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For more than two decades, exact and explicit solutions for the initial isothermal transverse sus-
ceptibility P&(T) of the quantum-mechanical Ising model ferromagnet have been known on the
honeycomb, square, and triangular lattices but not as yet on the kagome lattice which is the only oth-
er regular lattice in two dimensions. Recently, however, exact solutions have been found for local-
ized even-number correlations of the ferromagnetic kagome Ising model, rendering its +&( T) exactly
calculable. Similar to the other three regular lattices, the resulting continuous curve for g~(T)/g&(0)
shows both a weak (energy-type) singularity at the critical temperature T, where
X~(T, )/gj. (0)=1.1426. . . and a rounded maximum at T,„~T, with the parameters of this max-
imum given by P& "/P&(0)=1. 1945. . . at T,„/T, =1.0994. . . . The exact solution for P&(T) of the
decorated-kagome Ising-model ferromagnet is also obtained having modified features illustrating the
effects of the decoration spins (singly decorated bonds) upon 7&( T).

I. INTRODUCTION

Investigating planar Ising models on regular lattices in
the presence of a transverse magnetic field, Fisher' used
graph-theoretical arguments to establish an exact closed
formula for the initial isothermal transverse susceptibility
X'(T) and proceeded, in particular, to demonstrate its ex-
plicit solutions on the two-dimensional honeycomb and
square lattice structures. After first calculating the neces-
sary Ising correlations by Pfaffian techniques, Stephenson
then applied the same formula to find the exact solution
for Xt(T) on the triangular lattice. Pursuing a diFerent
(non-graph-theoretic) approach, Horiguchi and Morita3
generalized the formula to include both regular and irreg-
ular lattices of arbitrary spatial dimensionality and ap-
plied their generalized formula to obtain X'(T) exactly on
a regular Cayley tree. The present theoretical investiga-
tions combine essential features of the analytical method
of Horiguchi and Morita with recently developed
methods for securing exact solutions of Ising multisite
correlations on planar lattices, thereby enabling Xt(T) to
be determined exactly upon both the kagome and
decorated-kagome lattice structures.

The traditional Ising-model ferromagnet is defined
upon a lattice of N sites as the Hamiltonian

where each site-1ocalized Ising variable cr
~
——+ 1,

designates summation over all distinct
nearest-neighbor pairs of lattice sites and J ~ 0 is the
strength parameter of the ferromagnetic interaction.
Viewing the o.; variables as z-component Pauli spin opera-
tors, the model becomes quantum-mechanical in the pres-
ence of a transverse magnetic field since the Hamiltonian

II. EXACT FORMULA FOR g (T) OF THE ISING
MODEL ON REGULAR AND IRREGULAR LATTICES

In the present section, some essential aspects of the
analytical method of Horiguchi and Morita' will be
adopted to develop in a self-contained manner an exact
and convenient representation for X'(T) on regular or ir-
regular lattices of arbitrary spatial dimensionality.

Consider the system Hamiltonian

&—&p+JV] (2. 1)

where

~p ———J g oioJ'
&, )

(2.2)

is the standard Ising model (1.1) introduced earlier whose

then contains noncommuting operators. For more than
two decades, ' exact and explicit solutions for the initial
isothermal transverse susceptibility X'(T) of the
quantum-mechanical Ising model have been known on the
honeycomb, square, and triangular lattices but not as yet
on the kagome lattice which is the only other regular (all
sites equivalent, all bonds equivalent) lattice in two di-
mensions. As previously mentioned, however, exact solu-
tions have recently been obtained for localized even-
number correlations of the ferromagnetic kagome Ising
model rendering its X'(T) exactly calculable. Also, aided
by newly developed extended transformation theorems
and results which map Ising correlations of irregular
(bond-decorated) lattices upon linear combinations of Is-
ing correlations belonging to the original regular lattices,
the exact solution for X'(T) of the decorated-kagome Ising
model ferromagnet is then obtained having modified
features illustrating the eff'ects of the bond-decoration
spins upon X'(T).
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variables are now represented by z-component Pauli spin
operators, and

