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We present general solutions of the inhomogeneous linear elastic equations for pentagonal quasi-
crystals. The equations are those obtained by minimizing the harmonic elastic energy which includes
a nontrivial coupling between the phason and displacement variables. Our solutions are presented in
terms of the Green's functions for the elastic equations and allow the solution of any inhomogeneous
linear elastic problem for pentagonal quasicrystals. They are also applicable to thin icosahedral
plates, where the plane of the plate has pentagonal symmetry. We use our general solutions to find

the displacement and phason fields surrounding a dislocation, and then derive the interaction energy
of dislocations.

I. INTRODUCTION

The apparent experimental discovery of quasicrystalline
materials has stimulated a Aurry of investigations into the
properties of these systems which are characterized by
quasiperiodic translational order and noncrystallographic
orientational symmetry. ' The first step towards gaining a
theoretical understanding of the mechanical properties
was taken by several groups of workers who constructed
the harmonic elastic energies for pentagonal and
icosahedral quasicrystals. The presence of incommensu-
rate length scales in quasicrystals lead to additional elastic
degrees of freedom not found in conventional crystals.
(These degrees of freedom have been termed phasons. )

Elastic energies that respect the appropriate symmetries
were constructed in terms of these phason variables and
the conventional displacement fields. In addition, Levine
et al. ' ' considered the geometry of dislocations and
found the allowed Burger's vectors.

To further develop the quantitative elastic theory, solu-
tions of the linear elastic equations obtained from minim-
izing the energies must be found. We present solutions in
this paper for the inhomogeneous equations associated
with pentagonal quasicrystals. Our solutions are phrased
in terms of the Green's functions of the elastic equations.
The Green's functions can be used to solve in principal
any inhomogeneous linear elastic problem for pentagonal
quasicrystals, such as those involving well-defined forces,
or those specifying inhomogeneous boundary conditions
(i.e., not everywhere zero). The forces for instance, can be
externally applied forces, or they can be the forces associ-
ated with singularities in the strain fields, e.g. , those pro-
duced by dislocations or disclinations. The Green s func-
tions should also be valid for thin icosahedral plates
where the plane of the plate has pentagonal symmetry and
negligible deformations occur perpendicular to this plane
of symmetry. It should be emphasized that the elastic
equations we are solving assume that the phason degrees
of freedom have reached equilibrium.

To illustrate the utility of the Green's function solu-
tions, we calculate here the displacement and phason
fields caused by a dislocation in a pentagonal quasicrystal.
We further calculate the interaction energy of an arbitrary

complexion of dislocations.
This paper is organized as follows. In the next section

we review the main results of Ref. 2 which we need here.
In Sec. III we derive the Green's functions for the elastic
equations. The results are stated in (3.32a) —(3.23j). In
Sec. IV we use the Green's functions to calculate the dis-
placement and phason fields surrounding a single disloca-
tion, located at the origin of a pentagonal quasicrystal.
The expressions for these are stated in (4.9a) —(4.9d). Fi-
nally in (4.16), we display the form for the interaction en-

ergy of an arbitrary distribution of such dislocations.

II. ELASTIC ENERGY AND BURGER'S VECTORS
FOR PENTAGONAL QUASICRYSTALS

In this section we review and elaborate upon the results
of Ref. 2, in order to develop the background information
needed for the remainder of the paper. In developing a
continuum elastic theory for quasicrystals, the density
wave description is a natural choice. As we wish to focus
on general elastic properties, i.e., those which depend on
symmetries and not specific physical details (such as
atomic species), we can expand the mass density p(r) in a
Fourier series involving a minimal set of [G I reciprocal
vectors:

p(r)= gpoexp(iG r) . .
G

(2.1)

For the pentagonal case, [G [ comprises the five vectors,

27jn . ZanQ„=G cos, sin
5

'
5

n=0, . . . , 4,

and their reflected images —Cx„(the latter are included to
ensure a real density). Of the five vectors Ci„, only four
are independent since Q„OG„=O. This statement is a
special case of a general result, namely, the minimum
number of vectors G„required is n;d where n; is the
number of relatively incommensurate lengths, and d is the
spatial dimensionality. For the pentagonal case,
ni d 2

Each p& appearing in (2.1) is a complex number that

may be written as
~ pG ~

e' . Minimization of the free
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Po (r) =G„.u(r)+a 6(3„},.w(r)+ —,'V
(2.2)

where (3n )5 means 3n mod 5. The parameter a is an ar-
bitrary scale factor, and y is the value of g„Po in the

minimum-energy state.
As shown in Refs. 2 and 4, the u field corresponds to

translations of the system, while w is analogous to the
phason degree of freedom in incommensurate systems.
The latter variable shifts the density waves relative to each
other (in the Penrose tiling picture of quasicrystals, a uni-

form shift in w rearranges the unit cells). A phenomeno-
logical harmonic elastic energy is readily constructed in

terms of u and w from their behavior under the opera-
tions of the tenfold point group. This group consists of
rotations by 2~n /10, n =0, . . . , 9, and rejections across
the ten mirror planes which bisect the edges of a decagon.
Under rotations of the crystal by 2~n/10, u rotates by
2wn /10, while w rotates by 6mn /10. The reAections cor-
respond to the transformations r~B.r, u~B u, and
w~B '.w, where

