similar frustration
distributions seems worth pursuing, as a possible unifying
framework for glassy systems.

Note added t'n proof. (a) The Ogielski-Stein model slow
decays persist for irregular Cayley trees [D. Kumar and
S. R. Shenoy, Phys. Rev. B 34, 3547 (1986)]. (b) The
quasineutral condition whereby lower-level charges deter-
mine the higher cluster charge patterns is similar to a
hierarchical memory model [V. Dotsenko, Physica A 140,
410 (1986)].
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