W) ———h„go.;= —h M (2.3)

Z =Tre —P'" (2.4)

represents the interaction energy of the spin system with
the transverse uniform, static, external magnetic field h,
where o.; is the x-component Pauli spin operator localized
on the ith lattice site and M =g, cr;" is the x-component
magnetic moment operator of the system. Letting the
set of all z-component Pauli spin operators
t(T(), cr;, . . . , oq ) I

—=o, the magnetic canonical partition
function Z is given by the usual trace formula over all de-
grees of freedom of the system

In order to derive an exact and useful formula for
X)(T), one first presents the following standard theorem
where A, B are operators together with its short proof.

Theorem:

e
—p(A+B) e

—pA fpd7, e (p —))A—ge —).(A+» (2 7)
0

Proof: Let f (f3) —=eP "e P' + '. Then diff'erentiating
gives

f~(P) /3A g —/3( A +B) PA( g +g)e —/3( A wB)

PAB —P( A +B)

By integrating both sides from 0 to l3 and then multiply-
ing by e P", one obtains (2.7) completing the proof of the
theorem.

whose inverse appears as the normalization factor in the
expression for the canonical thermal average

(M )/, ——Z 'TrM e
a

(2.5)

where p= 1/kB T with kB being the Boltzmann constant,
T the absolute temperature, and where the subscript h on
the thermal average symbol emphasizes that the thermal
averaging is performed using a Hamiltonian containing a
finite magnetic field h & 0. In contrast, a thermal average
symbol devoid of any such subscript will signify that the
thermal averaging is performed in the absence of a trans-
verse magnetic field (h, =0). The initial isothermal trans
Verse susceptibility X)(T) is now defined by

The above theorem is actually an integral equation rep-
resentation for e p' + ', where most commonly A, B are
noncommuting operators, and, as such, is a familiar form
for initiating perturbation theory in quantum statistical
mechanics. In this context, the type of integral equation
(2.7) (linear, inhomogeneous, Volterra, second kind) can
be formally solved by the method of successive iterations
which gives

—p( A + B ) —/3 A f p d g —( p —) ) Ag —ilA+.
0

enabling one to derive an exact formula for g) ( T) of Ising
models on both regular and irregular lattices of arbitrary
spatial dimensionality as now will be shown.

Defining

X,(T)= lim
0

a(M. ),
Bh

(2.6)

Zp=TI e

and using (2. 1)—(2.5) and (2.8), one obtains

(2.9)

(M„)„=Z ' TrM„e

—P(Ho+'6'l)

P(iso+'el)Tre

P lt p f /3 d l
—(/3 k. )—tt p~ —/ 'ttp—

X
a 0

T -peo pd A,
-(p-~)y~o -~Ho

C7 0

TrM e ' —TrM„dge '
)e '+Q h

0 0. 0

Zp+O(h')

= —Zp' dkTr e &e 'M e +0 h
0 a

(2.10)

where, in writing the last expression (2.10), one has used
the fact that

(M, ) =Z() ' TrM e =0,

as well as the invariance property of a trace under cyclic

permutations, and has chosen to interchange the order of
the k-integration and thermal-averaging procedures. Sub-
stituting (2.3) into (2.10) one obtains

(M„)/, =h, f dk. (M ( —i7)M, ))+O(h„), (2.11)
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where

~ g )
i 'Jto g /-+o

& o"„(—i&)o,")= (e o „e o,")+0 x ~0 x

eo x —XV&o x —P'eo=Zo Tre o e o

is the definition of an operator 3 in the "temperature-
interaction representation. " Recalling the definition (2.6)
for X/(T), (2.11) then directly yields