2~l
cos

10

2~l
10

2~l
sin

10

2~l—cos
10

B 1

6~1
cos

10
6~l

sin
10

6~l
sin

10

6~l—cos
10

(2.3)

energy with respect to the PG's leaves four (i.e. , n;d) of
them unspecified and these are the hydrodynamic vari-
ables of the theory. The four degrees of freedom are best
parametrized by two two-dimensional vectors, u and w,
as follows:

gdu=b, gdw=d. (2.5)

The line integrals in (2.5) are along a closed contour sur-
rounding the core of the defect. The Burger's vector b be-
longs to the set of all vectors formed from integral linear
combinations of the vectors R =R„bR~3„&, , where

2wn 2m.nR„=R —sin, cos
5 5

n Oy ~ ~ ~
&
4 ~

The invariance of the phases modulo 2~ imposes the con-
straints

Svr . 4rr sin(2~/5)sin, ab =
5 5

' sin(4~/5)
(2.6)

As in Ref. 2(b), we choose b =1, which yields the sim-

plest geometry of the Burger's vector lattice. Note that no
Burger's vector lies either in the u=0 or w =0 planes.

III. ELASTIC EQUATIONS AND THEIR SOLUTIONS

In this section we solve the inhomogeneous elastic
equations (i.e., the equations of static equilibrium) associ-
ated with the harmonic energy (2.4). These equations are
generated by the usual Euler-Lagrange procedure, extrem-
izing F with respect to small variables 6u, 6u~, 6W, and

6w~. We then find the following system of equations:

tively. The last term in (2.4) represents a general coupling
of u =u w, the four-dimensional elastic field, to a gen-
eralized four-dimensional force f In . Sec. IV we give a
specific example off appropriate to dislocations.

Finally, we review the geometry of the dislocations de-
rived in Ref. 2(b). Dislocations are defined as topological-
ly stable point defects which leave the phases Po invari-

n

ant modulo 2~. In a pentagonal quasicrystal the disloca-
tions are described by four-dimensional Burger's vectors
b =bed where

where l =0, . . ~, 9, indexes the ten mirror planes. The
harmonic elastic energy density has the form

F=
&

Xuii uii +iuuij uij + a K 1 wij wij +K2( wxx wyy wxy wyx )

K3[(u uyy)(w +w y)+2u (w y w )] fu

(2.4)

B w B w
pV' u +K V-u+K3 +2

Bx Bx By

B BwyBW
pV' uy+K V u+K3 —2

By Bx By

w

By

fi, (3.la)—
B wy

By

where u;~ =——,
' (8;uj +0 u; ) is the strain tensor and

w,z
——B;w~. An additional term coupling u and w is

present in Ref. 2(b); however, this term can readily be
shown to violate the mirror plane symmetry described
above. " (An energy containing this latter term would
describe a "chiral" pentagonal quasicrystal. ) In the ab-

sence of dislocations, the term proportional to Kz may be

integrated by parts to zero. A stability analysis requires
that in the absence of dislocations p+ A, & 0, p & 0, K» 0,
and pK& ~ K3, in order that a state with uniform u and w

fields correspond to minimum energy.
Note that the first two terms on the right-hand side of

(2.4) describe a two-dimensional isotropic solid, while the
third term can be viewed as a sum of the energy densities
of two XY models, with polar angles w and w~, respec-

f2, (3.lb)—
B u B u

K)V' w +K3 —2
Bx By

uy B u~
K&V' w +K3 +2

Bx2 Bx By

ux

By

B uy

(3.1c)

(3.1d)

where K =p+A, is the two-dimensional bulk modulus.
For notational convenience we will refer to (3.la) —(3.1d)
as L; [u ]= f; with i = 1,2, 3,4—, respectively. Here the L;
are the linear differential operators defined via (3.1). The
most convenient way to solve these inhomogeneous equa-
tions is to calculate the associated sixteen-component

8Green's tensor G(r —r') defined such that
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u(r)= f dr'G(r —r')f(r') . (3.2)

Thus, the four elements of the jth column of G are the
solutions of the four equations L;[u]= f;—, i =1,2, 3,4
with f; =5;~5(r). For notational convenience we write G
in terms of four 2 & 2 matrices as follows:

V v+ —V(V.v)=
2

VF.Vln(r/a) .
K K
p 27Tp

(3.8)

Taking the z component of the curl of this equation we
find that

=0 (3.9)
aiz Pii Pi2

a 21 a 22 P21 P22

7» 712 ~11 ~12

V» 722 ~21 ~22

(3.3)
Since at infinity we must have Bv„/By —Bv~/Bx =0, then
throughout the two-dimensional space this harmonic
quantity must equal zero. Thus, we may write v=VQ.
In terms of P, (3.8) reads

Then, e.g. , ~», ~», y[], and y» yield the solutions u,
u, w„, and w of (3.1a)—(3.1d) for a force f; =5;i5(r).
Analogous statements hold for the remaining components
of G.