—2eiJo, Qt cr, —P'/gp
o „re e

(
—22Jo; g', o',

)rs (2. 14)

g/(T)= f dc(, (M„( il—.)M„)=g f dc/ (o"„( iA—)o, )
0 0

r

(2.12)

f(Io: I)o~=okf(I( —I) "'o:1),

Tr o/o /, f ( I
o. '„

I ) = 6//, Trf ( I o'„j ),

(2.13a)

(2.13b)

having written M„=g„o„ for the x-component magnetic
moment operator of the system. Following Horiguchi
and Morita, the expression (2.12) can be further
simplified using the two identities:

where use has also been made of the definition (2.2) for
the Ising Hamiltonian &0 as well as the corresponding
canonical thermal average. In (2.14), the summation sites
s' are the nearest-neighbor sites of site s, and q is the
number of nearest-neighboring sites of s [one remarks that
q need not be a constant, e.g. , q =q(s) for an irregular
lattice having nonequivalent sites]. Substituting (2.14)
into (2.12) gives

Xi(T)=g f dA(o"„.( —ik)o", )
r, s

=g f dA. &e
0

where 6 q is the usual Kronecker delta symbol and
f (I o'„ I ) is any function of the o'; operators. The proofs
of both identities (2.13) are actually quite straightforward,
namely, (2.13a) is proven by using elementary properties
of the Pauli spin algebra and (2.13b) by conveniently
choosing a product representation in which all o'; opera-
tors of the system are diagonal. Proceeding, therefore, to
use (2.13a) and (2.13b), the thermal average in (2.12) be-
comes

r,(T)=g
q

2Jo'„g o'„
(2.15)

Letting Wo, Tr' denote a restricted Hamiltonian and
trace operation, respectively, which exclude site r, one
next rewrites the summand of (2.15) as

whereupon now electing to first perform the k integration
(contrasting the choice of Horiguchi and Morita) yields

—2PJcrr Q) o'„

—2/3Jo'r gt o „

q

2Jo'„g o'„
1

—2PJo'r g )
o'„

=Zo ' Tr exp( —Pgfo)
q

2Jo'„g o'„
1

/3Jo'„gt o'„—PJo'„gt o'„
e " "—e=Z o Tr exp( /ufo)—

0 q

2Jo'„g o'„
1

lJJor g 1 or /3Jor gt or'
—1

e —e=Z0 Tr' exp( f3&o)Tr-
CT

Z q
2Jo', g o'„

I

=2f3Z 0 Tr' exp( P&o)—
q

sinh PJ g o'„
1

q

PJ g o'„
1

=2/3Z o Tr exp( —P~o)

q

sinh PJ g o'„
1

q

/3J g o',
1

1

/JJo'„gi cr'„Tre

=PZ o
' Tr exp( —P&o)

q

tanh PJ g o'„
1

q

PJ go'„
1

q

PJ g o'„

q

tanh PJ g o'„

=o ''), (2.16)
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having used the definition of a canonical thermal average
to begin and end the algebraic and partial-trace manipula-
tions. Substituting (2.16) into (2.15) gives

q

/3J g o'„
1

tanh PJ g o'„
1

Y1 ( T) =m /3 g
r

(2.17)

where the spin magnetic moment symbol m has now been
explicitly entered. Concerning the notations used in
(2.17), one is reminded that the inner summation variable
r' as well as its upper value q are both functions of the
outer summation variable r. The implications of r'=r'(r),
q =q (r) will soon become clearer, particularly upon appli-
cation to an irregular lattice having nonequivalent sites;
for a regular lattice, however, the summation over all sites
r in (2. 17) merely enters a factor N (total number of lattice
sites) and q is the lattice coordination number, giving the
compact form of the original Fisher closed formula' as ex-
pected. As a generalization, the basic formula (2.17) for
the isothermal zero-field perpendicular susceptibility X1(T)
is exact for simple Ising models on regular or irregular
lattices of arbitrary spatial dimensionality since no lattice
symmetry or dimensionality arguments have been used in
its derivation. The relatively simple structure of the basic
formula (2.17) together with its wide applicability are
noteworthy.