We solve for G iteratively in powers of the parameter
K3 which couples u and w in (3.1). When K3 ——0, (3.1)
reduces to the following simpler set of equations:

T

K 7 P'F.r —ln
2vrp(2p+ A ) 2 a

(3.1 1)

V P= F.Vln(r/a) . (3.10)
2vrp 2p, +k)

Since the function P=(r /4)[ln(r/a) —1] satisfies
V P=ln(r/a) and has no singularities, then up to an arbi-
trary harmonic function, the solution P of (3.10) is

pV u +K (V u)= f, , —

pV uy+K (V u)= f2, —

(3.4a)

(3.4b)

Using (3.11) and (3.7), and choosing F as described fol-
lowing (3.5) we find that up to additive constants, the ma-
trix elements of a' ' are

K)V w„= f3, —

Ki V~wr = f4 . —
(3.4c)

(3.4d)

The first two equations above are those of an isotropic,
two-dimensional crystal, in the presence of a force
(f&,fi), while the last two are two-dimensional Poisson
equations. We denote the components of G correspond-
ing to the solutions of (3.4) by zero superscripts. Since u
and w are decoupled, we know immediately that
P' '=y ' '=0. In order to calculate a ' ' we need only
consider (3.4a) and (3.4b); likewise to find 5I ' we need
only consider (3.4c) and (3.4d).

Our calculation of cx
' ' is the two-dimensional analog of

the calculation presented in Ref. 7 for the Green's tensor
for a three-dimensional isotropic crystal. Equations (3.4a)
and (3.4b) can be rewritten compactly as follows:

V u+ —V(V.u)= ——F5(r),K 1 (3.5)
p p

where F= (fi,fz ). If we choose F= ( 1,0) then the solu-

tions u and u~ equal a']]' and o:zl', respectively. Choos-
ing F=(0,1) will similarly yield aI2' and azz'. We look for
solutions of the form u=v+z where z satisfies the two-
dimensional Poisson equation:

(0) 3p+
ln —+ K x

4rrp(2p+A, ) a 4mp(2p+A. ) r2

(p) K xy
4mp(2p+k, ) y~

&22 =—(0) 3p+ A, 7
ln —+ K y

4~p(2p+A, ) a 4~p(2p+1) y~

(3.12a)

(3.12b)

(3.12c)

We are allowed to ignore additive constants in calculating
the elements of G, since these constants will yield spatial-
ly uniform shifts of u(r) [cf. (3.2)] which do not cost ener-

gy. However, these constants would be important in the
situation where the value of u(r) was specified on the
boundary.

To find 5 ' I we rewrite (3.4c) and (3.4d) as

V~w = — F'5(r),
1

(3.13)

where F'=(f3,f&). This equation has the solution

F'
ln(r/a) .

2~K]
(3.14)

If we choose F'=(1,0), then the solutions w; equal the
matrix elements 6';&', i =1,2, respectively; similarly, with
F' = (0,1), w; =5;z', i = 1,2. Thus, we obtain

V z= ——F5(r) .
1

p
Equation (3.6) has the solution

(3.6) 5 i i' ——5'i2 ——— 1 n( r /a ),(o) (o)

2~K]

6&2 ——5q] ——0 .(0) (o)

(3.15a)

(3.15b)
F ln(r/a)

27Tp
(3.7)

in polar coordinates, where a is a short-distance cutoft;
e.g. , the lattice spacing. Using (3.7) in (3.5) we find that v

must satisfy

Solving (3.1) when K3&0 is considerably more compli-
cated since the equations are coupled in u and w. We
solve (3.1) in that case iteratively, in powers of Ki and
then sum the results to all orders obtaining a closed form
expression for the Green's tensor. In general this pro-
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cedure is rather cumbersome, so we limit our presentation
to an outline of the calculation of the matrix elements +11,
o.21, y», and @21. Similar manipulations yield the remain-
ing elements.

The elements a„, o.», y», and y„are those in ihe firs
column of G. As such they obey the operator equations
[cf. (3.1) and the discussion following (3.3)];
L; [a», a2, , y. ..yz, ]= —6;,6(r). However, we found it
more convenient (for reasons indicated below) to rescale
all components of the Green's tensor G by the factor

K1—
(2p+ k)K,

1.e.,
2K3

(2p+A, )Ki
G= 1— (3.16)

K
L;[u]= — 1 — 6;)6(r) .

(2p+A, )K&

Explicitly, this set of equations is [cf. (3.1)]

We write the components of G as cT,'11, c7z], etc. , in which
case c7», c7z1, y», and yz1 correspond respectively to the
solutions u~, u~, w~, and w~ which satisfy

B
PV c711+K

BA]] BA21 B P» 2B

By B B By

B2

By

(p+k)K, +(pK, —K3)
6(r),

(2p+ A. )K,
(3.17a)

PV o.z]+K +
By Bx By

2—

+K3
X

2B2

Bx By

B2'V21
(3.17b)

B cx11
K1 V cx11 +K3

Bx

2B cxg1

Bx By

B CL11 =0 (3.17c)

B c721 2B c711
K]V a2]+K3

Bx By

C72 1

By
(3.17d)

If K3 —0, (3.17a)—(3.17d) have solutions a ', ,
' =aI, ', a P,

' =a2~', y I j
——yI, ' =0, y 2, =y2,

' =0, with aI ~' and a2, ' given
by (3.12a) and (3.12b).