FIG. 1. The kagome lattice where five sites are specifically
enumerated, namely, the origin site and its four nearest-
neighboring sites.

4

tanh Q g o'„
1

X1(T) =m /3N (3.1)

and may be termed "close packed" since it contains ele-
mentary polygons having an odd number of sides (viz. ,

triangles). One recognizes that the kagome lattice has the
same coordination number 4 as the square lattice, the
latter being "loose packed. "

Applying the basic formula (2.17) to the kagome Ising
model, one obtains

III. KAGOME AND DECORATED-KAGOME ISING
MODELS AS EXAMPLES OF APPLICATION

The kagome lattice (Japanese woven bamboo pattern) is
a periodic array of equilateral triangles and regular hexa-
gons (see Fig. 1) thus also called the 3-6 lattice. ' The
lattice is regular (all sites equivalent, all bonds equivalent)

where the (dimensionless) interaction parameter Q—=PJ.
Using the site-labeling displayed in Fig. 1, the transcen-
dental operator function appearing within the thermal
average symbol can actually be expanded into a finite
algebraic series since

tanh[Q (o'1+ cr 2+ o3+ o 4)]. ~ + (0102+~10~3+0104+0203+0204+0304)+C01021r304
Q ( 0 1 +0'

2 + CT 3 +0 4 )
(3.2)

where

1 tanh(4Q) tanh(2Q)
8 4Q 2Q

(3.3a)

ter Q have been determined using again elementary spec-
tral theory, i.e., considering all possible eigenvalue realiza-
tions of the operator forms in (3.2). Substituting (3.2) into
(3.1) gives the dimensionless form

1 tanh(4Q)
8 4Q

(3 ~ 3b) =4Q[ 3 +2B (x1+x2+x3)+Cx&],Io
(3.4)

1 tanh(4Q) tanh(2Q)
8 4Q 2Q

(3.3c)

use having been made of the facts that the left-hand side
of (3.2) is an even function of its argument and any z-
component Pauli spin operator o.

~ (or corresponding Ising
variable cr&) satisfies (o.&) "+'=cr1, (01) "=1,
n =0, 1,2, . . . . The coefficient expressions (3.3) which
depend only upon the (dimensionless) interaction parame-

where Xo—=X2(0)=Nm /4J, the symmetry of the lattice
has been recognized in the pair-wise equating of geometri-
cally equivalent pair correlations, and the localized corre-
lations are defined by

x1 ——( 12), x2 ——( 14), x3 ——( 13 ), x5 ——( 1234), (3.5)

where, for simplicity of notation in (3.5), one has written
in an obvious fashion only the numeric site labels within
the thermal average symbols (see again Fig. 1).
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1.30

l.26—

1.22—

1 ~ 18—
X~ /Xo

1 ~ 14—

1.10—

1.06—

1.02—

0.98—

0.94—

lattice. In the present paper, for the convenience of re
taining many of the same symbols and formulas found in
the earlier references, the thermodynamic limit has not
been explicitly written but rather is tacitly and indeed
necessarily assumed. This choice of "lexicographical om
ission" causes no actual confusion in the context and, if
desired, the incisive reader may insert the explicit thermo
dynamic limit notations where appropriate.

One next considers the lattice'formed by the previous
kagome lattice supplemented with lattice points at the
centers of all bonds (see Fig. 3). The resulting bond-
decorated lattice is irregular since all sites are no longer
equivalent, and is called the decorated-kagom, e lattice.
The decorated-kagome Ising model ferromagnet is then
defined by the Hamiltonian

Q9Q l I I I I I I I I

045 0.56 0.67 Q.T8 0.89 1.00 1.11 1.22 1.33 144 1.55

T/Tc ~0= —J y a;p,'
(i,j )

(3.6)