Writing y„=yIii'+y Ii", +y I,'+ and similar expressions for the other components [where y '&'I is the contribution
of 0 (K3) to y~, ], we find from (3.17c) and (3.17d) that y I', and y z', are given, respectively, by

K3 X X
'V]1 = (3p+ A. ) 2K-

4~p( 2p+ A, )K )
2 4 (3.18a)

—(1) K3 xy xy(x —y )
(3.18b)

2K K
4~rp(2p+ A, )K,

Substituting (3.18a) and (3.18b) into (3.17a) and (3.17b) we find that a", , =a I2', =0, and the corresponding 0 (Ki ) con-
tributions satisfy the following coupled equations:

( ) B Bc7 11 Bc7 P1 (x~ y~) K3 (3p+A, )K3

r 4 (2p+ A. )Kt 2p(2p+ A. )K,
6 r — 5 r 3.19a

and

Bc7» Bc7
—(2) —(2)

PV c721+K
By Bx By

4K 3K xy
4vrp(2p+ A. )K, r 4 (3.19b)

B2—(1) B2—(1)7 11 'V 21+

The last term on the right-hand side of (3.19a), which we
have not combined with the preceding term, arises from
the combination

appearing in (3.17a).
We find that (3.19a) and (3.19b) can be decoupled, i.e. ,

we can obtain self-consistent solutions satisfying
Bc7'11'/Bx+Bc7 z1'/By =0. These solutions are

—(2)+ 11

K 3K x r—ln-
4irp (2p+g)K) r a

K 3K2

4~p (2@+k, }K] r

(3.20a)

(3.20b)

This decoupling would not be possible had we worked
with the original G, and is our motivation for the rescal-
ing (3.16). (Recall that the rescaling factor depends on



35 LINEAR ELASTICITY THEORY OF PENTACzONAL QUASICRYSTALS 8613

3
)

K3K
V»

4irp (2@+k,)K,
3K3K

7 21
4irp (2@+A.)K f

2x
r4

X

r2

xy xy(x —y )+2 r4

(3.21a)

(3.21b)

K3 thus c7 '1 1' is not proportional to a'1 1', but also involves
&(0) )

Using (3.20), we can find y i i' and y z&' from (3.17c) and
(3.17d) with the results

If we now substitute y'11' and y 21' into the equations
for c7» and c721, we find that c7'11' ——o,'z1' ——0, and o.''11' and
c7 21' satisfy equations that are identical to the ones
satisfied by a '11' and c7z1' except that the right-hand sides
are multiplied by a factor of K3/pK1. So n ';1', i = 1,2 are
related to a;, ' by a,'t ——(Ki/pKi)a I, '. This implies that

y,", '=(KilpK, )y', , '; i =1,2. By this procedure we can
generate corrections to all orders in K3. For example, the
expression for c7» is of the form

2p r
In —+ K x r—ln-

4np(2@+k) a 4irp(2@+k) r~ a

K23 K43 K 63

1+ + + +
pK 2K2 3K 3

(3.22)

which can be written in closed form as

1 r KK1 x r
ln —+ —ln-

2rr(2@+A. ) a 47r(2~+/)(~Ki K~&) r~ a
(3.23a)

Following this procedure for the remaining components of G, we find

KK1 xy
CX12 =CX21 =

4m.(2@+A, )(pK, —Ki ) r
(3.23b)

&22 =— 1 r
In —+2ir(2@+A ) a

KK1 y2 —ln-
4ir(2p, +k)(pK~ —Ki ) r

(3.23c)

x' KK3 x (x y)—
y 1 i Pl i

2mK&(2@+A, ) r 4n(2@+A, )(pKi —K&) r"2+ (3.23d)

K3 xy KK3 2x 3y
yzi=&iz= 2+2nK, (2p. +1, ) r~ 4ir(2p, +A, )(pK, —Ki) r

(3.23e)

K3 xy
2vrK (2@+A.) r

2xy'

4~(2@+A. )(pK ~

—K
& ) r

(3.23f)

K3 KKi y~(x~ y~)
Y22 P22 2+2~K, (2@+A,) r~ 4m(2p —k)(pK, —Ki) r

(3.23g)

1 r KK3 2(X2 3 2)2
ln —+ —ln—

2+K, a 4irKi(2@+i )(pK~ —K& ) 3r a
(3.23}1)

xy(3x' —y )(x —3y )
~12 ~21

4nK, (2p+h, )(pK, —Ki) 3r
(3.23i)

1 r KK3 y(3x —y ) r&22=- in —+ —ln—
2mK~ a 4vrKi(2p+g)(pK, —K&) 3r a

(3.23j)



8614 PIALI DE AND ROBERT A. PELCOVITS 35

The elements of the Green's tensor G may be found
from the corresponding ones above by multiplying by the
factor (2@+X)K(/[KK, +(pK( —K3)]. It is straightfor-
ward though tedious to check that (3.23) when rescaled by
this factor satisfy the Green's tensor equations described
in the text following (3.2).

where

Aijkl ~fiij fikl +P( fiik ~j I + f»(l fijk )

Bijkl K3(~i 1 ~i2)(fiij fikl + fiikfijl fiilfijk )

Cijkl K3(tik fik2)(fiij fikl +fi(k fij fiilbjk )

Dij kl +1~ik ~jl

(4.3a)

(4.3b)

(4.3c)

(4.3d)

IV. ELASTIC FIELDS SURROUNDING DISLOCATIONS
AND THE DISLOCATION INTERACTION ENERGY

A. Elastic fields surrounding a single dislocation

u, = ,' (n; b& +—n&b; )6(g),
u(,', =n, d, 5(g),

(4.1a)

(4. lb)

where n is the normal to the cut line, and g is a coordi-
nate measured along r. from the cut. The Burger's vector
of the dislocation is the four-vector (b, d).

This singular strain will in turn yield a singular stress
which must be compensated by introducing fictitious
forces so that the total stress is everywhere continuous.
To find the singular stress we rewrite our Euler-Lagrange
equations (3.1a) —(3.1d) as

5F
ij kl

6F
jikl

amkl
+& kI

Bx,

BNki
+D k&

Bx,

(4.2a)

(4.2b)

Our solution for the Green's tensor G presented in the
preceding section is used readily to obtain the form of the
elastic fields surrounding a dislocation in the pentagonal
quasicrystal. Typically, one regards the displacement
fields surrounding a dislocation as being multivalued [cf.
(2.5)]. However, as suggested in Ref. 7 for the case of
crystalline solids, we can choose the u and w fields satis-
fying (2.5), as single-valued functions which undergo a
fixed discontinuity as they cross a cut line. This discon-
tinuity introduces a singular strain at the cut line which
can be written as

The stress tensors o;~ and P;~ coupling to the u and w
fields are defined, respectively, by the equations of equilib-
rium

(3o-ij gF =0,
ax,- =Su, = ' J =1,2 (4.4a)

Bx;

6F
6- j=1,2. (4.4b)

Thus, the singular strains (4. 1) correspond to singular
stresses o';~ and P~ as follows:

ij ~ij kl +kl +~ij kl ~kl

S S S
Pij =Cij kI Q kI +Dij kI M k

(4.5a)

(4.5b)

Corresponding to these stresses are two force fields
defined by:

S

1

fjPf;=
1

(4.6a)

(4.6b)

As noted above, to obtain a physical, continuous stress
field we must counterbalance these forces by introducing
fictitious forces distributed along the cut line which are
equal in magnitude, but opposite in sign to those of (4.6).
Then, the problem of finding u and w in the presence of a
dislocation is equivalent to that of finding single-valued
but discontinuous fields in the presence of these fictitious
forces.

Using (3.2), (3.3), and (4.1)—(4.6), we find that the u
and w fields surrounding a dislocation with Burger's vec-
tor (b, d) are given by

(3a;, (r —r') B((3;j(r —r')
u;(r) = I dl'n( ( Akj( b +Bk&( d ) +(Ckj( b +Dkj( d )

(ix ),. Bxk
(4.7a)

and

()y;j (r —r') i)6;j (r —r')
i((;(r) = I dl'n( ( Akj(~ b~ +Bkj(~ d ) +(Ckj(~ b +Dkj(~ d )

Bxk ax,'.
(4.7b)

where dl is an infinitesimal segment of the cut line, and the integration is done along the entire length of the cut (which
for a single dislocation runs from the core to infinity). Equations (4.7) are generalizations of (27.9) of Ref. 7 to the case
of pentagonal quasicrystals.

To evaluate (4.7) for an arbitrary Burger s vector b=(b, b», d„,d»), it is simpler to first consider b =(b, O, d„,O).
While this is not an allowed Burger's vector (see the discussion at the end of Sec. II) we can rotate our coordinate system
by 90' counterclockwise to obtain u and w for a dislocation with Burger's vector b =(O, b, O, d ) with b» =b, , d» = —d, .
(This will be an allowed Burger s vector if b» =d». ) We can then find the solution for an arbitrary b =(b, , b„,d, d») by
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adding the two solutions above. We may then impose the geometric constraints discussed at the end of Sec. II, which re-
strict the choice of allowed values for the components of b.

Choosing b =(b„O,d, O) with the core at the origin, we can choose our cut line to run along the y axis from 0 to
infinity. The normal to this cut line is then n=(1,0). Equations (4.7) then reduce to the following, upon using (4.3):

Ba;,(r—r') Ba;2(r —r')
u;(r)= f dy' [(2p+k)b +K3d ], +(kb —K3d )

0 Bx By'

BP,,(r —r') BP;2(r—r')
+ (K3b +K]d„), +K3b„

Bx By'
(4.8a)

By;](r—r') By;2(r —r')
w;{r)= j dy' [(2p+A)b ,+K3d,], +(kb„—K3d„)

0 Bx By'

B6,](r r')— B6;2(r—r')+(K3b„+K]d„), +K,b„
Bx

(4.8b)

The terms which are of the form Bf(r—r')/By' we then integrate by parts. For the remaining terms which are of the
form Bf(r—r')/Bx', we calculate a function g(r —r') such that Bf(r—r')IBx'=Bg(r —r')/By' and then integrate by
parts. We will not display the final results for u and v as they are contained below in the expressions (4.9) for a Burger's
vector of arbitrary orientation.