FIG. 2. Kagome Ising model. Exact solution curve for the
(reduced) transverse susceptibility P&( T)/Po vs (reduced) tem-
perature Q, /Q (= T/T, ) where Xo ——Nm'/4J; Q,
=J/k~ T, = —' ln(3+2&3) =0.4665. . . . A vertical inflection

point shown encircled exists at the critical temperature T, .
(Note the differing restricted ranges of the scales. )

VX, = —h„ger;"+gp, = —h M
J

(3.7)

and the interaction energy of the spin system with the
transverse uniform, static, external magnetic field h„ is
given by

Exact solutions for the ferromagnetic kagome Ising
model correlations (3.5) have recently been obtained
which together with the known interaction-dependent
coefficients A, B,C [(3.3)] render the exact expression (3.4)
for Xt(T)/Xo explicitly calculable. Similar to the other
three regular lattices, the resulting continuous curve in
Fig. 2 for Xi(T)/Xo versus T/T, shows a weak (energy-
type) singularity at the critical temperature T„where
X'(T)/Xo=1. 1426. . . and a rounded maximum at
T,„~T, with the parameters of this maximum given by
Xz '"/Xo ——1.1945. . . at T,„/T, = 1.0994. . . . Using
corresponding reduced variables, these results on the ka-
gome lattice are numerically between those on the square
and honeycomb lattices (given in Ref. 1) but very close ac-
tually to the former. This may be understood upon reali-
zation that Xt(T) [as opposed to X~~(T)] is a thermo-
dynamic response function determined solely by correla-
tions among the nearest-neighbor spins of an arbitrary
spin and then recalling the fact that the kagome and
square-lattice structures each have the same coordination
number 4.

In relation to the theory and results of the present
work, one underscores that there exists an important ax-
iom in statistical mechanics which requires the taking of
the so-called thermodynamic limit (limN~ce, V~oo,
where N/V is constant) and, to be safe, the thermo-
dynamic limit should always be performed first, i.e., be-
fore all other limiting procedures in a statistical-
mechanical theory. In the theory of phase transitions, the
thermodynamic limit is clearly essential for obtaining
mathematical singularities in the correlations and ther-
moscopic observables. For example, the correlations (3.5)
which are substituted into (3.4) are those of the infinite

where o';,p~ are z-component Pauli spin operators local-
ized on the open-circled site i and solid-circled site j, re-
spectively, g&, &

designates summation over all dis-
l,j

tinct nearest-neighbor pairs of lattice sites, J~0 is the
strength parameter of the ferromagnetic interaction, and
M, =g,. o';++.p~ is the x-component magnetic mo-
ment operator of the system.

The basic formula (2.17) for Xi(T) can now be applied
to the decorated-kagome Ising model as the superposition
expression

FIG. 3. The decorated-kagome lattice where the open-circled
sites are the original kagome sites and the solid-circled sites are
the new decoration sites. Nine site-localized Ising variables are
specifically enumerated, namely, o.o, o l, ~ ~ ~, ~4 and pl, ~ ~ ~ p4.
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XI(T)=m f3 4

P QP, ';

]

tanh

r (
t a]] C sites)

2

P g cr,
'

1

(3.8)

with the (dimensionless) interaction parameter P =f3J. Similar to the previous calculations, one next develops the tran-
scendental functions of Ising-type operators within the thermal average symbols into finite algebraic series given by

tanh[P(PI+P3+P3+P4 ] ~ I +1(P1P2+P IP3+P IP4+P2P3+P2P4+P3P'4) ++ I O'IP2P3P4P (P I +P3+P3+P4)

where

(3.9)

1 tanh(4P) tanh(2P)
8 4P 2P

(3.10a)

1 tanh(4P)
8 4P

(3.10b)

1 tanh(4P) tanh(2P)
8 4P 2P

(3.10c)

and

tanh[P (cr0+ o I ) ]
D&+Et oo

P(cr0+o', )
(3.1 1)

where

1 tanh(2P)
2 2P

(3.12a)

1 tanh(2P)
2 2P

(3 ~ 12b)