Expressions for u and w for b=(O, by, O, dy) can be easily obtained from the results for b =(b,O, d, O) by rotating the
coordinate system by ~/2 counterclockwise. Under such a rotation, b ~by, u ~uy uy~ u . If physical space is ro-
tated by vr/2, the space of w is rotated by 3m. /2 {see the discussion in Sec. II). Therefore d„~—dy, w„~ —wy, and
wy~w„. So, if to the results obtained for b =(b, O, d, O) we make the substitutions, x~y, y~ —x, b„~by, d ~—d»,
u„~uy, uy ~—u„, w ~ —wy, and wy~w, we would obtain the expression for u and w for b =(O, by, O, dy ).

Adding the results of our expressions for u and w when b =(b, O, d, O) and b =(O, by, O, dy ) we find the following ex-
pressions for a dislocation b =(b,b,d, dy ) located at the origin:

u (r)= (p+A, )K] xytan —+
(p+k)K]+(pK, —K3) r

by pE) —E3 (p+A, )K] X+ ln ——
(p+A )K] +(pK] K3 ) a (p+k)K] +(pK] K3 ) r

dx K3E[+
2m pK& —K3 r

K3K, (p+ A. ) 2xy

2(pK] —K3)[(p+k)K]+(pK, —K, )] r

E3E] K3K, (p+A. ) x(x —y)
(p+X)K]+(pK] K3) r' 2(pK, —K')[( p+k) K—+](pK, —K,')] r4

(4.9a)

b
uy(r) =

2~
(pK, —K3) r (p+k)K]

ln + 2 2(p+A, )K]+(pK, —K3) ]2 (p+A, )K]+(pK] —K3) r

by, y (p+k, )K] xytan
—' ——

2m x (p+. g)K] + (pK] —K 3 ) r

E3K) K3K](p+A, ) y2(x2 2)

(p+ k)K] +(pK] —K3 ) r 2(pK] K3 )[(p+ A. )K] + (pK] —
K 3 )] r

dy E'3K
~ Xy+ 2 2pK) —I{ 3 r

K3K] {p+A,) 2x

2(pK, —K 3 )[(p+k)K] + (pK] K3)]— (4.9b)
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b 2K3(p+ A. ) xy
w, (r)=

(p+A, )K, +(pK, —K3) r

by 2K, (p+ k)
+

(p+A, )K, +(pK, —K3) r2 2

K3(P+~) 2xy'

(p+A, )K, +(pK, —K, ) r

K3(p+~) x (x —y )

(p+X)K, +(pK, K'3—) r4

dx K,K, (p+k) xy(x —3y )(3x —y')+ tan —+
2n x 2(pK& K3)[(p+g)K&+(pK& K3)] 3r

d» K, [(p+A, )K, +2(pK, —K3 )] K 3K, (p+ k) 2( 2 3 2)2
+ 2~ 2(pK, K3)[(p+g)K, +(pK~ K3)] a 2(pK, K3)[(p+A)K&+(pK, K&)]— 3r2

ln ——
2 2 6

b 2K3(p+ iE) K3(p+k, ) y'(x~ y')
w»(r) =

2 2+ 2 4(p+A. )K&+(pK& —K3) r (p+A. )K&+(pK~ —K3) r

(4.9c)

by 2K3(p+ A. ) xy+ 2' (p+k)K&+(pK& K3) r2 2

d
+

+

K3(P+ ~) 2x 'y

(p+ k)K) +(pK, K3 ) r—
K, [(p+—A, )K, +2(pK, —K3)] r K 3K ' (p+ A, )

2
ln —+ 2 22(pK) —K 3)[( p+k) K) +( pK, K3)] —a 2(pK) —K )3[(p+k)K~+(pK, —K3)]

K3K, (p+k) xy(x —3y')(3x —y )tan-' ——
2 2 62(pK) —K3 )[(p+A. )K)+(pK) —K3 )] 3r

y2(3x2 y2)2

3 6

(4.9d)

The ultraviolet cutoff a can now be interpreted as the dislocation core size.

B. Energy of a single dislocation at the origin

Using (4.9) we can explicitly calculate the energy of a single dislocation at the origin with Burger's vector
b=(O, ao, O, ao). The energy, as expected on dimensional grounds, diverges logarithmically with the size of the system,
and is of the form

a o 4(p+ k)(pK) K3)—E= +2K, +(2K2 —K, )K3
8~ (p+k)+(pK, —K3)

1 1

pK) —K3 (p+k. )+(pK) —K3)
2+ 2

Rln-
a

(4. 10)

Since this energy must be positive, we conclude that in the
presence of dislocations, in additions to conditions stated
following (2.4), stability also requires that Kz &0 and
E2 —K] )0. u;, (r)= f b (r')W, (r —r')1 dr'—

2'iT Q
(4. 1 la)

reduces to (4.9). The strains accompanying these fields
can then be written in the form

C. Continuous distributions of dislocations
and their interaction energy

For a distribution of dislocations given by a field b(r),
the fields u and w are given by

and

w;, (r)=
1 dr'—

b (r')W;, (r —r'),
277 a

where

(4.11b)

and

u;(r) = f b (r') W; (r —r')1 dr'—
277 Q

w;(r) = f b (r') W'; (r —r') .
1 d r'-

2'7l Q

(4.10a)

(4.10b)

BW, (r—r') BW; (r —r')
W;, (r r') =——

2 Bx, Bx~

and

BW~ (r —r')
W;, (r —r') =

a

(4.12a)

(4. 12b)

The Crreek indices in (4.10) run from 1 to 4 and
b =(b„,b», d, d»). The tensors W, and W; are defined
via (4.9), requiring that if b (r)/a =b„fi(r) then (4.10)

To calculate the interaction energy HD of a distribution
of dislocations we insert (4.11) into the elastic energy den-
sity (2.4), with f=0, and then integrate over all space.
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To carry out all of the integrals and obtain a closed form
expression for the pairwise interaction is very tedious. In-
stead, we use a method presented in Appendix C of Ref.
10. We first evaluate HD when K3 ——0. In that case there
will be no coupling between b and d. Furthermore, as
noted in Sec. III, with K3 ——0, the u portion of the energy

is identical to that of an isotropic two-dimensional crystal.
Apart from a boundary term proportional to K2 the w
portion is identical to the sum of two LY models. Upon
explicit calculation we have found that if K3 ——0, the term
proportional to K2 equals zero. Thus HD ', the value of
HD when K3 ——0, takes the form

(p] 1 d r d r'
(OI b, 1

~

r —r'
~

b(r) ~ (r —r')b(r') (r —r')
D 8ir a r —r' )a a a ir —r'i

d2
+N 'd(r) d(r')ln ' + J [CM '

i
b(r)

~

+.C'X '
~

d(r)
i ], (4.13)

a a

where MI '=4pK/(2@+A. ) and X' '=2Ki. We are assuming that we have charge neutrality

~ ~

d rb(r)= I d rd(r)=0, so that the energy is finite for an infinite system. The constants C and C' will depend on the

microscopic cutoff used (i.e., the details of the dislocation core).
To calculate HD when E3&0, we first evaluate PHD/F3 Usin.g (2.4) we have

BH 6HD Bu; 6HD Bw;
+ + d r uxx r —

uyy I wxx r +wyy r +2uxy r wxy r wyx
BK,

=
Su,- BK, |w, BK,

(4.14)

Since we have minimized HD with respect to fiu and 5w, the first two terms on the right-hand side of (4.14) are identical-

ly zero. We are then left with the task of evaluating the integral on the right-hand side of (4.14) which is comparatively
easy. In using the Euler-Lagrange equations to simplify BHD/BK3, we have however ignored any contribution from the
K2 term. The K2 term is a boundary term and as such has no e8'ect on the Euler-Lagrange equations, which only con-
siders nonzero variations in the bulk of the material. So, in order to calculate the total dislocation Hamiltonian, we have
to explicitly include any contribution from the K2 term. The final expression for HD will then be given by

HD=HD + dK', +IC2 d r[w, „(r)w~~(r) —w,~(r)w~ (r)] .p ]
Q3 BHD 2

BK,'
(4.1 5)

The technical details of evaluating (4.15) are shown in the Appendix. The final result is given by

87m a ir —r'~ )a a a
b(r) (r —r')b(r') (r —r')

&d ,
1

~

r —r'i

ir —r'i' a

+ W d, (r)+(x —x')[(x —x') —3(y —y') ] (y —y')[3(x —x') —(y —y')']
d~ (r)

/r —r'/'X, d, (r')+(x —x')[(x —x') —3(y —y') ], (y —y')[3(x —x') —(y —y') ] dy(r')
/r —r'/' /r —r'/'

+& —,, b( ').d( )+—,, ;,b;( )d, ( ')
4 r —r'/ 2 /r —r'[

1 b(r) (r —r') (x —x')[(x —x') —3(y —y') ]

+ (y —y')[3(x —x') —(y —y') ] dy(r)
ir —r'/'

+ J [CM
/

b(r)
/

+C'N
/

d(r)
/

C"Wd(r) b(r)], (4.16)
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where

4(p+A. )(pK, —K3)M=
(2p+A, )K) —K3

2K3(2K~ —Ki )
iV = 2K[+

(2p+ iL)K, —K3

(p+k)K)Ki(2K~ —K, )

(pK( —K3 )[(2p+ A. )K( K3 )]—

46(p+A. )K,K3(2K, Ki )—
W=

3(pK, —K3)[(2p+k. )Ki —K3]

4(p+ k)K3 (K~ —K, )S=
[(2p+ l, )K )

—K3 ]

(4. 17)

(4. 18)

(4.19)

(4.20)

(x —x')[(x —x')' —3(y —y')']
d (r)

/r —r'['