The actual application of (3.8) also requires knowledge of the number of open- and solid-circled sites, N,„- and N~, re-
spectively, which are easily counted since the total number of lattice sites N =N~ +N and N ——2N, together imply
that

(3.13)

Since all open-circled sites are equivalent, and likewise all solid-circled sites, the expression (3.8) for XI (T) together with
(3.9), (3.11), and (3.13) yields

XJ( T) =Nm /3[ —,( 3 I +8 I (P IP3+P IP3+P IP4+PzP3+P&4+P3P4 ldkp + CI (PIP3P3P4 ~ dk p + I (D I +El ( &o& I ~ okp )]

= —', X0P [2 I+281(P IP2+PIP3+PIP4)dk p+Cl (PIP2P3P4)dk p+2(DI +El (CT0CTI )dk p)], (3.14)

where Y0 ——X3(0)=5Nm /12J. In writing the last expres-
sion (3.14), the z superscripts have for simplicity been om-
itted by using the isomorphic Ising variables, the symme-
try of the lattice has been recognized in the pair-wise
equating of geometrically equivalent pair correlations, and
the subscripts on all the thermal average symbols em-
phasize that these correlations are those of the decorated-
kagome (dk) Ising model having (dimensionless) interac-
tion parameter P.

Using next an extended transformation theorem of
decoration-iteration type (extended in the sense that the
theorem applies beyond partition functions to multisite

&PIP2~dk P ~ ~(~0+ol )(o0+o2) &k, g

=M (I+3xI), (3.15a)

correlations), the above correlations on the decorated-
kagome Ising model having (dimensionless) interaction
parameter P can be mapped upon linear combinations of
correlations on the kagome (k) Ising model having (di-
mensionless) interaction parameter Q, where P and Q are
related [via (3.15g) below]. Specifically, using the nota-
tions depicted in Fig. 3, the theorem establishes for the
present problem that
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&Viu3)dkP M &(~0+~1)(~0+~3))k,g
=M'(1+2x, +x, ),

&V1V4)dkP M &(ao+al)(ao+~4))kg

=M'(1+2x, +x, ),
&PIP2P3P4)dk, P M & (~0+~1)( 0+a 2)

(3.15b)

(3.15G)

X (o 0+a 3)(o 0+a 4) ) k g

=M'(1+6x, +2x, +2x, +4x, +x, ),

&aoa1)dk p= &aoa1)k g =xi

where

(3.15d)

(3.15e)

(3.15fl

and

e g=cosh(2P) . (3.15g)

In (3.15a)—(3.15e), the kagome Ising model correlations
are defined [consistently with (3.5)] by xi ——& 12),
x2 ——&14), x3 ——&13),x4= &0123), and x~=&1234).

Since the kagome Ising model correlations
x

1 x2 x3 x4 x5 are known exactly, the relations (3.1 5) are
now substituted into (3.14) along with the known
coefficients (3.10) and (3.12) thus enabling the exact solu-
tion Xi( T) /Xo to be determined for the decorated-kagome
Ising model and the resulting curve is displayed in Fig. 4.
An overall comparison of Figs. 2 and 4 reveals that the
eff'ect of the decoration spins (singly decorated bonds) is to
diminish the reduced transverse susceptibility as a func-

1.30

1.26—

1.22—

1.18—
x, /x,

1.14—

1.10—

1.06—

1.02—

0.98—

0.94—

090' I I I I I I I I I

0.45 0.56 0.67 0.78 0.89 1.00 1.11 1.22 133 1.44 1.55

T/Tc

FIG. 4. Decorated-kagome Ising model. Exact solution curve
for the (reduced) transverse susceptibility P&(T)/7o vs (reduced)
temperature P, /P( = T/T, ), where go ——5Nm /12J;
P, = J/kBT, = ~1n[(3+2''3)' + (2+2V3)'~ ]=0.7925. . . .
A vertical inflection point shown encircled exists at the critical
temperature T, . (Note the differing restricted ranges of the
scales. )