+ (y —y')[3(x —x') —(y —y') ] d (r)
/r —r'/'

does indeed remain invariant under such transformations.
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APPENDIX: EVALUATION OF (4.15)

and C" is again a cutoff'-dependent constant.
We have explicitly checked that (4.22) respects the pen-

tagonal quasicrystalline symmetries discussed in Sec. II.
In carrying out this check one notes that b and d trans-
form under rotations like u and w, respectively. Thus if
our coordinates r and hence b are rotated by an angle 0,
symmetry demands that d be rotated by 30 to obtain the
same physical system. It is straightforward to check that
the expression

We evaluate the integral in (4. 14) by substituting the
strain tensors given in (4.11). We will then have an ex-
pression of the form

(A 1 )

where E i3(r r') is give—n by

E f3(r r')= f—d r"
[ [W„,(r —r")—W' (r —r")][W~,(r' —r")+ W~ (r' —r")]

+28'„(r—r")[W~ (r' —r")—W~„(r' —r")]
I (A2)

To carry out the integral in (A2) it is convenient to go to Fourier space, writing

E ~(R)=
2 f d q( —1+e 'q )E ii(q)e

1
(A3)

The factor e ~' provides an ultraviolet cutoff, while using the factor ( —1+e 'q
) provides an infrared cutoff and will

not affect the energy of a charge neutral system. The Fourier transform E ~(q) will then involve a linear combination of
products of the form W~(q) W&&( —q). We will not display all of the details of the calculation here, but indicate the
techniques used.

The angular portion of the spatial integrals needed in evaluating W(q) or W( —q) involves performing integrals of the
form

2~ sin 0 cos"0
G(q)= d0

0 gx cos0+ gy sln0

G(q)=

where m +n is odd. Defining a complex variable, z =e', we can rewrite G(q) as

1 1 1

y
1 (z —1) (z +1)"

gx ~gy 2 unit circle Z Z +Z0

(A4)

(A5)

1 . d— lim
(n +m —1)! z o dz

1

m+n+1
q

where zo=(q„+iq~)l(q —iq~). The integrand has two simple poles which lie on the contour and a pole of order m +n
at the origin. The integral G(q) will then be proportional to the sum of the principal values of the two simple poles and
the residue of the pole at the origin. The general expression for G (q) is

m m+n —2 n+m —1 2m +1
G(q)= 1 1 (z' —1) (z-'+1)" 1—2&

gx —lqy I 2 Z +Zp

Collecting terms in b and d we find that BHD/M3 may be written as
(A6)
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BHD

BK3

1

[(@+A,)K, +(pK, —K3)]
d2 d

X f f [b;(r) AJ(r —r')bj(r')+b;(r)B; (r r'—)d~(r')+d;(r)C~(r —r')d (r')],
a ~r —r

I
&a a

(A7)

where

„(r—r')= d q(e ' " '' —1)e " —4K3KJ(@+A.) 5
(2~)'

1 I8 „(r—r')= d q(e ' " 'I —1)e
(2~)

(Aga)

X . 2(p, +i, )K, [(2@+k)K,+K'] q„ qy
2& x+ 2&my

q q

q„(q, —3q ) q»(3q„—q» )

4
6 + 4

6
q q

(6 „5„„+6 5„)— (6 „6„—5 6„„)
2qxqy

1 I

C,„„(r—r')= d q(e ' " '' —l)e
(2')

K3K, (p +k, )[p K'(2p, +k) —K3)—(2p+ A, )K3K t 6
q (pK, —K2, )'

qx(qx —3q» ) q» (3q„' —q»
)' 2q, q» (q —3q» )(3q„—q» )

mx nx + 8 my ny + 8 rnx ny
q q q

(A8b)

(Agc)

To perform the integrals over momentum space, we need
to calculate integrals of the form

F(r)= f dq dOq(e' '—1)e
1 qx qy

277 m+n+2

where m +n is even.
We can rewrite F(r) as

n

J„(x)= f cos(x sinO)cos "Od &,2"&nI (n + —,
'

)

n ) ——,
' (A12)

where I (n + —,')=[1X3X5X X(2n —I)/2"]&a. is
the gamma function for half integers.

As the final step in calculating F(r) we use the relations

—qa

F(r)= f dq
0 q

I(q), (A10) f"dq [Jo(qr) —1]=—ln —+ln2 —C,
0 q a

(A13)

where where C is a cutoff'-dependent constant. The above result
is valid in the regime r/a ~~ 1. Also in this regime

I (q) = f dP[cos(qr sing) —1]( —1)
7T 0

1J„(qr)=—, n ) 0
n

(A14)

Xsin (/+0)cos"(/+9), (A 1 1)

where 0 is the polar angle of r. For a specific m and n,
I(q) becomes an algebraic expression which involves
Bessel functions of many orders. To make such a connec-
tion we use the integral representations of Bessel func-
tions:

is a valid approximation.
Using these techniques and approximations we have ob-

tained a result for BHD/BK3. If we integrate over K3, we
obtain the second term on the right-hand side of (4.15).
Using an identical procedure we have calculated the third
term on the right-hand side of (4.15). By adding these to
HP&

' we obtain the expression for HD stated in (4.16).
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