tion of reduced temperature. A qualitatively new feature
found in Fig. 4 is the appearance of a very gradual mono-
tonically decreasing behavior of the curve at low tempera-
tures until reaching a local minimum at T;„~T, with
the parameters of this very shallow (also asymmetric)
minimum given by 7~ '" /7o ——0.9970. . . at
T;„/T, =0.6607. . . . The asymmetrical shape of this
shallow minimum is not readily discernible to the eye in
Fig. 4 with the scales chosen for the axes, but the numeri-
cal computer values in fact show that the higher-
temperature side of the minimum is steeper than the
broad low-temperature side. Similar to Fig. 2, the result-
ing continuous curve in Fig. 4 shows a weak (energy-type)
singularity at the critical temperature T„where
Xi( T, )/Xo ——l.0711. . . and a rounded maximum at
T,„&T, with the parameters of this maximum given by
gJ '/+0 ——1 . 1086. . . at T .„/T, = 1 . 1003. . . . Since all
results are exact, both the qualitative and quantitative
differences between Figs. 2 and 4 are attributable to the
presence in the latter case of the decoration spins (singly
decorated bonds).

IV. SUMMARY AND CONCLUSIONS

The present theoretical investigations employ recently
developed extended transformation theorems" which map
unknown Ising multisite correlations upon linear corn-
binations of those already known on other Ising models.
Finding select even-number correlations on the kagome
and decorated-kagome Ising models in this manner, the
solutions are then substituted into exact analytical expres-
sions for the zero-field perpendicular susceptibility Xi(T)
developed in large part by Horiguchi and Morita.

Since there exist only four regular lattices in two di-
mensions, the present investigation upon the kagome Ising
model has succeeded in 'completing the list' of exact solu-
tions for Xi(T) of simple Ising models on regular planar
lattice structures. The solution curve Xi(T)/Xo versus
T/T, of the kagome Ising model is numerically very
close to that of the square Ising model which may be un-
derstood upon realization that the thermodynamic
response function Xi(T) [in contrast to X~~(T)] is highly lo-
cal in character and then recalling that both two-
dimensional lattices have the same coordination number

The present theory also directly advances systematic in-
vestigations of Xi(T) for simple Ising models on irregular
planar lattices. In particular, an exact solution is derived
for Xi(T)/Xo of the decorated-kagome Ising model fer-
romagnet showing that the general effect of the decoration
spins (singly decorated bonds) is to diminish the reduced
transverse susceptibility as a function of reduced tempera-
ture although one still observes both a vertical inflection
point (weak singularity of energy-type e Ine,
e —=

~

T —T,
~
/T, ) at the critical temperature T, and a

rounded maximum at a temperature T,„~T, . As a
qualitatively new feature, however, one notices a pro-
nounced "flattening" of the curve at low temperatures rel-
ative to the previous kagome Ising model. More precise-
ly, there appears a slight monotonically decreasing behav-
ior of the curve at low temperatures until reaching a very
shallow (also asymmetric) local minimum at a tempera-
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ture 34% below the critical temperature [one mentions
that the existence of a shallow asymmetric local minimum
for Xt(T)IXo at a temperature 14% below criticality was
also found by Fisher' for an exactly soluble Ising model
upon a plane antiferromagnetic superexchange lattice].
This local minimum phenomenon illustrates that findings
upon irregular lattices cannot always be construed or in-
ferred from those upon regular lattice structures. Al-
though regular lattices have customarily been chosen for
most calculations in statistical mechanics because the cal-
culations are simplified and believed to contain most of
the essential physics, one concludes by observing that,
with the current availability of exact solutions for local-
ized Ising correlations (magnet, lattice gas, binary alloy,
etc. ) on various planar lattices, there are in fact some in-
teresting and informative thermal quantities both in equi-
librium and nonequilibrium which are largely local in

their nature and which can now be more thoroughly in-
vestigated on site- and/or bond-irregular lattice structures
with perhaps some special and diverse effects of their own
to reveal.
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